CS6140/4420 Machine Learning Section 9, Fall 2025

     About CS6140     Home     Schedule     Piazza     Project Gradescope

* Schedule and materials subject to change
Week / Module Topic / Lecture Other Reading Assignment
  • 9/4 - 9/11
  • Topics:
  • Administrative
  • Intro to ML, Matrix Data
  • Linear Regression
  • Setup, Cross Validation
  • Error, Accuracy, ROC, AUC


Notes: Ridge Regression (normal equations)

  • 9/11 - 9/18
  • Topics:
  • Gradient Descent
  • Linear Regression with GD
  • Logistic Regression
  • Newton Method
  • DHS ch 5
  • KMPP ch 7, 8
  • 9/18 - 9/25
  •  
  • Topics:
  • Support Vector Machines
  • Duality with KKT conditions
  • Maximizing Margins Constrained Optimization
  • SMO Algorithm


  • DSH ch 5.11
  • KMPP ch 14
  • HW2
  • Due: 10/1
  • 9/25 - 10/2
  • Topics:
  • Kernels
  • Kernels for SVM
  • K-Nearest Neighbor
  • Kernel Similarity and KNN
  • Kernel Density Estimation
  • Heat Kernels, Harmonic Equation
  • Lecture 9 : PCA, KernelPCA

    paper: Kernel Methods in Machine Learning

  • Learning with harmonic functions


    • 10/2 - 10/9
    • Topics:
    • Probabilities as data densities
    • Maximum Likelihood, fit params to data
    • Gaussian Discriminant Analysis
    • Naive Bayes

    • DHS ch 2, 3
    • KMPP ch 2, 3, 4
    • 10/9 - 10/16
    • Topics:
    • EM algorithm for fitting mixtures
    • Graphical Models

    • 10/16 - 10/23
    • Week 7 / Module 4: Decision Trees, Boosting, Features
    • Course Map

    • Topics:
    • Online Learning
    • Rule-based Classifiers
    • Decision/Regression Trees
    • Adaboost Algorithm
    • Bagging
    • RankBoost, Gradient Boosting


    • 10/23 - 10/30
    • Week 8 / Module 4: Boosting, Features
    • Course Map

    • Topics:
    • Active Learning and VC Dimension
    • Multiclass ECOC


    • DHS ch 9.5
    • KMPP ch 16.6
    • KMPP ch 27.6.2
    • 10/30 - 11/6
    • Topics:
    • Margins, Boosting Feature Analysis
    • PCA and LDA, Lagrangian Multipliers
    • Regularized Regression RIDGE and LASSO
    • Missing Values
    PrincipalComponent Analysis (slides, sceencast)
    Missing Values and Naive Bayes

    optional: Fischer LDA
    Slides: tSNE / paper / implementation
    optional: tSNE gradient calculation
    • PCA: DHS ch 10
    • KMPP ch 25
    • 11/6 - 11/13
    • Topics:
    • Perceptrons
    • Neural Networks


    • DHS ch 6
    • HW5
    • Due: 11/12
    • 11/13-11/20

    • Week 11 / Module 5: Convolution Neural Networks
  • HW6
  • Due: 11/25
    • 11/20 - 11/27
    •    
    • Topics:
    • Adv NN
    • RNN
    • TRN


    • 11/27 - 12/4

    • Topics:
    • TRN, attention
    • HW7
    • Due: 12/10
    • 12/4 - 12/11

    • Topics:
    • TRN, attention

    • Tue Dec 9, WVH rooms 210-212 Exam
      10:30 -2:30

    Final Exam, you'll need a laptop. Expect programming problems similar to HW, about 1h to code and 15 min to run. You will have access to internet, but what you implement has to be your own.


    Submit a copy of your code on gradescope together with running instructions. The TAs are encouraging you to use Jupyter Notebook, but this is not a requirement for the exam.