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ABSTRACT

Recent studies have shown that boosting provides excellent
predictive performance across a wide variety of tasks. In
Learning-to-rank, boosted models such as RankBoost and
LambdaMART have been shown to be among the best per-
forming learning methods based on evaluations on public
data sets. In this paper, we show how the combination of
bagging as a variance reduction technique and boosting as
a bias reduction technique can result in very high precision
and low variance ranking models. We perform thousands of
parameter tuning experiments for LambdaMART to achieve
a high precision boosting model. Then we show that a
bagged ensemble of such LambdaMART boosted models
results in higher accuracy ranking models while also re-
ducing variance as much as 50%. We report our results
on three public learning-to-rank data sets using four met-
rics. Bagged LamdbaMART outperforms all previously re-
ported results on ten of the twelve comparisons, and bagged
LambdaMART outperforms non-bagged LambdaMART on
all twelve comparisons. For example, wrapping bagging
around LambdaMART increases NDCG@1 from 0.4137 to
0.4200 on the MQ2007 data set; the best prior results in the
literature for this data set is 0.4134 by RankBoost.
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H.3.3 Information Systems]: Information Search and Re-
trieval; H.4.m [Information Systems]: Miscellaneous—
Machine Learning
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1. INTRODUCTION

The general problem of ranking, and in particular rank-
ing of web search results, has received significant attention.
Given the large amount of training data now available it
has become possible to learn effective ranking models using
machine learning. Methods that learn how to combine pre-
defined features for ranking are called “Learning-to-rank”
methods. A large number of learning-to-rank algorithms
have been proposed, such as [8, 7, 9, 21, 28, 30] (see [22] for
a more complete list).

Recent studies have shown that tree models combined
with ensemble techniques provide excellent predictive per-
formance. In the recent Yahoo! learning-to-rank challenge
[10], the top ranked teams all used tree ensemble methods.
The winning entry in this competition used an ensemble of
LambdaMART [32] models.

In this work, we study the effectiveness of bagged ensem-
bles of ranking models to achieve higher prediction accuracy.
We train multiple independent ranking models on different
samples of the training data and combine the outputs of
these models to get improved prediction accuracy. In our
experiments, we use LambdaMART, which is a boosted en-
semble of trees, as the baseline model. Thus we are forming
bagged ensembles of boosted ensembles of trees. Our ap-
proach is motivated by Breiman’s Bagging [3], so we call
this method BL-MART for Bagged LambdaMART. Since
sub-models are independent they can be trained in parallel
and the training time is not more than training time of a
single LambdaMART model. In fact, because we perform
sampling without replacement, each of the LambdaMART
models is trained on a smaller training set and therefore the
training time is less than training a single LambdaMART
model on the full train set.

We summarize the main contributions of this paper as fol-
lows:

(a) We perform thousands of parameter tuning experiments
for the LambdaMART algorithm to find near optimal pa-
rameter configurations for it and also study its sensitiveness
to its parameters (section 3.4).

(b) We show that adding randomness during the training
of LambdaMART models can improve the accuracy of these
models. We introduce randomness by sub-sampling queries
that are available to the algorithm during each of the train-
ing iterations. We also use feature sampling as another
method for increasing randomness of the algorithm (section
3.3).

(c) We study the effectiveness of bagging ensembles of Lamb-



daMART models to both increase the prediction accuracy
of the ranking model and reduce the model variance.

(d) We show that bagged ensembles of overfitted base-level
models (overfitted boosted tree models) result in higher pre-
diction accuracy than bagging optimally generated base-
level models and we explain why this happens.

2. BACKGROUND AND RELATED WORK

LambdaMART [32] is a ranking algorithm that uses Gra-
dient boosting [15] to optimize a ranking cost function simi-
lar to the LambdaRank [7] cost function. Readers can refer
to [6] for details of this algorithm. However, since it is our
base model, we briefly describe some of the important con-
cepts that are referenced in the reminder of this paper.

Gradient boosting produces an ensemble of weak mod-
els (typically regression trees) that together form a strong
model. The ensemble is built in a stage-wise process by per-
forming gradient descent in function space. The final model
maps an input feature vector z € R? to a score F(z) € R:

Fo(2) = Fin—1(2) + ymhm (2)

where each h; is a function modeled by a single regression
tree and the v; € R is the weight associated with the i—th
regression tree. Both the h; and the v; are learned during
training. A given tree h; maps a given feature vector z to
a real value by passing x down the tree, where the path
(left or right) at a given node is determined by the value
of a particular feature in the feature vector and the output
is a fixed value associated with the leaf that is reached by
following the path.

Gradient boosting usually requires regularization to avoid
overfitting. In an overfitted model, the model’s generaliza-
tion ability degrades because of fitting too closely to the
training data. Different kinds of regularization techniques
can be used to reduce overfitting in boosted trees. One com-
mon regularization parameter is the number of trees in the
model, M. Increasing M reduces the error on training set,
but setting it too high often leads to overfitting. An optimal
value of M often is selected by monitoring prediction error
on a separate validation data set.

Another regularization approach is to control the com-
plexity of the individual trees via a number of user-chosen
parameters. For example, Max Number of Leaves per tree
limits the size of individual trees thus preventing them from
overfitting to the training data. Another user—set parameter
for controlling tree size is the minimum number of observa-
tions allowed in leaves. This parameter is used in the tree
building process by ignoring splits that lead to nodes con-
taining fewer than this number of training set observations.
This prevents adding leaves that contain statistically small
samples of training data.

Another important regularization technique is shrinkage
which modifies the boosting update rule as follows:

Fr(z) = Fro—1(z) + mymhm(z), 0<n <1,

where parameter 7 is called the learning rate. Small learn-
ing rates can dramatically improve a model’s generalization
ability over gradient boosting without shrinkage (n = 1),
however they result in more boosting iterations and there-
fore larger models.

Bias-Variance Decomposition of Error

According to the bias-variance decomposition of error [16],
the squared error of a single example x can be decomposed
into the sum of three non-negative terms: noise, bias, and
variance. The first term, Noise, is the irreducible error
which cannot be avoided regardless of the learning algo-
rithm. In learning-to-rank domain, it can be interpreted
as the noise in relevance judgments of query-url pairs. The
second term, Bias, measures how closely the average pre-
diction of the learning algorithm (considering all possible
training sets of a fixed size) matches the optimal prediction
(the Bayes rate prediction). Finally, the Variance of an al-
gorithm is how much the algorithm’s prediction fluctuates
over different possible training sets of a given size.

Ensemble methods such as Gradient Boosting [15] reduce
bias by increasing the expressive power of the base learner
and by forcing learning to attend to training cases that con-
sistently are mispredicted. Because boosting combines the
predictions of multiple trees it also can reduce variance, but
boosted trees are so powerful that regularization usually is
needed to prevent overfitting. Other ensemble methods such
as Bagging [3] mainly reduce variance by averaging outputs
of several models trained on different samples of training
data. Because bagging usually does not significantly increase
expressive power and often yields large reductions in vari-
ance, it is a relatively safe procedure that usually does not
require regularization or careful parameter tuning. In fact,
bagging can be used as an effective regularization method
when wrapped around other high-variance learning meth-
ods that are prone to overfitting such as boosting. There
has been attempts for combining bias and variance reduc-
tion techniques for classification [31, 29] and regression [5,
14, 26, 27] problems. In this work, we combine bagging and
boosting for improved learning-to-rank.

Similar to us, BagBoo [23] wraps Bagging around Boost-
ing for improved learning-to-rank. However, there are sev-
eral fundamental differences that make our work different
from BagBoo. The most important difference is the size of
the final model. On two public data sets that BagBoo re-
ports its results, our BL-MART models are approximately
250 times smaller and also more accurate on most metrics
(section 4). BagBoo is training more than a million trees
on these data sets which makes its size infeasible for real
time applications. In addition, the boosting algorithm that
is used in BagBoo is a pointwise method, while BL-MART
uses LambdaMART for boosting which is a listwise algo-
rithm. Pointwise methods such as [12, 21] do not exploit
relative rank information between documents, instead at-
tempting to directly create a scoring function. In contrast,
listwise methods such as [7, 9, 30] use lists of ranked doc-
uments as instances during training, and learn a ranking
model by minimizing a listwise loss function. In addition,
we also show that bagging boosted ensembles that are mildy
overfitted to their training data gives better results.

3. METHODS
3.1 Data sets

For our experiments we work with three public data sets:
TD2004 and MQ2007 from LETOR data sets [24] and the
recently published MSLR-WEB10K data set from Microsoft
Research [1]. Table 1 summarizes the properties of these



data sets. The TD2004 and MQ2007 data sets have been
used many times for evaluating new learning-to-rank algo-
rithms. This provides a baseline for comparing our method

with other state-of-the-art learning-to-rank algorithms. MSLR-

WEBIO0K is a large data set which is more similar to com-
mercial search data sets. Because it is larger it should pro-
vide results that are more reliable. All three data sets are
pre—folded and come with evaluation scripts that allow fair
comparison of different ranking algorithms.

3.2 Evaluation Metrics

For model comparison we use two information retrieval
metrics: Normalized Discounted Cumulative Gain (NDCG)
[19] and Mean Average Precision (MAP) [2]. NDCG@k is
a measure for evaluating top k positions of a ranked list
using multiple levels of relevance judgment. It is defined as
follows,

k
NDCG@k =N~ " g(r;)d(j),

Jj=1

where N1 is a normalization factor chosen so that a per-
fect ordering of the results will receive the score of one; 7;
denotes the relevance level of the document ranked at the
j-th position; g(r;) is a gain function:

g(r;) =2 —1;

and d(j) denotes a discount function. The evaluation scripts
that come with the three data sets use the following discount

function:
. 1
d(j) = { 1
logs (5)

We use the same scripts for fair comparison of our final
models with other algorithms. However in our implementa-
tion of the LambdaMART algorithm and in all of our train-
ing and parameter tuning experiments, we optimize for the
following discount function which places stronger emphasis
on higher positions:

for j =1,2
otherwise.

1
- log, (1 + j)

Also, based on whether we assign NDCG values of zero or
one to a query where all of the documents are assigned non—
relevant labels, the scale of NDCG values will change.

3.3 Randomization for LambdaMART

In [14], Friedman proposed a modification of the gradi-
ent boosting algorithm which was motivated by Breiman’s
bagging method. He proposed that at each iteration of the
algorithm, a base learner should be fit on a sub-sample of the
training set drawn at random without replacement. Fried-
man observed a substantial improvement in gradient boost-
ing’s accuracy with this modification. Sub-sample size is
some constant fraction s of the size of the training set. When
s = 1, the algorithm is deterministic. Smaller values of s
introduce randomness into the algorithm and help prevent
overfitting, acting as a kind of regularization. The algorithm
also becomes faster, because regression trees have to be fit
to smaller data sets at each iteration.

Also similar to Random Forests [4], more randomness can
be introduced by sampling features that are available to the
algorithm on each tree split. On each split, the algorithm

d(5)

Table 2: Values used in grid search for parameter
tuning

(a) TD2004 and MQ2007 data sets

Parameter Values

Max Number of Leaves 2,4,7,10, 15, 20, 25
Min Percentage of Obs. per Leaf | 0.12, 0.25, 0.50
Learning rate 0.05, 0.1, 0.2, 0.3
Sub-sampling rate 0.3, 0.5, 1.0

Feature Sampling rate 0.1, 0.3, 0.5, 1.0

(b) MSLR-WEB10K data set

Parameter Values
Max Number of Leaves 10, 40, 70
Min Percentage of Obs. per Leaf | 0.12, 0.25, 0.50

Learning rate 0.05, 0.1, 0.2
Sub-sampling rate 0.5, 1.0
Feature Sampling rate 0.3, 0.5, 1.0

selects the best feature from a random subset of features
instead of the best overall feature.

In our experiments, we add both observation sub-sampling
and feature sampling as two new parameters that need to be
tuned for the LambdaMART algorithm. These parameters
can take values between 0 and 1, where 1 means no sampling
and values less than 1 introduce sampling randomness.

3.4 Parameter Tuning

The original LambdaMART algorithm has three parame-
ters that need to be tuned to achieve the best results: “Max
number of leaves”, “Min percentage of observations per leaf”,
and “Learning rate”. These were described in section 2. As
mentioned above, to these we have added two new parame-
ters: “Sub-sampling rate” and “Feature sampling rate”. We
use grid search to test 1,008 different combination of param-
eters on the smaller data sets and 162 combinations on the
larger data set. Table 2 shows the values we tried for each of
the parameters. Since MSLR-WEB10K contains more fea-
tures for each query-url pair, we need more complex trees
(trees with more leaves) on this data set.

Each combination of parameters is tested on 5 folds of
each data set. On each fold we use 3 different random seeds
to get more accurate results. This requires 1,008 x 5 x 3 =
15,120 experiments on each of the smaller data sets and
162 x 5 x 3 = 2,430 experiments on MSLR-WEB10K. We
used a MapReduce cluster of 40 nodes for these experiments.
Map tasks receive experiments as input and compute valida-
tion and test NDCG for the configuration specified by that
experiment. Reduce tasks perform NDCG averaging over
different folds and random seeds for each parameters com-
bination. It takes about 8 hours to run this portion of our
experiments once on this cluster.

Table 3 shows the best configurations based on Validation
NDCG@3 on each data set. The best performing configura-
tions on all three data sets use feature sampling. The smaller
data sets also get better results by sub-sampling of training
queries on each iteration. We conjecture that sub-sampling
queries helps when the training data is small because it helps
avoid overfitting by not allowing trees to see all queries on
each iteration of boosting. This adds diversity to the indi-
vidual trees which is then reduced when boosting averages



Table 1: Properties of data sets used for experiments

Data set Queries | Query—URL Pairs | Features | Relevance Labels
TD2004 75 74,146 64 {0, 1}
MQ2007 1,692 69,623 46 {0, 1, 2}
MSLR-WEBI0K | 10,000 1,200,192 136 {0, 1,2, 3,4}

Table 3: Best combinations of parameters found after parameter tuning.
(a) TD2004 data set

Validation NDCG@3 | Max Leaves

Min Obs. Per Leaf

Learning Rate | Sub-sampling | Feature Sampling

0.5113 20 0.25
0.5105 10 0.50
0.5061 10 0.12
0.5056 10 0.50
0.5055 15 0.25

0.1 0.5 0.1
0.05 0.3 0.1
0.05 0.5 0.3
0.1 0.3 0.1
0.05 0.5 0.1

(b) MQ2007 data set

Validation NDCG@3 | Max Leaves

Min Obs. Per Leaf

Learning Rate | Sub-sampling | Feature Sampling

0.5647 7 0.25
0.5643 4 0.25
0.5643 10 0.25
0.5635 7 0.50
0.5633 7 0.25

0.05 0.3 0.3
0.1 1.0 0.1
0.05 0.5 0.3
0.05 0.5 0.5
0.05 0.5 0.3

(c) MSLR-WEBI10K data set

Validation NDCG@3 | Max Leaves | Min Obs. Per Leaf
0.4873 40 0.25
0.4872 70 0.50
0.4870 40 0.25
0.4867 40 0.50
0.4865 40 0.50

Learning Rate | Sub-sampling | Feature Sampling
0.1 1.0 0.5
0.05 1.0 0.3
0.05 1.0 0.5
0.1 1.0 0.3
0.05 0.5 1.0

tree predictions. With very large data sets this is less criti-
cal because individual trees cannot themselves significantly
overfit a large data set when tree size is limited.

Grid search for parameter tuning is computationally ex-
pensive and becomes prohibitive as the data sets become
large. Because of this it is useful to study the sensitivity
of the LambdaMART algorithm to its parameters to have a
better understanding of the number of training experiments
needed on a new data set. We use the results of our pa-
rameter tuning experiments to study the effect of number
of experiments on improvement in NDCG. For each dataset,
we create a pool of configurations that we evaluated during
parameter tuning experiments. Then we randomly select
different numbers of these configurations. On each random
selection, we pick the config with best validation NDCG@3
and then record validation and test NDCG@3 for that con-
fig. To get more accurate results, we repeat this random
process 10K times and report average NDCG@3. Figure 2
shows the results.

As expected, for all three data sets, validation NDCG im-
proves monotonically as we perform more experiments. On
MSLR-WEBI10K, the largest data set, there is less discrep-
ancy between validation and test scores. The discrepancy
between validation and test is largest on TD2004, the small-
est data set, because the validation sets which are held aside
form the training data must also be small.

Given that the parameter values we had chosen for grid
search where chosen based on our experiments with Lamb-
daMART on different data sets, we were expecting the pa-

rameter tuning experiments to reach to the pick value on
test set after trying few combinations. On TD2004, the
data set with the smallest validation sets, accuracy on the
test set peaks after only about 100 parameter configura-
tions, and then slowly drops. Accuracy on the validation
set is still rising at 100 iterations, suggesting that hyperpa-
rameter optimization is overfitting to the validation sets. A
similar effect is observed on MQ2007, but overfitting does
not begin on this problem until about 400 parameter con-
figurations have been tried. And on MSLR-WEBI10K, we
again observe overfitting to the validation sets after fewer
than 25 configurations have been tested.

When there is randomness in the algorithm and the vali-
dation sets are not infinite, as more parameter combinations
are tried search begins to find parameter combinations that
look better on the validation set because of this random-
ness. If one is not careful, the computational power pro-
vided by MapReduce Clusters is so great that it is possible
to overdo parameter tuning and find parameter combina-
tions that work not better than the hyperparameters that
would have been found by less thorough search. One way to
avoid overfitting at the hyperparameter learning stage is to
use a 2nd held-out validation set to detect when parameter
tuning begins to overfit and early-stop the parameter opti-
mization. Holding out a 2nd validation set will reduce the
size of the primary hyperparameter tuning validation sets,
making overfitting more likely. But as we have seen, even
large cross-validated validation sets do not completely pro-
tect from overfitting when hyperparameter optimization is
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Figure 1: As more combinations of parameters are tested during parameter tuning of LambdaMART,
NDCG@3 improves on the validation sets, but the test set curves show overfitting of the hyperparameters

eventually occurs.

exhaustive, so care must be exercised to prevent hyperpa-
rameter optimization from becoming counterproductive.

We do not directly control the best number of trees for the
LambdaMART models via a user-set parameter. Instead, as
iterations of boosting continue, the prediction accuracy of
the model is checked on a separate validation set. Boosting
continues until there has been no improvement in accuracy
for 250 iterations. The algorithm then returns the number of
iterations that yielded maximum accuracy on the validation
set.

Figure 3 shows two sample runs on MQ2007 and MSLR-
WEBI10K data sets. While NDCG@3 continues to improve
on the training set, it reaches its maximum on validation sets
after a few hundred iterations on both data sets. It is also
interesting that we do not see significant drop in NDCG on
validation sets even after 2000 iterations. This suggests that
the combination of regularization techniques we use is suffi-
cient to prevent models from overfitting on these datasets.

3.5 BL-MART details

As mentioned before, for bagged LambdaMART we train
many LambdaMART models in parallel and then aggregate
their outputs for improved accuracy. In order to have more
diverse models in the final ensemble, we randomly sample
training data (without replacement) for training each of the
LambdaMART sub-models. The randomization techniques
discussed in section 3.3 also contribute additional diversity
to the models.

3.5.1 Combining Scores

For combining scores of the sub-models, one can simply
take average of their scores. However, the scale and dis-
tribution of the scores generated from LambdaMART al-
gorithm is dependent on the training data and on smaller
training data can be very different for models trained on
different sub-samples. Because of this, simply averaging
LambdaMART scores may not give the best results. As
an example, Figure 4 shows the distributions of validation
scores generated from two models that are trained on differ-
ent random samples of MQ2007 and MSLR-WEB10K train-
ing data. While on the larger data set, the output scores
have very similar distributions, on the smaller data set we
observe difference distributions and different scales of the

scores. Note that even on the MSLR-WEB10K data set the
output score of individual queries do not necessarily have the
same scales across different models. The reason that we see
a final normal-like distribution on this data set is that scores
of individual queries have close to uniform distributions with
different scales and result in a normal-like distribution once
aggregated.

Since scores of different sub-models are on different scales,
we initially tried using Borda count [18] as a rank aggrega-
tion technique. Each of the LambdaMART sub-models is
used for generating a ranking of the test data. For each
ranking, a score of 0 is assigned to the lowest ranked result,
1 to the next-to-lowest result, and so forth; then the to-
tal score of each result is computed over all the sub-models
and the ensemble orders documents by this score. However,
since Borda count converts real valued scores of documents
to integer value ranks and then combines these ranks, the
possibility of having ties increases significantly when averag-
ing only have a few LambdaMART sub-models. Since tied
documents would have to be ordered arbitrarily, this can sig-
nificantly reduce the performance of the bagged model. Our
experiments showed that Borda count works well when used
to aggregate ranks of many model, but performs even worse
than a single model when applied to only a few sub-models.

A better approach for combining the outputs of different
sub-models is to normalize the scores of documents gener-
ated by each sub-model for each query. For each query we
linearly scale the scores of its corresponding documents such
that the document with the highest score will have a score
of 1.0 and the document with the lowest score will have a
score of 0.

3.5.2  Overfitting Tolerance

As mentioned in section 2, prediction error can be re-
duced by reducing both bias and variance. When bagging
single decision or regression trees, bagging typically results
in higher accuracy if applied to unpruned trees. The rea-
son is that unpruned trees are overfitted to their training
data and therefore have low bias and high variance. Since
bagging is a variance reduction technique, it can reduce this
variance so that the final bagged model has both low bias
and low variance and thus lower total prediction error. Sim-
ilarly, we may get better results by bagging boosted tree
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models that have less bias but more variance. We test the
effectiveness of this idea by adding an overfitting tolerance
as a new parameter to the LamdaMART algorithm.

To generate overfitted LambdaMART models, we mon-
itor the prediction accuracy on a separate validation set.
Without overfitting, we would select the first N trees that
results in the maximum prediction accuracy on the valida-
tion set. With overfitting tolerance, we add more trees af-
ter this maximum point until accuracy drop is more than
a threshold value. We experimented with different thresh-
old values and found that 2% worked well across the three
data sets. As Figure 3 shows, it is possible that even after
adding hundreds of additional trees, the drop in prediction
accuracy on validation set is small. To prevent the size of
the overfitted model from growing excessively large in this
situation we allow a maximum of 250 trees to be added after
the maximum point has been reached on the validation set.
It is possible that allowing more overfitting would further
improve the results from bagging, but at the expense of a
much larger model.

4. RESULTS

BL-MART combines LambdaMART sub-models in order
to achieve higher accuracy. There is a trade-off between in-
creasing accuracy and model complexity: as we add more
sub-models, the gain in accuracy is offset by the final model
becoming too complex. It is important to balance the num-
ber of sub-models needed to achieve a reasonable gain in
accuracy with the need to control complexity so that the
models are still feasible to use in practice. To do this, we
train BL-MART with different number of sub-models and
evaluate its performance on the validation sets. We first
create pools of LambdaMART models for each of the folds
of the three data sets and then use these pools of mod-
els during the bagging process. We used pools of size 1000
models for TD2004 and MQ2007 data sets and 50 models for
MSLR-WEBI10K data set. The reason is that on the smaller
data sets variance is higher and bagging needs to add more
models before accuracy asymptotes.

We create different pools for overfitted and non-overfitted
models. Overall, we need to train 10,000 LambdaMART
models on each of the smaller data sets and 500 models on
MSLR-WEBI10K data set. We used a MapReduce cluster



for this purpose. Each mapper task is assigned a fold in one
of the data sets. It then randomly selects 67% of the training
queries from that fold and generates a LambdaMART model
on this random sample. Once the model is created, it evalu-
ates the scores of validation and test data corresponding to
that fold and passes these scores to reducer tasks. Reducer
tasks just dump the scores that they receive. It takes about
18 hours to generate output scores for these models on a
cluster of 40 nodes.

To study the effectiveness of using overfitted models in the
bagging process, we create bagged models of different sizes
from overfitted and non—overfitted models and then compare
their MAP. Since we use a pool of models and each bagged
model is created by randomly selecting a subset of models
from these pools, we repeat the random process of bagged
model creation 100 times and compute average validation
MAP of these bagged models to have more reliable results.
Figure 5 shows the results confirming that using overfitted
models results in better accuracy for the final bagged en-
semble. On MSLR-WEB10K data set, we need to include
more models in the bagged ensemble before overfitted mod-
els show better results.

We use the same results of Figure 5 for determining the
number of models that should be included in the bagged
ensemble. In order to have a balance between accuracy and
model complexity, we picked 45 models on smaller data sets
and 20 models on the larger data set.

To compare the performance of BL-MART model with the
original LambdaMART model and other learning-to-rank al-
gorithms, we create BL-MART models for each of the data
sets. Since, we create bagged models by random selection
of sub-models from our model pools, we repeat this pro-
cess for 20 times and report average results. Similarly, we
use 20 different random seeds for “LambdaMART with ran-
domization” and report average results. The original Lamb-
daMART algorithm is deterministic and we only need to run
it once. Since LambdaMART code is not publicly available,
we re-implemented it for our experiments.

4.1 Accuracy Analysis

Table 4 summarizes the results of our experiments ana-
lyzing the accuracy of BL-MART models in comparison to
LambdaMART and other learning-to-rank algorithms. On
TD2004 and MQ2007 all prior published results are included
in the table for four metrics. For the new MSLR-WEB10K
data set no other results have yet been published.

On TD2004 data set, BL-MART significantly outperforms
LambdaMART on all four metrics. Also bagging overfitted
models results in better performance on this data set. In
comparison to other learning-to-rank algorithms, BL-MART

performs best in terms of MAP and NDCG@5, but on NDCG@1

and NDCG@3 RankBoost and BagBoo are slightly better. It
should be noted that we have limited the size of BL-MART
to control complexity. For example, on this data set, BL-
MART contains about 4,500 trees while BagBoo is using 1.1
million trees which is 250 times larger than our model.

On MQ2007 data set, BL-MART again significantly out-
performs LambdaMART on all metrics and it also achieves
the best results compared to other learning-to-rank algo-
rithms which have reported their results on this data set.

On the new MSLR-WEB10K data set, BL-MART again
improves LambdaMART performance on all of the metrics.
However, on this data set the difference between bagging

of overfitted and non—overfitted models is not statistically
significant.

Across the three problems and four metrics, BL-MART
with overfitting improves accuracy an average of 2.6% when
compared to LambdaMART with randomization.

While we have reported the best results (as far as we
know) compared to other ranking algorithms on TD2004
and MQ2004 data sets, it should be noted that we did not
tune the LamdaMART models for bagging. We tuned a sin-
gle LambdaMART model and then used the same set of best
parameters in the bagged model. It might be possible to get
better results by bagging LambdaMART models which are
generated from different set of parameters. For example,
using more complex trees in sub-models might lead to over-
fitting which shows to be a desirable property for sub-models
of a bagged ensemble. However, tuning the bagged model
would have required much more experiments.

4.2 Variance Analysis

Variance can hurt in several ways: 1) by increasing the
variance term in the bias/variance decomposition it reduces
the expected accuracy of the trained models; 2) by increas-
ing uncertainty it increases the number of experiments that
must be run to determine which learning method and pa-
rameters yield the best results; and 3) it creates risk when a
final model must be selected to deploy. All other things be-
ing equal (e.g. expected accuracy across multiple trials), the
lower-variance learning method is prefered. For example, re-
ducing variance by half reduces the number of experiments
that must be run to pass a t-test by /2, and reduces the
expected loss of the single deployed model compared to the
expected loss of a typical model by a factor of 2. Because
of this, learning methods that exhibit high variance can be
difficult to work with, and learning methods that have lower
variance are safer to deploy and easier to use for new fea-
ture development. Boosting often has relatively high vari-
ance. Bagging, however, is an effective variance reduction
method. Thus we expect BL-MART to have significantly
lower variance than LambdaMART.

In order to compare the variance of LambdaMART and
BL-MART models, we use the MSLR-WEB10K data set.
We randomly select 10 samples from the training data of
Fold1 of this data set. Each sample contains a random se-
lection of 67% of the training queries in this fold. We then
train LambdaMART and BL-MART models on each of these
samples and evaluate these models on the test data of this
fold.

Table 5 shows the NDCG and MAP scores and their cor-
responding variance for each of the models. If we compare
“LambdaMART with randomization” with “BL-MART with
overfitting”, the following would be the reduction in variance
for different metrics:

e NDCG@1: —67.3%

e NDCG@3: —18.8%

e Mean NDCG: —40.2%
e MAP: —57.1%

5. DISCUSSION

Wrapping bagging around LambdaMART boosting yields
two distinct benefits: 1) it achieves accuracy comparable to



Table 4: Evalutation results on three public learning-to-rank data sets.
(a) TD2004 data set

NDCG@1l | NDCG@3 | NDCG@5 | MAP
SVMmap [34] 0.2933 0.3035 0.3007 0.2049
RankSVM-Struct [20] 0.3467 0.3371 0.3192 0.2196
ListNet [9] 0.3600 0.3573 0.3325 0.2231
SmoothRank [11] 0.4000 0.3832 0.3555 0.2326
RankSVM [17] 0.4133 0.3467 0.3240 0.2237
AdaRank-MAP [33] 0.4133 0.3757 0.3602 0.2189
AdaRank-NDCG [33] 0.4267 0.3688 0.3514 0.1936
BoltzRank [30] 0.4767 0.3902 0.3635 0.2390
FRank [28] 0.4933 0.3875 0.3629 0.2388
RankBoost [13] 0.5067 0.4295 0.3878 0.2614
BagBoo [23] 0.5067 0.4080 0.3898 0.2499
LambdaMART 0.4267 0.3584 0.3266 0.2378
LambdaMART with randomization | 0.4560 0.4033 0.3722 0.2513
BL-MART without overfitting 0.4947 0.4217 0.3886 0.2649
BL-MART with overfitting 0.4947 0.4270 0.3948 0.2684
(b) MQ2007 data set
NDCGa@1l | NDCG@3 | Mean NDCG | MAP
RankSVM-Struct [20] 0.4096 0.4063 0.4966 0.4645
ListNet [9] 0.4002 0.4091 0.4988 0.4652
AdaRank-MAP [33] 0.3821 0.3984 0.4891 0.4577
AdaRank-NDCG [33] 0.3876 0.4044 0.4914 0.4602
RankBoost [13] 0.4134 0.4072 0.5003 0.4662
CRR [25] - - 0.5000 0.4660
BagBoo [23] 0.4071 0.4176 - 0.4676
LambdaMART 0.4147 0.4119 0.5011 0.4660
LambdaMART with randomization | 0.4137 0.4157 0.5035 0.4684
BL-MART without overfitting 0.4197 0.4217 0.5079 0.4726
BL-MART with overfitting 0.4200 0.4224 0.5093 0.4731
(c) MSLR-WEBI10K data set
NDCGa@1 | NDCG@3 | Mean NDCG | MAP
LambdaMART 0.4580 0.4467 0.5693 0.3670
LambdaMART with randomization | 0.4628 0.4487 0.5706 0.3684
BL-MART without overfitting 0.4640 0.4514 0.5720 0.3696
BL-MART with overfitting 0.4642 0.4516 0.5729 0.3705

Table 5: Variance reduction in BL-MART models compared to LambdaMART models. The first column in
each group is the mean accuracy. The second column in the variance of this accuracy measured across the

trials.
NDCGQ1 NDCG@3 Mean NDCG MAP
Mean Variance Mean Variance Mean Variance Mean Variance
LambdaMART 04484 | 18 x 107 ° [ 0.4395 | 9.1 x 107 ° | 0.5640 | 1.2 x 107°% [ 0.3657 | 0.9 x 10~ °
LambdaMART with randomization | 0.4492 | 22 x 107% | 0.4421 | 5.4 x 107% | 0.5647 | 1.4 x 107% | 0.3665 | 1.3 x 1076
BL-MART without overfitting 0.4516 | 10 x 107 | 0.4468 | 7.8 x 107 | 0.5675 | 1.5 x 107° | 0.3690 | 0.9 x 10~°
BL-MART with overfitting 0.4528 | 7x 1075 | 0.4471 | 4.4x107° | 0.5686 | 0.8 x 107° | 0.3703 | 0.5 x 10~°
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Figure 4: The effect of overfitting tolerance

and often better than the current state of the art in learning-
to-rank; and 2) it achives this very high accuracy while si-
multaneously reducing variance. Taken individually, each of
these is a reason to be interested in BL-MART. Together,
however, they represent a substantial step forward.

For those interested in delivering high accuracy search re-
sults at commercial search engines, the reduction in variance
may be the more important result. In commercial search en-
gines most gains come not from improved learning methods,
but from developing new or improved features (and data)
to feed into learning. Feature and data refinement requires
frequent experimentation to determine if the refinement is
better and should be released. Reduced learning variance
makes these experiments easier and more reliable. Because
bagging can easily be parallelized across multiple comput-
ers, it allows one to obtain low variance experimental results
with little increase in wall clock time. That these results also
will have state-of-the-art accuracy makes the method even
more appealing.

The final output of our BL-MART method is a high preci-
sion and low variance bagged ensemble of models. However,
in real-time applications such as search engines, it may not
be feasible to use such large models. We are currently work-
ing on compression pruning techniques that allow dropping
a large fraction of trees from the final model without sig-
nificantly impacting the accuracy. This is possible because
we find empirically that large shrinkage is necessary to pre-
vent massive overfitting in LambdaMART models. When
shrinkage is high, boosting sometimes needs to generate a
sequence of nearly identical trees to do what it might have
accomplished with one tree without shrinkage. Yet in other
places shrinkage is critical and subsequent trees are quite
different from each other. By deleting and reweighting trees
after the full LambdaMART ensemble has been grown, we
can determine post-facto which trees are redundant and con-
tribute little to the model, and which trees are critical for the
model to have high accuracy. The method is currently under
development, but it looks like we can also exploit the fact
that bagging boosted trees generates even more reduntant
trees that can safely be eliminated afterwards with little or
no loss in accuracy. For example, in one set of experiments
we are able to prune away 40-80% of the trees without sig-
nificant loss in NDCG.

To run experiments, we developed a platform called jforests
that not only implements LambdaMART and BL-MART,

but which supports many tree-based learning methods such
as bagging, boosting, regression, classification, ranking, etc.
The platform is written in such a way to make it easy to
code additional tree-based methods with minimum effort.
For example, AdaRank and RankBoost can each be imple-
mented in less than a dozen lines of new code. Our code plat-
form including the implementations of LamdaMART and
BL-MART will be made publicly available. The jforests
platform also supports running on MapReduce environments
to allow parallelization of methods such as bagging.

6. CONCLUSIONS

We present new results for LambdaMART, a state-of-the-
art learning-to-rank algorithm, on three public data sets.
We show that wrapping bagging around a boosting—based
ranking model can improve its performance while also signif-
icantly reducing model variance. In our experiments, bagged
LambdaMART (BL-MART) increased NDCG@1, NDCG@3,
Mean NDCG, and MAP on all three test problems com-
pared to un-bagged LambdaMART. Moreover, bagging re-
duced variance an average of 46% across all metrics on the
MSLR-WEB10K data set on which we measured variance.
Most of the ideas and methods reported in this paper are
general and not limited specifically to ranking. For exam-
ple, our finding that overfitting boosted models that will be
bagged improves accuracy can be used in other classification
and regression problems to further improve performance.
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