
CS6140 Machine Learning Perceptrons and Neural Networks

Perceptrons and Neural Networks
Virgil Pavlu October 3, 2014

1 The perceptron

Lets suppose we are (as with regression regression) with (xi, yi); i = 1, ..,m the data points and labels. This
is a classification problem with two classes y 2 {�1, 1}

Like with regression we are looking for a linear predictor (classifier)

hw(x) = xw =
DX

d=0

x
d
w

d

(we added the x
0 = 1 component so we can get the free term w

0) such that hw(x) � 0 when y = 1 and
hw(x)  0 when y = �1.

On y = �1 data points: given that all x and y are numerical, we will make the following transformation:
when y = �1, we will reverse the sign of the input; that is replace x with -x and y = �y. Then the condition
hw(x)  0 becomes hw(x) � 0 for all data points.

Figure 1: transforming y = �1 datapoints into y = 1 datapoints

The perceptron objective function is a combination of the number of miss-classification points and how
bad the miss-classification is

J(w) =
X

x2M

�hw(x) =
X

x2M

�xw

1

where M is the set of miss-classified data points. Note that each term of the sum is positive, since miss-
classified implies wx < 0. Using gradient descent, we first di↵erentiate J

rwJ(w) =
X

x2M

�x
T

then we write down the gradient descent update rule

w := w+ �

X

x2M

x
T

(� is the learning rate). The batch version looks like

1. init w
2. LOOP
3. get M = set of missclassified data points
4. w = w+ �

P
x2M x

T

5. UNTIL |�
P

x2M x| < ✏

Assume the instances are linearly separable. Then we can modify the algorithm

1. init w
2. LOOP
3. get M = set of missclassified data points
4. for each x 2 M do w = w+ �x

T

5. UNTIL M is empty

Figure 2: perceptron update: the plane normal w moves in the direction of misclassified x until the x is on
the correct side.

Intuitively, the update w
new = w

old + x for misclassified points x is the follwoing: if x is on the wrong
side of the plane < wx >= 0, it means that the normal vector to the plane, w, is on the opposite side to

2

x. The update essentially moves w in the direction of x; as long as x remains on the wrong side, w moves
towards it until it w and x are on the same side of the plane (thus x is correctly classified).

Proof of perceptron convergence Assuming data is linearly separable , or there is a solution w̄ such
that xw̄ > 0 for all x.
Lets call wk the w obtained at the k-th iteration (update). Fix an ↵ > 0. Then

wk+1 � ↵w̄ = (wk � ↵w̄) + x
T
k

where xk is the datapoint that updated w at iteration k. Then

||wk+1 � ↵w̄||2 = ||wk � ↵w̄||2 + 2xk(wk � ↵w̄) + ||xk||2  ||wk � ↵w̄||2 � 2xk↵w̄+ ||xk||2

Since xkw̄ > 0 all we need is an ↵ su�ciently large to show that this update process cannot go on forever.
When it stops, all datapoints must be classified correctly.

Figure 3: bias unit

2 Multilayer perceptrons

3

