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Distance metrics
Metric spaces

Consider a dataset X as an arbitrary collection of data points

Distance metric
A distance metric is a function d : X × X → [0,∞) that satisfies
three conditions for any x , y , z ∈ X :

1 d(x , y) = 0⇔ x = y
2 d(x , y) = d(y , x)
3 d(x , y) ≤ d(x , z) + d(z , y)

The set X of data points together with an appropriate distance
metric d(·, ·) is called a metric space.
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Distance metrics
Euclidean distance

When X ⊂ Rn we can consider Euclidean distances:

Euclidean distance
The distance between x , y ∈ X is defined by
‖x − y‖2 = ∑n

i=1(x [i ]− y [i ])2

One of the classic most common distance metrics
Often inappropriate in realistic settings without proper
preprocessing & feature extraction
Also used for least mean square error optimizations
Proximity requires all attributes to have equally small differences
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Distance metrics
Manhattan distances

Manhattan distance
The Manhattan distance between x , y ∈ X is defined by
‖x − y‖1 = ∑n

i=1 |x [i ]− y [i ]|. This distance is also called taxicab or
cityblock distance

Taken from Wikipedia
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Distance metrics
Minkowski (`p) distance

Minkowski distance
The Minkowski distance between x , y ∈ X ⊂ Rn is defined by

‖x − y‖p
p =

n∑
i=1
|x [i ]− y [i ]|p

for some p > 0. This is also called the `p distance.

Three popular Minkowski distances are:
p = 1 Manhattan distance: ‖x − y‖1 = ∑n

i=1 |x [i ]− y [i ]|
p = 2 Euclidean distance: ‖x − y‖2 = ∑n

i=1 |x [i ]− y [i ]|2

p =∞ Supremum/`max distance:
‖x − y‖∞ = sup1≤i≤n |x [i ]− y [i ]|
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Distance metrics
Normalization & standardization

Minkowski distances require normalization to deal with varying
magnitudes, scaling, distribution or measurement units.

Min-max normalization
minmax(x)[i ] = x [i]−mi

ri
, where mi and ri are the min value and range

of attribute i .

Z-score standardization
zscore(x)[i ] = x [i]−µi

σi
, where µi and σi are the mean and STD of

attribute i .

log attenuation
logatt(x)[i ] = sgn(x [i ]) log(|x [i ]|+ 1)

CPSC 445 (Guy Wolf) Distances & Similarities Yale - Fall 2016 7 / 22



Distance metrics
Mahalanobis distance

Mahalanobis distances
The Mahalanobis distance is defined by

mahal(x , y) =
√

(x − y)Σ−1(x − y)T

where Σ is the covariance matrix of the data and data points are
represented as row vectors.
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Distance metrics
Mahalanobis distance

Mahalanobis distances
The Mahalanobis distance is defined by

mahal(x , y) =
√

(x − y)Σ−1(x − y)T

where Σ is the covariance matrix of the data and data points are
represented as row vectors.

When all attributes are independent with unit standard deviation
(e.g., z-scored) then Σ = Id and we get the Euclidean distance.
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Distance metrics
Mahalanobis distance

Mahalanobis distances
The Mahalanobis distance is defined by

mahal(x , y) =
√

(x − y)Σ−1(x − y)T

where Σ is the covariance matrix of the data and data points are
represented as row vectors.

When all attributes are independent with variances σ2
i then

Σ = diag(σ2
1, . . . , σ

2
n) and we get mahal(x , y) =

√∑n
i=1( x [i]−y [i]

σi
)2,

which is the Euclidean distance between z-scored data points.
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Distance metrics
Mahalanobis distance

x

y

z

Σ =
[

0.3 0.2
0.2 0.3

]

x = (0, 1)
y = (0.5, 0.5)
z = (1.5, 1.5)

d(x , y) = 5
d(y , z) = 4
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Distance metrics
Hamming distance

When the data contains nominal values, we can use Hamming
distances:

Hamming distances
The hamming distance is defined as hamm(x , y) = ∑n

i=1 x [i ] 6= y [i ]
for data points x , y that contain n nominal attributes.

This distance is equivalent to `1 distance with binary flag
representation.

Example
If x = (‘big’, ‘black’, ‘cat’), y = (‘small’, ‘black’, ‘rat’), and
z = (’big’, ’blue’, ‘bulldog’) then hamm(x , y) = d(x , z) = 2 and
hamm(y , z) = 3.
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Similarities and dissimilarities
Similarities / affinities

Similarities or affinities quantify whether, or how much, data points
are similar.

Similarity/affinity measure
We will consider a similarity or affinity measure as a function
a : X × X → [0, 1] such that for every x , y ∈ X

a(x , x) = a(y , y) = 1
a(x , y) = a(y , x)

Dissimilarities quantify the opposite notion, and typically take values
in [0,∞), although they are sometimes normalized to finite ranges.

Distances can serve as a way to measure dissimilarities.
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Similarities and dissimilarities
Simple similarity measures
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Similarities and dissimilarities
Correlation
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Similarities and dissimilarities
Gaussian affinities

Given a distance metric d(x , y), we can use it to formulate Guassian
affinities

Gaussian affinities
Gaussian affinities are defined as
k(x , y) = exp(−d(x ,y)2

2ε )
given a distance metric d .

Essentially, data points are similar if they are within the same
spherical neighborhoods w.r.t. the distance metric, whose radius is
determined by ε.

For Euclidean distances they are also known as RBF (radial basis
function) affinities.
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Similarities and dissimilarities
Cosine similarities

Another similarity metric in Euclidean space is based on the inner
product (i.e., dot product) 〈x , y〉 = ‖x‖ ‖y‖ cos(∠xy)

Cosine similarities
The cosine similarity between x , y ∈ X ⊂ Rn is defined as

cos(x , y) = 〈x , y〉
‖x‖ ‖y‖
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Similarities and dissimilarities
Jaccard index

For data with n binary attributes we consider two similarity metrics:

Simple matching coefficient
SMC(x , y) =

∑n
i=1 x [i]∧y [i]+

∑n
i=1 ¬x [i]∧¬y [i]

n

Jaccard coefficient
J(x , y) =

∑n
i=1 x [i]∧y [i]∑n
i=1 x [i]∨y [i]

The Jaccard coefficient can be extended to continuous attributes:

Tanimoto (extended Jaccard) coefficient
T (x , y) = 〈x ,y〉

‖x‖2+‖y‖2−〈x ,y〉
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Dynamic time-warp
Comparing misaligned signals

Theoretically:
Use time offset

to align signals

a�
a-

Realistically:

Which offset to use?

a�
a-
a-
a�

CPSC 445 (Guy Wolf) Distances & Similarities Yale - Fall 2016 16 / 22



Dynamic time-warp
Comparing misaligned signals

Theoretically:
Use time offset

to align signals

a�
a-

Realistically:

Which offset to use?

a�
a-
a-
a�

CPSC 445 (Guy Wolf) Distances & Similarities Yale - Fall 2016 16 / 22



Dynamic time-warp
Comparing misaligned signals

Theoretically:
Use time offset

to align signals

a�
a-

Realistically:

Which offset to use?

a�
a-
a-
a�

CPSC 445 (Guy Wolf) Distances & Similarities Yale - Fall 2016 16 / 22



Dynamic time-warp
Comparing misaligned signals

Theoretically:
Use time offset

to align signals

a�
a-

Realistically:

Which offset to use?

a�
a-
a-
a�

CPSC 445 (Guy Wolf) Distances & Similarities Yale - Fall 2016 16 / 22



Dynamic time-warp
Adaptive alignment
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Dynamic time-warp
Adaptive alignment
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Dynamic time-warp
Adaptive alignment
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Dynamic time-warp
Computing DTW dissimilarity

Signal x -

Si
gn

al
y

6

a
a qe

H
HHH

HHHH��
��

i

j

x [i ]− y [j ]

Pairwise diff. matrix:
each cell holds difference
between two signal entries

Alignment path:
get from start to end
of both signals

1:1 alignment:
trivial - nothing modified
by the alignment

Aligned distance:

∑( )2
= ‖x − y‖2

Time offset:
works sometimes, but
not always optimal

Aligned distance:

∑( )2
=?

Extreme offset:
complete misalignment -
worst alignment
alternative

Aligned distance:

∑( )2
= ‖x‖2 + ‖y‖2

Optimal alignment:
Optimize alignment by
minimizing aligned
distance

Aligned distance:

∑( )2
= min
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Dynamic time-warp
Dynamic programming algorithm

Dynamic Programming
A method for solving complex problems by breaking them down
into simpler subproblems.
Applicable to problems exhibiting the properties of overlapping
subproblems and optimal substructure.
Better performances than naive methods that do not utilize the
subproblem overlap.
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Dynamic time-warp
Dynamic programming algorithm

DTW Algorithm:
For each signal-time i and for each signal-time j :

Set cost ← (x [i ]− y [j ])2

Set the optimal distance at stage [i , j ] to:

DTW[i ,j] ← cost + min


DTW[i ,j−1]

DTW[i−1,j−1]
DTW[i−1,j]


Optimal distance: DTW[m,n] (where m & n are lengths of signals).

Optimal alignment: backtracking the path leading to DTW[m,n] via
min-cost choices of the algorithm

DTW[i ,j]

DTW[i−1,j−1]
�
���

DTW[i−1,j]

6

DTW[i ,j−1]
-
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Dynamic time-warp
Remark about earth-mover distances (EMD)

What is the cost of transforming one distribution to another?

EMDp
p (x , y) = min{

n∑
i=1

n∑
j=1
|i − j |p Ωij :

n∑
j=1

Ωij = x [i ] ∧
n∑

i=1
Ωij = y [j ]}

where Ω is a moving strategy (transferring Ωij mass from i to j).

Can be solved with the Hungarian algorithm, but more efficient
methods exist and rely on wavelets and mathematical analysis.
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Combining similarities

To combine similarities of different attributes we can consider several
alternatives:

1 Transform all the attributes to conform to the same
similarity/distance metric

2 Use weighted average to combine similarities
a(x , y) = ∑n

i=1 wiai(x , y) or distances
d2(x , y) = ∑n

i=1 wid2
i (x , y) with ∑n

i=1 wi = 1.

3 Consider asymmetric attributes by defining binary flags
δi(x , y) ∈ {0, 1} that mark whether two data points share
comparable information in affinity i and then combine only
comparable information by a(x , y) =

∑n
i=1 wiδi (x ,y)ai (x ,y)∑n

i=1 δi (x ,y) .
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Summary

To compare data points we can either
1 quantify how similar they are with a similarity or affinity metric,

or
2 quantify how different they are with a dissimilarity or a distance

metric.

There are many possible metrics (e.g., Euclidean, Mahalanobis, Ham-
ming, Gaussian, Cosine, Jaccard), and the choice of which one to use
depends on both the task and the input data.

It is sometimes useful to consider several different metrics and then
combine them together. Alternatively, data preprocessing can be done
to transform all the data to conform with a single metric.
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