
30

• Want to estimate MQ and/or MD from Q and/or D

• General problem:
– given a string of text S (= Q or D), estimate its language model MS
– S is commonly assumed to be an i.i.d. random sample from MS

• Independent and identically distributed

• Basic Language Models
– maximum-likelihood estimator and the zero frequency problem
– discounting, interpolation techniques
– Bayesian estimation

estimation

30

31

• count relative frequencies of words in S
• maximum-likelihood property:

– assigns highest possible likelihood to the observation

• unbiased estimator:
– if we repeat estimation an infinite number of times with
different starting points S, we will get correct probabilities (on
average)
– this is not very useful…

maximum likelihood

31

32

• Suppose some event not in our observation S
– Model will assign zero probability to that event
– And to any set of events involving the unseen event

• Happens very frequently with language

• It is incorrect to infer zero probabilities
– especially when creating a model from short samples

zero-frequency problem

32

33

Laplace smoothing

!"

!"#$"%& '())*+,-.

! %)/-* &0&-*' ,-)1'&20&3 3"*"

! "33 4 *) &0&25 %)/-*

! 2&-)2("$,6& *))1*",- #2)1"1,$,*,&'

! ,* %)22&'#)-3' *) /-,7)2(#2,)2'

! ,7 &0&-* %)/-*' "2& 8!4"!9" ###"!$: ;,*+
!
% !% <

& *+&-
("= $,&$,+))3 &'*,("*&' "2& 8!4

&
" !9

&
" ###" !$

&
:

$"#$"%& &'*,("*&' "2& 8!4>4
&>$

" !9>4
&>$

" ###" !$>4
&>$

:

33

34

discounting methods

• Laplace smoothing

• Lindstone correction
– add �to all count,

renormalize

• absolute discounting

– substract �� redistribute

probab mass

34

35

• Held-out estimation
– Divide data into training and held-out sections
– In training data, count Nr, the number of words occurring r times
– In held-out data, count Tr, the number of times those words occur
– r* = Tr/Nr is adjusted count (equals r if training matches held-out)
– Use r*/N as estimate for words that occur r times

• Deleted estimation (cross-validation)
– Same idea, but break data into K sections
- Use each in turn as held-out data, to calculate Tr(k) and Nr(k)
– Estimate for words that occur r times is average of each

• Good-Turing estimation
– From previous, P(w|M) = r* / N if word w occurs r times in sample
– In Good-Turing, steal total probability mass from next most frequent
word
– Provides probability mass for words that occur r=0 times
- Take what’s leftover from r>0 to ensure adds to one

discounting methods

35

36

• Problem with all discounting methods:
– discounting treats unseen words equally (add or subtract ε)
– some words are more frequent than others

• Idea: use background probabilities
– “interpolate” ML estimates with General English expectations
(computed as relative frequency of a word in a large collection)
– reflects expected frequency of events

interpolation methods

ML estimate
background probability

final estimate =

36

37

• Correctly setting λ is very important

• Start simple
– set λ to be a constant, independent of document, query

• Tune to optimize retrieval performance
– optimal value of λ varies with different databases, query
sets, etc.

Jelinek Mercer smoothing

37

38

• Problem with Jelinek-Mercer:
– longer documents provide better estimates
– could get by with less smoothing

• Make smoothing depend on sample size

• N is length of sample = document length
• µ is a constant

Dirichlet smoothing

38

39

• A step further:
– condition smoothing on “redundancy” of the example
– long, redundant example requires little smoothing
– short, sparse example requires a lot of smoothing

• Derived by considering the proportion of new events
as we walk through example

– N is total number of events = document length
– V is number of unique events = number of unique terms in doc

Witten-Bell smoothing

39

40

• Two possible approaches to smoothing

• Interpolation:
– Adjust probabilities for all events, both seen and
unseen

• Back-off:
– Adjust probabilities only for unseen events
– Leave non-zero probabilities as they are
– Rescale everything to sum to one: rescales “seen”
probabilities by a constant

• Interpolation tends to work better
 – And has a cleaner probabilistic interpretation

interpolation vs back-off

40

41

Two-stage smoothing

Query = “the algorithms for data mining”

d1: 0.04 0.001 0.02 0.002 0.003

d2: 0.02 0.001 0.01 0.003 0.004

41

41

Two-stage smoothing

Query = “the algorithms for data mining”

d1: 0.04 0.001 0.02 0.002 0.003

d2: 0.02 0.001 0.01 0.003 0.004

p(“algorithms”|d1) = p(“algorithm”|d2)

p(“data”|d1) < p(“data”|d2)

p(“mining”|d1) < p(“mining”|d2)

But p(q|d1)>p(q|d2)!

41

41

Two-stage smoothing

Query = “the algorithms for data mining”

d1: 0.04 0.001 0.02 0.002 0.003

d2: 0.02 0.001 0.01 0.003 0.004

p(“algorithms”|d1) = p(“algorithm”|d2)

p(“data”|d1) < p(“data”|d2)

p(“mining”|d1) < p(“mining”|d2)

But p(q|d1)>p(q|d2)!

We should make p(“the”) and p(“for”) less different for all docs.

41

42

c(w,d)

|d|
P(w|d) =

Two-stage smoothing

42

42

c(w,d)

|d|
P(w|d) =

+µp(w|C)

+µ

Stage-1

-Explain unseen words

-Dirichlet prior(Bayesian)

µ

Two-stage smoothing

42

42

c(w,d)

|d|
P(w|d) =

+µp(w|C)

+µ

Stage-1

-Explain unseen words

-Dirichlet prior(Bayesian)

µ

(1-λ) + λp(w|U)

Stage-2

-Explain noise in query

-2-component mixture

λ

Two-stage smoothing

42

