estimation

e Want to estimate MQ and/or MD from Q and/or D

e General problem:
- given a string of text S (= Q or D), estimate its language model MS
- S is commonly assumed to be an i.i.d. random sample from MS
e Independent and identically distributed

e Basic Language Models
- maximume-likelihood estimator and the zero frequency problem
- discounting, interpolation techniques
- Bayesian estimation

30

30

0 maximum likelihood

e count relative frequencies of words in S
e maximum-likelihood property:

— assigns highest possible likelihood to the observation
e unbiased estimator:

— if we repeat estimation an infinite number of times with

different starting points S, we will get correct probabilities (on
average)

— this is not very useful...

Pri(WIMs) = #w.,S) / |S]

el

]
—_ A =

U U0 TVTU
O @O0 @0

' e S S S
[

]
o O

—
DWW

31

0 zero-freguency problem

e Suppose some event not in our observation S
— Model will assign zero probability to that event
— And to any set of events involving the unseen event

e Happens very frequently with language

e It is incorrect to infer zero probabilities
— especially when creating a model from short samples

r--

’,
— Y Yo YIoI Y Yo

|

32

32

Laplace smoothing

count events in observed data

add 1 to every count

renormalize to obtain probabilities
it corresponds to uniform priors

o if event countsare (mq,mo,...,mg) with > ; m; =
N then

max lielihood estimates are (%, %z, ..., 2=

m;+1 mo+1 mﬁ—l
laplace estimates are (55, 1455, .., B

33

33

0

discounting methods

e Laplace smoothing

e Lindstone correction
— add € to all count,

: P(e)=(1+¢)/
renormalize +& p (@)= (1+¢)/
. P(o)=(1+¢)/
e absolute discounting P (0)=(0+¢)/
L P(©)=(0+¢)/

- substract € , redistribute

probab mass

34

34

0 discounting methods

e Held-out estimation
- Divide data into training and held-out sections
- In training data, count Nr, the number of words occurring r times
- In held-out data, count Tr, the number of times those words occur
- r* = Tr/Nr is adjusted count (equals r if training matches held-out)
- Use r*/N as estimate for words that occur r times

e Deleted estimation (cross-validation)

- Same idea, but break data into K sections
- Use each in turn as held-out data, to calculate Tr(k) and Nr(k)

- Estimate for words that occur r times is average of each

e Good-Turing estimation
- From previous, P(w|M) = r* / N if word w occurs r times in sample

- IndGood—Turing, steal total probability mass from next most frequent
Wor

- Provides probability mass for words that occur r=0 times
- Take what’s leftover from r>0 to ensure adds to one

1
TPM(r+1) = Npy1 - 1 PwrlM) = TPM(4 D)/N,
— Y1 T
Ny N
35

35

iInterpolation methods

e Problem with all discounting methods:
- discounting treats unseen words equally (add or subtract €)
! - some words are more frequent than others

e |dea: use background probabilities

- “interpolate” ML estimates with General English expectations
(computed as relative frequency of a word in a large collection)

- reflects expected frequency of events

ML estimate background probability

final estimate =) ' + (1—7\,) s

Jelinek Mercer smoothing

v

e Correctly setting A is very important

e Start simple
- set A to be a constant, independent of document, query

e Tune to optimize retrieval performance
— optimal value of A varies with different databases, query
sets, etc.

x'+(1—x)'

37

37

Dirichlet smoothing

e Problem with Jelinek-Mercer:
- longer documents provide better estimates
— could get by with less smoothing

e Make smoothing depend on sample size

e N is length of sample = document length
e U is a constant

38

38

0 Witten-Bell smoothing

e A step further:
- condition smoothing on “redundancy” of the example
- long, redundant example requires little smoothing
- short, sparse example requires a lot of smoothing

e Derived by considering the proportion of new events
as we walk through example

- N is total number of events = document length

- V is number of uniqgue events = number of unique terms in doc

39

39

0 interpolation vs back-off

e Two possible approaches to smoothing

Interpolation:

- Adjust probabilities for all events, both seen and
unseen

Back-off:

- Adjust probabilities only for unseen events
- Leave non-zero probabilities as they are

- Rescale everything to sum to one: rescales “seen”
probabilities by a constant

Interpolation tends to work better
- And has a cleaner probabilistic interpretation

40

40

Two-stage smoothing

Query ="the algorithms for data mining"

dl: 0.04 0.001 0.02 0.002 0.003
d2: 0.02 0.001 0.01 0.003 0.004

41

41

Two-stage smoothing

Query ="the algorithms for data mining"

dl: 0.04 0.001 0.02 0.002 0.003
d2: 0.02 0.001 0.01 0.003 0.004

p(“algorithms”|d1) = p(*“algorithm”|d2)
p(“data”|dl) < p(“data”|d2)
p(“mining”|d1) < p(*“mining”|d2)

But p(q|d1)>p(q|d2)!

41

41

Two-stage smoothing

Query ="the algorithms for data mining"

dl: 0.04 0.001 0.02 0.002 0.003
d2: 0.02 0.001 0.01 0.003 0.004

p(“algorithms”|d1) = p(*“algorithm”|d2)
p(“data”|dl) < p(“data”|d2)
p(“mining”|d1) < p(*“mining”|d2)

But p(q|d1)>p(q|d2)!

We should make p(“the”) and p(“for”) less different for all docs.

41

41

Two-stage smoothing

c(w,d)

P(w|d) =

42

42

Two-stage smoothing

Stage-1

-Explain unseen words
-Dirichlet prior(Bayesian)

1

>

e

W

o

P(w|d) =

c(w,d) +up(w|C)

dl +u

42

42

Two-stage smoothing

Stage-1 Stage-2

-Explain unseen words -Explain noise in query
-Dirichlet prior(Bayesian) -2-component mixture

W “ A |
L|_L > \&-
L
Pwid) = (1-) — D FUWIE) oy
dl +u

42

