
Generative Models



Module 3 Objectives 

• Recap Probabilities 
- Distributions, Expectations, Bias, Variance. Conditional/Joint Probabilities 

• Naive Bayes 
• Gaussian Discriminant Analysis 
• Maximum Likelihood Estimation 
• Density Estimation for Matrix data 
• EM algorithm for mixture models
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module 3: generative methods

EM algorithm



Generative Models - Density Estimation

• Given a datapoint x, estimate probability P(x)  
- how likely is to see datapoint x? 
- count the observed “x” 

• Given a datapoint x and a class/label y, estimate the 
probability P(y|x) 
- how likely is to see a datapoint like x with label y? 
- count the observed “x” with label y 

• Lets assume x=(x1,x2,…,xd) features form 
- then P(y|x) = P(y|x1,x2,…,xd) 

• we can estimate that as a joint (d+1) dimensional 
distribution from data 
- typically by using a grid/bucket partitioning of the feature 

space 



Density Estimation Problem

• P(y|x) = P(y|x1,x2,…,xd) joint (d+1)-dim distribution 
• … actually we cannot estimate this joint  
• if each feature has 10 buckets, and we have 

100 features (very reasonable assumptions) 
• then the joint distribution has 10100 cells - 

impossible



Bayes Rule

•  estimating P(y|x1,x2,…,xd) for classification/
prediction purpose is the same as estimating 
P(x1,x2,…,xd|y) - due to Bayes Rule: 
- P(y|x1,x2,…,xd) * P(x1,x2,…,xd) = P(x1,x2,…,xd|y) * P(y)



Bayes Rule

•  estimating P(y|x1,x2,…,xd) for classification/
prediction purpose is the same as estimating 
P(x1,x2,…,xd|y) - due to Bayes Rule: 
- P(y|x1,x2,…,xd) * P(x1,x2,…,xd) = P(x1,x2,…,xd|y) * P(y)

not a factor in ranking P(y|x) 
(same for all y)



Bayes Rule

•  estimating P(y|x1,x2,…,xd) for classification/
prediction purpose is the same as estimating 
P(x1,x2,…,xd|y) - due to Bayes Rule: 
- P(y|x1,x2,…,xd) * P(x1,x2,…,xd) = P(x1,x2,…,xd|y) * P(y)

not a factor in ranking P(y|x) 
(same for all y)

prior 
(estimated from  
training counts)



how to get around estimating the joint P(x1,x2,…,xd|y) ?

• OPTION 1 : assume feature independence  
!

• OPTION 2: model/restrict the joint, instead of 
estimating any possible such joint distribution 
!

• OPTION 3: mix, bend, tweak options 1 and 2



how to get around estimating the joint P(x1,x2,…,xd|y) ?

• OPTION 1 : assume feature independence  
- then P(x1,x2,…,xd|y) = P(x1|y)*P(x2|y)*…P(xd|y) 
- estimate each feature density, usually easy 
- the independence assumption rarely holds perfectly, 

but the model kind-of-works if it approx. holds 
!

• it is called NAIVE BAYES 
- very easy to implement 
- smoothing often necessary 
- very popular



how to get around estimating the joint P(x1,x2,…,xd|y) ?

• OPTION 2: model/restrict the joint, instead of 
estimating any possible such joint distribution 
- typically with a well known parametrized form 
- estimate the parameters of the imposed model 
!

• called Gaussian Discriminant Analysis  
- when the model imposed is gaussian 

!

• using Expectation Maximization algorithm 
- when the model imposed is a mixture of 

distributions



how to get around estimating the joint P(x1,x2,…,xd|y) ?

• OPTION 2: model/restrict the joint, instead of 
estimating any possible such joint distribution 
- fore example with a well known parametrized form 
- such as multi-dim gaussian distribution 
- estimate the parameters of the imposed model 

• called Gaussian Discriminant Analysis (when 
the model imposed is gaussian) 
- easy to implement due to math tools facilitating 

gaussian parameters estimation (mean, covariance) 
- multidim implies “covariance” matrix instead of 

simple variance 
- doesnt fit data in many cases 



how to get around estimating the joint P(x1,x2,…,xd|y) ?

• OPTION 3: mix, bend, tweak options 1 and 2 
- don’t fully factorize by independence like Naive 

bayes, instead group dependent features into 
factors  

- P(x1,x2,…,xd|y) = P(x1|y)*P(x2,x3|y)*…P(x4|y)*P(x3,x5|y)… 
- estimate for each factor joint using modeling or 

bucketing or brute force, depending on the size 
and nature of the factor 

• called BAYESIAN NETWORK 
- also “GRAPHICAL MODEL” or “FACTOR GRAPH” 
- graph that models only some dependencies as 

conditional probabilities 



Maximum Likelihood Parameter Estimation

• suppose P(x|y,θ) is modeled by θ parameters 
- for example θ can be mean, variance, covariance, 

mixture parameters etc - all that defines the 
probability density function P(x|y,θ)  

• data Likelihood and log likelihood 
- how “probable” is to observe the training set given 

parameters θ ? 
!

!

!

!

• maximize logL as function of θ : solution θML is 
the θ that maximizes the data likelihood 

L =

mY

i=1

P (xi, yi|✓) =
mY

i=1

P (xi|yi, ✓)P (yi|✓)

logL = log

mY

i=1

P (xi, yi|✓) =
mX

i=1

logP (xi|yi, ✓)P (yi|✓)



Maximum Likelihood Parameter Estimation

!

!

!

• maximize logL as function of θ : solution θML is 
the θ that maximizes the data likelihood  
!

• if the model used is math-nice, θML can be 
computed in closed form 
- example for Gaussian models

L =

mY

i=1

P (xi, yi|✓) =
mY

i=1

P (xi|yi, ✓)P (yi|✓)

logL = log

mY

i=1

P (xi, yi|✓) =
mX

i=1

logP (xi|yi, ✓)P (yi|✓)



Use model on the test data

• Learned model is encoded by params θ which 
give P(x|y, θ)  
!

• Equivalently model dictates P(y|x,θ)  
- using Bayes Rule 
!

• On each test datapoint x compute P(y|x,θ) for 
all y, and predict the y with highest chance.


