Generative Models

Module 3 Objectives

module 3: generative methods

- Recap Probabilities
 - Distributions, Expectations, Bias, Variance. Conditional/Joint Probabilities
- Naive Bayes
- Gaussian Discriminant Analysis
- Maximum Likelihood Estimation
- · Density Estimation for Matrix data
- EM algorithm for mixture models

Generative Models – Density Estimation

- Given a datapoint x, estimate probability P(x)
 - how likely is to see datapoint x?
 - count the observed "x"
- Given a datapoint x and a class/label y, estimate the probability P(y|x)
 - how likely is to see a datapoint like x with label y?
 - count the observed "x" with label y
- Lets assume $x=(x^1,x^2,...,x^d)$ features form

- then $P(y|x) = P(y|x^1,x^2,...,x^d)$

- we can estimate that as a joint (d+1) dimensional distribution from data
 - typically by using a grid/bucket partitioning of the feature space

- $P(y|x) = P(y|x^1,x^2,...,x^d)$ joint (d+1)-dim distribution
- ... actually we cannot estimate this joint
- if each feature has 10 buckets, and we have 100 features (very reasonable assumptions)
- then the joint distribution has 10¹⁰⁰ cells impossible

 estimating P(y|x¹,x²,...,x^d) for classification/ prediction purpose is the same as estimating P(x¹,x²,...,x^d|y) - due to Bayes Rule:

- $P(y|x^1,x^2,...,x^d) * P(x^1,x^2,...,x^d) = P(x^1,x^2,...,x^d|y) * P(y)$

 estimating P(y|x¹,x²,...,x^d) for classification/ prediction purpose is the same as estimating P(x¹,x²,...,x^d|y) - due to Bayes Rule:

- $P(y|x^1,x^2,...,x^d) * P(x^1,x^2,...,x^d) = P(x^1,x^2,...,x^d|y) * P(y)$ not a factor in ranking P(y|x)

(same for all y)

- estimating P(y|x¹,x²,...,x^d) for classification/ prediction purpose is the same as estimating P(x¹,x²,...,x^d|y) - due to Bayes Rule:
 P(y|x¹,x²,...,x^d) * P(x¹,x²,...,x^d) = P(x¹,x²,...,x^d|y) * P(y) prior
 not a factor in ranking P(y|x) (same for all y)
 - training counts)

- OPTION 1 : assume feature independence
- OPTION 2: model/restrict the joint, instead of estimating any possible such joint distribution
- OPTION 3: mix, bend, tweak options 1 and 2

- OPTION 1 : assume feature independence
 - then $P(x^1, x^2, ..., x^d | y) = P(x^1 | y)^* P(x^2 | y)^* ... P(x^d | y)$
 - estimate each feature density, usually easy
 - the independence assumption rarely holds perfectly, but the model kind-of-works if it approx. holds
- it is called NAIVE BAYES
 - very easy to implement
 - smoothing often necessary
 - very popular

- **OPTION 2**: model/restrict the joint, instead of estimating any possible such joint distribution
 - typically with a well known parametrized form
 - estimate the parameters of the imposed model
- called Gaussian Discriminant Analysis
 when the model imposed is gaussian
- using Expectation Maximization algorithm
 - when the model imposed is a mixture of distributions

- OPTION 2: model/restrict the joint, instead of estimating any possible such joint distribution
 - fore example with a well known parametrized form
 - such as multi-dim gaussian distribution
 - estimate the parameters of the imposed model
- called Gaussian Discriminant Analysis (when the model imposed is gaussian)
 - easy to implement due to math tools facilitating gaussian parameters estimation (mean, covariance)
 - multidim implies "covariance" matrix instead of simple variance
 - doesnt fit data in many cases

- OPTION 3: mix, bend, tweak options 1 and 2
 - don't fully factorize by independence like Naive bayes, instead group dependent features into factors
 - $P(x^1, x^2, ..., x^d | y) = P(x^1 | y)^* P(x^2, x^3 | y)^* ... P(x^4 | y)^* P(x^3, x^5 | y) ...$
 - estimate for each factor joint using modeling or bucketing or brute force, depending on the size and nature of the factor
- called BAYESIAN NETWORK
 - also "GRAPHICAL MODEL" or "FACTOR GRAPH"
 - graph that models only some dependencies as conditional probabilities

Maximum Likelihood Parameter Estimation

- suppose $P(x|y,\theta)$ is modeled by θ parameters
 - for example θ can be mean, variance, covariance, mixture parameters etc all that defines the probability density function P(x|y, θ)
- data Likelihood and log likelihood
 - how "probable" is to observe the training set given parameters θ ?

$$L = \prod_{i=1}^{m} P(x_i, y_i | \theta) = \prod_{i=1}^{m} P(x_i | y_i, \theta) P(y_i | \theta)$$
$$\log L = \log \prod_{i=1}^{m} P(x_i, y_i | \theta) = \sum_{i=1}^{m} \log P(x_i | y_i, \theta) P(y_i | \theta)$$

- maximize logL as function of θ : solution θ_{ML} is the θ that maximizes the data likelihood

Maximum Likelihood Parameter Estimation

$$L = \prod_{i=1}^{m} P(x_i, y_i | \theta) = \prod_{i=1}^{m} P(x_i | y_i, \theta) P(y_i | \theta)$$
$$\log L = \log \prod_{i=1}^{m} P(x_i, y_i | \theta) = \sum_{i=1}^{m} \log P(x_i | y_i, \theta) P(y_i | \theta)$$

- maximize logL as function of θ : solution θ_{ML} is the θ that maximizes the data likelihood
- if the model used is math-nice, θ_{ML} can be computed in closed form
 - example for Gaussian models

- Learned model is encoded by params θ which give P(x|y, $\theta)$
- Equivalently model dictates P(y|x,θ)
 using Bayes Rule
- On each test datapoint x compute $P(y|x,\theta)$ for all y, and predict the y with highest chance.