
Support Vector Machines

Bingyu Wang, Virgil Pavlu

March 30, 2015
based on notes by Andrew Ng.

1 What’s SVM

The original SVM algorithm was invented by Vladimir N. Vapnik1 and the current standard incarnation
(soft margin) was proposed by Corinna Cortes2 and Vapnik in 1993 and published in 1995.

A support vector machine(SVM) constructs a hyperplane or set of hyperplanes in a high- or infinite-
dimensional space, which can be used for classification, regression, or other tasks. Intuitively, a good sepa-
ration is achieved by the hyperplane that has the largest distance to the nearest training data point of any
class (so-called functional margin), since in general the larger the margin the lower the generalization error
of the classifier.3 In this notes, we will explain the intuition and then get the primal problem, and how to
translate the primal problem to dual problem. We will apply kernel trick and SMO algorithms to solve the
dual problem and get the hyperplane we want to separate the dataset. Give general idea about SVM and
introduce the goal of this notes, what kind of problems and knowledge will be covered by this node.

In this note, one single SVM model is for two labels classification, whose label is y ∈ {−1, 1}. And the
hyperplane we want to find to separate the two classes dataset is h, for which classifier, we use parameters
w, b and we write our classifier as

hw,b(x) = g(wTx+ b)

Here, g(z) = 1 if z ≥ 0, and g(z) = −1 otherwise.

2 Margins

Following Andrew Ng4, we will start the by talking about margins, which can give us the “confidence” of
our predictions.

Consider logistic regression, where the probability p(y = 1|x;w) is modeled by hw(x) = g(wTx).We
would then predict “1” on an input x if and only if hw(x) ≥ 0.5, or equivalently, if and only if wTx ≥ 0.
Consider a positive training example (y = 1). The larger wTx is, the larger also is hw(x) = p(y = 1|x;w, b),
and thus also the higher our degree of “confidence” that the label is 1. Thus informally we can think of our
prediction as being a very confident one that y = 1 if wTx� 0. Similarly, we think of logistic regression as
making a very confident prediction of y = 0, if wTx � 0. Given a training set, again informally it seems
that we’d have found a good fit to the training data if we can find w so that wTxi � 0 whenever yi = 1, and
wTxi � 0 whenever yi = 0, since this would reflect a very confident (and correct) set of classifications for
all the training examples. This seems to be a nice goal to aim for, and we?ll soon formalize this idea using
the notion of functional margins.

For a different type of intuition, consider the following Figure 1, in which x’s represent positive training
examples, o’s denote negative training examples, a decision boundary (this is the line given by the equation
wTx = 0, and is also called the separating hyperplane) is also shown, and three points have also been
labeled A, B and C.

1http://en.wikipedia.org/wiki/Vladimir Vapnik
2http://en.wikipedia.org/wiki/Corinna Cortes
3http://en.wikipedia.org/wiki/Support vector machine
4CS229 Lecture notes, Part V Support Vector Machines

1

Figure 1: Confident Example, linearly separable.

Notice that the point A is very far from the decision boundary. If we are asked to make a prediction
for the value of y at A, it seems we should be quite confident that y = 1 there. Conversely, the point C is
very close to the decision boundary, and while it’s on the side of the decision boundary on which we would
predict y = 1, it seems likely that just a small change to the decision boundary could easily have caused
our prediction to be y = 0. Hence, we’re much more confident about our prediction at A than at C. The
point B lies in-between these two cases, and more broadly, we see that if a point is far from the separating
hyperplane, then we may be significantly more confident in our predictions. Again, informally we think it’d
be nice if, given a training set, we manage to find a decision boundary that allows us to make all correct and
confident (meaning far from the decision boundary) predictions on the training examples.

In another word, if we could find a decision boundary, who can give us a larger margin, it will be better
than the one give us a smaller margin. From the following Figure 2, we can tell that the black decision
boundary is better than the green decision boundary, because the black one gives us a larger margin than
the green one.

2.1 Functional and Geometric Margins

Lets now formalize the margin intuition into notions of the functional and geometric margins. Given a
training example (xi, yi), we define the functional margin of (w, b) with respect to the training example

γ̂i = yi(w
Tx+ b)

Note that if yi = 1, then for the functional margin to be large (i.e., for our prediction to be confident
and correct), we need wTx+ b to be a large positive number. Conversely, if yi = −1, then for the functional
margin to be large, we need wTx+ b to be a large negative number. Moreover, if yi(w

Tx+ b) > 0, then our
prediction on this example (x i, y i) is correct. Hence, a large functional margin represents a confident and
a correct prediction.

Given a training set S = {(x i, y i); i = 1, 2, . . . ,m}, we also define the function margin of (w, b) with
respect to S to be the smallest of the functional margins of the individual training examples. Denoted by γ̂,
this can therefore be written:

γ̂ = min
i=1,...,m

γ̂(i)

Functional margins can represent a confident and a correct prediction. The larger functional margins, the
classifier better. However, by scaling w, b, we can make the functional margin arbitrarily large without really

2

Figure 2: Margin Example. The black separating plane is better than the green one, because it has larger
margins (sits more “in the middle”). A mechanical analogy: if the separating plane is free to rotate but
constrained to be separator, when the points start pushing force towards the plane, the plane will settle in
an equilibrium “middle” position - thats where the black separator is.

changing anything meaningful. Typically for a linear classifier, the final prediction is made by applying the
sign function g to the linear score:

g(z) =

{
1 if z ≥ 0
−1 if z < 0

We note for any scalar c we can replace w with cw and b with cb, and have that g(wTx+b) = g(cwTx+cb),
this would not change the prediction hw,b(x) = g at all. I.e., g, and hence also hw,b(x), depends only one the
sign, but not on the magnitude of wT + b. However, replacing (w, b) with (cw, cb) also results in multiplying
our functional margin by a factor of c. Thus, it seems that by exploiting our freedom to scale w and b, we can
make the functional margin arbitrarily large without really changing anything meaningful. We can make a
reference decision on scale, and will choose the scale such that minimum functional margin is y(wTx+b) = 1.

2.1.1 Geometric Margins

In Figure 3, the decision boundary corresponding to (w, b) is shown, along with the vector w. Note that w
is orthogonal to the separating hyperplane.5. Consider the opposing points at x1 and x2 which represents
training examples closest to each other with labels y1 = 1, y2 = −1. The distance to the decision boundary,
or the geometric margin ρ, is half of line segment x1x2, one minimum margin on each side.

As the picture shows, we have scaled (by a constant) w and b such that the closest points are on the
line |wTx + b| = 1. This is a reference decision, and it can be done since any scalar c applied to w, b does
not change the plane : cwTx + cb = 0 is the same plane as wTx + b = 0. We can write this constraint,
that all points are no closer than lines |wTx+ b| = 1 (either side of the plane) by using the labels for signs:
y(wTx+ b) ≥ 1. In other words, the constraints state that all functional margins are at least 1.

From wTx1 + b = 1 and wTx2 + b = −1 we have that wT (x1 − x2) = 2; considering that w and x1 − x2
are parallel vectors, we obtain that ||x1−x2|| = 2/||w||. Since ||x1−x2|| = 2ρ, we obtain that the minimum
geometric margin is ρ = 1/||w||.

5http://mathworld.wolfram.com/NormalVector.html

3

Figure 3: Geometric Margin: w and b are scaled such that closest points are on the line |wTx + b| = 1. If
the plane is in the middle, the minimum margin (geometrical distance from plane to points) is ρ = 1/w.

3 The Optimal Margin Classifier

From the intuition of margins before, we try to find a decision boundary that maximizes the geometric
margin, since this would reflect a very confident set of predictions on the training set and a good “fit” to the
training data. Specifically, this will result in a classifier that separates the positive and the negative training
examples with a “gap” (geometric margin).

For now, we will assume that we are given a training set that is linearly separable; i.e., that it is possible
to separate the positive and negative examples using some separating hyperplane. How could we find the one
that achieves the maximum geometric margin? We will pose the following optimization problem: maximize
the margin ρ = 1/||w||, such that all points are no closer (on either side) than |wTx+b| = 1 to the separating
plane given by wTx + b = 0; thus the constraints reflect our reference choice for scale. Since the labels are
the same as the 1,-1 sides of the plane, we can rewrite the constraints as y(wTx + b) ≥ 1 for all training
points x with label y ∈ {−1, 1} (will have one constraint for each training point).

To make the math nicer we write the objective in terms of ||w||2, and we get the following optimization
problem:

SVM-PRIMAL OPTIMIZATION PROBLEM

4

min
w,b

1

2
||w||2 (1)

s.t. yi(w
Txi + b) ≥ 1, i = 1, . . . ,m (2)

We’ve now transformed the problem into a form that can be efficiently solved. The above is an opti-
mization problem with a convex quadratic objective (1) and only linear constraints (2). Its solution
gives us the optimal margin classifier. This optimization problem can be solved using commercial quadratic
programming(QP) code6 or (better) with duality formulation.

We will use Lagrange duality to solve the above constrained convex optimization problem. This will
allow the use kernels, and it is also more efficient.

4 Solution part 1: the dual problem

In this section, we need apply the duality mentioned above to transform the original problems to a easier
problem, which can be solved by SMO algorithm, talk about it later. First, we derive the process from
original problem to dual problem on separable case and later we will work on the non-separable case. We
will show how the dual problem is written in Lagrangian variables α, β, and that w, b are a function of these
dual variables (and the data).

4.1 Linearly Separable case

The separable case means the training dataset can be separated by one line, which is shown in Figure 4. We

Figure 4: Seperable Example

will starts from the original problem:

6http://en.wikipedia.org/wiki/Quadratic programming

5

SVM-PRIMAL problem

min
w,b

1

2
||w||2

s.t. yi(w
Txi + b) ≥ 1, i = 1, . . . ,m

We will first transform the constraints to standard form, and write down the Lagrangian including all
constraints

Constraint transformed: gi(w, b) = −yi(wTxi + b) + 1 ≤ 0
Lagrangian:

L(w, b, α) = 1
2 ||w||

2 −
∑m
i=1 αi(yi(w

Txi + b)− 1)

Differentiate L with respect to w, b , and set the differential to zero:

• For w:

∂

∂w
L(w, b, α) = w −

m∑
i=1

αiyixi = 0

=⇒ w =

m∑
i=1

αiyixi (3)

• For b:

∂

∂b
L(w, b, α) = 0−

m∑
i=1

αiyi

=⇒
m∑
i=1

αiyi = 0 (4)

Rewrite the Lagrangian objective. Lets put these results back into L equation in order to eliminate
w, b:

L(w, b, α) =
1

2
||w||2 −

m∑
i=1

αi(yi(w
Txi + b)− 1)

=
1

2
wTw −

m∑
i=1

αiyiw
Txi −

m∑
i=1

αiyib+

m∑
i=1

αi

=
1

2

m∑
i,j=1

αiαjyiyjx
T
i xj −

m∑
i,j=1

αiαjyiyjx
T
i xj −

m∑
i=1

αiyib+

m∑
i=1

αi

=

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjx
T
i xj (5)

We have obtained the Lagrange dual problem for the original SVM-PRIMAL problem. The new variables
α, one per datapoint represent the “force” each point pushes the pane away. The equation stated above∑m
i=1 αiyi = 0 simply states that the plane is in equilibrium as the total force on each side is the same.
It is important to understand the nature of this Lagrangian function: if the linear constraints were

equality constraints, typically we’d use the constraints to solve for α-s. But in this case they are inequality
constraints (standardized to ≤ 0), which means we cannot simply solve for α by differentiating on α. The
KKT theorem (later section) applies to our case (convex objective, linear constraints) and governs the duality
with the following rules called KKT conditions:

1. the solution for minimizing L(w, b, α) w.r.t. w, b and subject to α ≥ 0 is the same as the solution of
maximizing L(w, b, α) w.r.t. α subject to appropriate constraints.

6

2. the Lagrangian multipliers are not negative.

3. at solution point, the differential of L(w, b, α) w.r.t w is zero

4. for equality constraints: at solution point, the differential of L(w, b, α) w.r.t the Lagrangian multiplier
is zero, which is same as saying the constraint is satisfied (we dont have equality constraints here, but
we will have them when we introduce slack variables).

5. for inequality constraints: at solution point, either the Lagrangian multiplier is zero and the constraint
is satisfied loosely, or multiplier is nonzero and the constrained is satisfied with equality.

The last KKT condition is that for each point αi(yi(w
Txi + b) − 1) = 0, or that either αi = 0 or

yi(w
Txi + b) = 1. Thus there are two kinds of training points:

• support vectors points for which α > 0. These points have an active constraint yi(w
Txi + b) = 1

which contributes to the equilibrium of the plane and it is satisfied with equality as the point is
on the margin line. If this point is erased from the training set, the plane will move (equilibrium is
changed).

• non-support vectors points for which α = 0. Such points have a nonactive constraint, which does
not contribute to the plane, the constraint is satisfied loosely (perhaps strictly yi(w

Txi + b) > 1). If
this point is erased from the training set, the plane will not move (equilibrium is in the same position).

We will name that last expression of the lagrangian L(w, b, α), as a function only of α-s, W (α) =∑m
i=1 αi −

1
2

∑m
i,j=1 yiyjαiαjx

T
i xj .

SVM-DUAL OPTIMIZATION PROBLEM

max
α

W (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjx
T
i xj (6)

s.t. αi ≥ 0, , i = 1, . . . ,m
m∑
i=1

αiy
(i) = 0.

Recover w, b from α-s. Assuming we have solved the dual problem (next section) and we have the
solution on α, let’s call it α∗. Then we can calculate the solution in original parameters, call it w∗, b∗ as
following:

w∗ =

m∑
i=1

α∗yixi

And as shown in Figure 5, we can first calculate bA and bB , then get b∗:
bA = maxi:yi=−1 w

∗Txi This is the maximum on negative points that b∗ has to compensate to -1:
b∗ ≤ −1− bA

bB = mini:yi=1 w
∗Txi This is the minimum on positive points that b∗ has to compensate to 1: b∗ ≥ 1−bB

So 1− bB ≤ b∗ ≤ −1− bA. We will take b∗ to be the average of these two values:

b∗ = 1−bB−1−bA
2 = − bA+bB

2

5 Kernel trick

Will be discussing separately kernels, but for now it is worth to point out the kernel trick: We notice that there
are many dot products (xTi xj) in our formula. We can keep the whole SVM-DUAL setup, and the algorithms
for solving these problems, but choose kernel function k(xTi , xj) to replace the dot products (xTi xj). To

7

Figure 5: Intercept illustration for b calculation: calculate the bA, bB the closest ”b” to the plane from either
side, then infer b from these tow values.

qualify as a kernel, informally, the function k(xi, xj) must be a dot product k(xi, xj) = Φ(xi) ∗Φ(xj), where
Φ(x) is a mapping vector from the original feature space {X} into a different feature space {Φ(X)}.

The essential “trick” is that usually Φ is not needed or known, only k(xi, xj) is computable and used.
To see this for the SVM, it is clear that the dual problem is an optimization written in terms of the dot
products replaceable with a given kernel k(xi, xj).

How about testing? The parameter w =
∑m
i=1 αiyiΦ(xi) is not directly computable if we dont know

explicitly the mapping Φ(), but it turns out we dot need to compute w explicitly; we only need to compute
predictions for test points z:

wΦ(z) + b =
∑m
i=1 αiyiΦ(xi)Φ(z) + b =

∑m
i=1 αiyik(xi, z) + b

This fact has profound implications to the ability of representing data and learning from data: we can
apply SVM to separate data which is not linearly separable! Thats because even if the data is not separable
in the original space {X}, it might be separable in the mapped space {Φ(X)}. The kernel trick is not specific
to SVMs; it works with all algorithms that can be written in terms of dot products xi ∗ xj .

5.1 Non-Separable case and slack variables

The derivation of the SVM as presented so far assumed that the data is linearly separable. In some cases,
it is not clear that finding a separating hyperplane is exactly what we’d want to do, since that might be
susceptible to outliers. For instance, the Figure 6, it causes the decision boundary to make a dramatic swing,
and the resulting classifier has a much smaller margin.

To make the algorithm work for non-linearly separable datasets as well as be less sensitive to outliers, we

8

Figure 6: Outlier Example

reformulate the optimization(using L1 regularization) as following:

min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

Thus, examples are now permitted to have margin less than 1, and if an example has functional margin
1− ξi (with ξ > 0), we would pay a cost of the objective function being increased by Cξi. The parameter C
controls the relative weighting between the twin goals of making the ||w||2 small and of ensuring that most
examples have functional margin at least 1.

SVM-DUAL FORM with SLACK VARIABLES

max
α

W (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjx
T
i xj (7)

s.t. 0 ≤ αi ≤ C, , i = 1, . . . ,m
m∑
i=1

αiy(i) = 0.

In adding L1 regularization, the only change to the dual problem is that was originally a constraint
that 0 ≤ αi has now become 0 ≤ αi ≤ C. The calculation for w∗ is the same way, but the calculation for
b∗ has to be modified (b∗ calculation discussed as part of SMO solver). In this case there are three types of
training points (see figure 5.1):

• α = 0: non interesting points

• C > α > 0;β = 0: a support vector on the margin line, no slack variable; yi(w
Txi + b) = 1, ξi = 0

• α = C;β > 0: a support vector, inside the side (or even misclassified): ξi > 0; yi(w
Txi + b) < 1, ξi > 0

9

5.1.1 Slack variables dual form derivation [optional material]

Let’s derive this non-separable problem like we did before. We will have additional constrains for slack
variables ξi ≥ 0

1. Non-separable problem

min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

2. Constraint transformed:

gi(w, b) = 1− ξi − yi(wTxi + b) ≤ 0

hi(w, b) = −ξi ≤ 0

3. Lagrangian:

L(w, b, ξ, α, r) =
1

2
||w||2 + C

m∑
i=1

ξi −
m∑
i=1

αi(yi(w
Txi + b) + ξi − 1)−

m∑
i=1

riξi

4. Set θD(α, r) = minw,b L(w, b, ξ, α, r)
Derivate L with respect to w, b, ξ to zero:

10

• For w:

∂

∂w
L(w, b, ξ, α, r) = w −

m∑
i=1

αiyixi = 0

=⇒ w =

m∑
i=1

αiyixi (8)

• For b:

∂

∂b
L(w, b, ξ, α, r) = 0−

m∑
i=1

αiyi = 0

=⇒
m∑
i=1

αiyi = 0 (9)

• For ξ:

∂

∂ξi
L(w, b, ξ, α, r) = C − αi − ri = 0

=⇒ C = αi + ri ∀i ∈ {1, · · · ,m} (10)

5. Put the last three equalities back into L, allows for an objective like before only in lagrangian variables
α:

L(w, b, α) =
1

2
||w||2 + C

m∑
i=1

ξi −
m∑
i=1

αi(yi(w
Txi + b) + ξi − 1)−

m∑
i=1

riξi

=
1

2
||w||2 +

m∑
i=1

αiξi +

m∑
i=1

riξi −
m∑
i=1

αi(yi(w
Txi + b)− 1)−

m∑
i=1

αiξi −
m∑
i=1

riξi

=
1

2
||w||2 −

m∑
i=1

αi(yi(w
Txi + b)− 1)

=
1

2

m∑
i,j=1

αiαjyiyjx
T
i xj −

m∑
i,j=1

αiαjyiyjx
T
i xj −

m∑
i=1

αiyib+

m∑
i=1

αi

=

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjx
T
i xj (11)

Now we get (15), which is the same with (10) in previous derivatives. Although we added more
parameters, we only have α now.

6 Solution part 2 : SMO Algorithm instead of Quadratic Solvers

Given the final dual form problem, our goal is to optimize the objective function by given some constraints.
First let’s see a simple one, which is solving unconstrained optimization problem.

6.1 Coordinate Ascent

If our goal is just to solve an unconstrained optimization problem:

max
α

W (α1, . . . , αm)

11

The W here is just some function of the parameters α’s. To solve this optimization, the idea is that we only
choose one parameter, let’s say α̂i, and hold all variables α’s except αi. So we can only optimize W with
respect to just the parameter α̂i. The algorithms is shown as following:

Loop until convergence: {
For i = 1, . . . ,m, {
αi := arg max

α̂i

W (α1, . . . , αi−1, α̂i, αi+1, . . . , αm)

}
}

And here is an example of coordinate ascent in action: Notice that in Coordinate ascent each step, it only

Figure 7: Coordinate Ascent

takes a step that’s parallel to one of the axes, since only one variable is being optimized at a time.

6.2 SMO

Our dual optimization problem is:

max
α

W (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjx
T
i xj (12)

s.t. 0 ≤ αi ≤ C, , i = 1, . . . ,m (13)
m∑
i=1

αiy
(i) = 0. (14)

We want to solve this optimization problem and also satisfy the constraints (18-19). If we still choose
one parameter, let’s say α1, and due to the constraint (19), we get α1 = −yi

∑m
2 αiyi, which doesn’t work,

because the α1 is also fixed. So how about we choose two parameters instead of just one? This method turns

12

out to be the basic idea behind SMO:

Repeat until convergence :{
select two parameters: αi, αj:j 6=i

Optimize W (α) with respect to αi, αj ,holding other parameters fixed.

}

To know more about the SMO, you can refer the paper written by Platt7 or the notes from CS 229 in
Stanford University8.

6.3 SMO Pseudocode

Here is a pseudo code, which is exactly following above derivation steps, and it works in practice.
For the pseudo code, there are two main tasks: In outer loop, we choose αi and αj and in the inner loop,

we update the parameters.

Main loop :

numChanged = 0

examineAll = True

while (numChanged > 0 or examineAll is True){
if (examineAll)

for all i in training examples

numChanged+ = examineExample(i)

else

for all i where 0 < αi < C

numChanged+ = examineExample(i)

if (examineAll)

examineAll = False

else if (numChanged = 0)

examineAll = True

7Platt, John (1998), Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines
8http://cs229.stanford.edu/materials/smo.pdf

13

examineExamples(i):

get yi, ai, Ei

ri = Ei × yi
if (ri < −tol&ai < C)||(ri > tol&ai > 0)

{
if number of non-boundaries points(0 < α < C) > 1:

{
j = argmaxj |Ei− Ej|
if takeStep(i,j):

return 1

}
loop all non-boundary points randomly:

{
j = random(non-boundary points)

if takeStep(i,j):

return 1

}
loop all points randomly:

{
j = random(Entire points)

if takeStep(i,j):

return 1

}
}
return 0

14

takeStep(i, j)

if i == j:

return false

get yj , aj , Ej

s = yi ∗ yj
if yi 6= yj : L = max (0, αj − αi) and H = min (C,αj − αi + C)

if yi = yj : L = max (0, αi + αj − C) and H = min (C,αi + αj)

if L == H:

return false

Ki,i = kernel(i, i)

Kj,j = kernel(j, j)

Ki,j = kernel(i, j)

η = Ki,i +Kj,j − 2Ki,j

if η ≤ 0:

return false

αnewj = αj +
yj(Ei − Ej)

η

αnew,clippedj =


L if αnewj < L
αnewj if αnewj ∈ [L,H]
H if αnewj > H

if |αj − αnew,chippedj | < ε(αj + αnew,chippedj + ε):

return false

αnewi = αi + s(αj − αnew,chippedj)

Update bnew, See end of section 6.

return true

6.4 SMO Details

Since we just mentioned that in SMO, there are two main steps: 1) select two parameters, αi, and αj ; 2)
optimize W (α) with respect to αi, αj , holding other parameters fixed. In this section, we will give more
details about how to deal with these two steps.

6.4.1 How to Select αi and αj

The basic idea is that we want to choose the worst αi and αj in each step to modify/correct them to make
the biggest progress towards the global maximum. For example in Figure 8, we definitely will choose P1 as
the path from point A to G.

So what’s the worst α? Let’s first choose αi and then αj .

• Selecting αi
The idea about choosing the worst αi is based on who violates the KKT constrains dual-complementary.
Let’s recall the KKT dual-complementary(A, B, C, D, E see in Figure 9):

KKT dual complementary :

 αi = 0 =⇒ yif(xi) ≥ 1 (ξ = 0 correct points, like C,D,E)
αi = C =⇒ yif(xi) ≤ 1 (ξ ≥ 0 mistake, like B)
αi ∈ (0, C) =⇒ yif(xi) = 1 (ξ = 0 support vector, like A)

15

Figure 8: Idea about Choosing α

Figure 9: KKT dual complementary α

where f(xi) = wTxi + b. Thus, violations of KKT is shown as following:

V iolations of KKT

 αi = 0 && yif(xi) < 1
αi = C && yif(xi) > 1
αi ∈ (0, C) && yif(xi) 6= 1

16

Let’s talk more about the violations of KKT. Why does it violate the KKT? We start from introducing
the gap between primal problem and dual problem. We define the gap for a point (xi, yi) is:

Gapi = αi(yi(

m∑
j=1

αjyj < xj , xi >)− 1) + Cξi

= αi(yif(xi)− 1− yib) + Cξi

And we also define:
ξi = max(0, 1− yif(xi))

Let’s see each violation of KKT:

1.

Satisfy :

αi = 0&&yif(xi) ≥ 1, ξ = 0 =⇒ Gapsi = 0

V iolate :

αi = 0&&yif(xi) < 1, ξ > 0 =⇒ Gapvi = Cξi > Gapsi

2.

Satisfy :

αi = C&&yif(xi) ≤ 1, ξ = 1− yif(xi) =⇒
Gapsi = C(yif(xi)− 1− yib) + C(1− yif(xi))0 = −Cyib

V iolate :

αi = C&&yif(xi) > 1, ξ = 0 =⇒
Gapvi = C(yif(xi)− 1)− Cyib > Gapsi

3. Easily we can also prove that Gapvi > Gapsi here.

We notice that the gap between primal problem and dual problem will be increased if violating the
KKT dual complementary. Thus, we want to choose αi, who violate the KKT, and modify it to reduce
the gap.

Further, we know that there are three violations, which one should we deal first? In fact, in the
algorithm, we want to choose all the samples with αi ∈ (0, C) first, which are the support vectors.
Why? Because non-bound samples have more probabilities to be modified, which means the support
vectors effect the hyperplane more than the points, who are not on the hyperplane. After we can not
find any non-bound samples, who violate KKT, then we go through the whole samples to check if
violating other two KKT dual complementary.

• Selecting αj Select the αj will follow the rule:

max
αj

|Ei − Ej |

where the Ei = f(xi)− yi, we will explain why during the later derivation.

17

6.4.2 How to Optimize W (α) respect to αi and αj

After choosing the αi and αj , now we would talk about how to optimize the W (α). To make it easy to
explain, we set α1 = αi and α2 = αj , we also define:

w =

m∑
i=1

yiαixi (15)

f(xi) = wTxi + b (16)

Ki,j =< xi, xj > where using kernel trick (17)

vi =

m∑
j=3

yjαjKi,j = f(xi)−
2∑
j=1

yjαjKi,j − b (18)

Ei = f(xi)− yi (19)

η = Ki,i +Kj,j − 2Ki,j = ||φ(xi)− φ(xj)||2 (20)

1. Calculate αj
First, put α1 and α2 to objective function:

W (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjx
T
i xj

= α1 + α2 +

m∑
i=3

αi −
1

2

m∑
i=1

(

2∑
j=1

yiyjαiαjKi,j +

m∑
j=3

yiyjαiαjKi,j)

= α1 + α2 +

m∑
i=3

αi −
1

2

2∑
i=1

(

2∑
j=1

yiyjαiαjKi,j +

m∑
j=3

yiyjαiαjKi,j)

− 1

2

m∑
i=2

(

2∑
j=1

yiyjαiαjKi,j +

m∑
j=3

yiyjαiαjKi,j)

= α1 + α2 +

m∑
i=3

αi −
1

2

2∑
i=1

2∑
j=1

yiyjαiαjKi,j −
1

2

2∑
i=1

m∑
j=3

yiyjαiαjKi,j

− 1

2

m∑
i=3

2∑
j=1

yiyjαiαjKi,j −
1

2

m∑
i=3

m∑
j=3

yiyjαiαjKi,j

= α1 + α2 +

m∑
i=3

αi −
1

2
y21α

2
1K1,1 −

1

2
y22α

2
2K2,2 − y1y2α1α2K1,2

− y1α1

m∑
j=3

yjαjK1,j − y2α2

m∑
j=3

yjαjK2,j −
1

2

m∑
i=3

m∑
j=3

yiyjαiαjKi,j

= α1 + α2 −
1

2
K1,1α

2
1 −

1

2
K2,2α

2
2 − y1y2K1,2α1α2 − y1α1v1 − y2α2v2 + CONSTANT

In fact, now we can apply two constrains (18) and (19) to solve this problem.
Constrain (19): Due to

∑m
i=1 αiyi = 0, and α3, . . . , αm and y3, . . . , ym are fixed, so we can set:

α1y1 + α2y2 = C ′

18

and we can get

y1(α1y1 + α2y2) = y1C
′

=⇒ α1 + α2y1y2 = y1C
′

=⇒ α1 = y1C
′ − α2y1y2 Set y1C

′ = γ and y1y2 = s

=⇒ α1 = γ − α2s

Now put α1 to W (α):

W (α) = γ − sα2 + α2 −
1

2
K1,1(γ − sα2)2 − 1

2
K2,2α

2
2 − sK1,2(γ − sα2)α2

− y1(γ − sα2)v1 − y2α2v2 + CONSTANT

And derivate W (α) respect to α2:

∂W (α)

∂α2
= −s+ 1 +K1,1sγ −K1,1α2 −K2,2α2 − sγK1,2 + 2K1,2α2 + y2v1 − y2v2

= 0

Put s = y1y2 and y22 = 1, we can get:

y2(y2 − y1 + y1γ(K1,1 −K1,2) + v1 − v2)− α2(K1,1 +K2,2 − 2K1,2) = 0

=⇒ αnew2 =
y2(y2 − y1 + y1γ(K1,1 −K1,2) + v1 − v2)

K1,1 +K2,2 − 2K1,2

After that, we combineγ = αold1 + sαold2 , (24)and (25) and get:

αnew2 = αold2 +
y2(E1 − E2)

η

=⇒ αnewj = αoldj +
yj(Ei − Ej)

η
(21)

Constrain (18): Due to 0 ≤ αi ≤ C, so the α2 and α1 must be into a (0, C)× (0, C) box, shown in
the Figure 10. And as defined in previous: α1y1 +α2y2 = C ′. Now we can consider that there are two
different situations:

• if y1, y2 are the same value: [y1y2 = 1]
Then we can get α1 +α2 = C ′(or−C ′which is the same). For example in the Figure 11, we could
get

α2 ∈ [0, C] & α2 ∈ [C ′ − C,C ′]
=⇒ α2 ∈ [0, C] & α2 ∈ [α1 + α2 − C,α1 + α2]

Combine the lower bound and upper bound we could get:

Lα2
= max (0, α1 + α2 − C)

Hα2
= min (C,α1 + α2)

• if y1, y2 are different value: [y1y2 = −1]
Then we could get α1 − α2 = C ′(or − C ′which is the same). For example in the Figure 12, we
could get

α2 ∈ [0, C] & α2 ∈ [−C ′, C − C ′]
=⇒ α2 ∈ [0, C] & α2 ∈ [α2 − α1, α2 − α1 + C]

19

Figure 10: Constrains on α

Figure 11: y1, y2 same value

20

Figure 12: y1, y2 different value

Combine the lower bound and upper bound we could get:

Lα2
= max (0, α2 − α1)

Hα2
= min (C,α2 − α1 + C)

Generally:

if yi 6= yj : L = max (0, αj − αi) and H = min (C,αj − αi + C)

if yi = yj : L = max (0, αi + αj − C) and H = min (C,α1 + α2)

Then we can use this limitations to clip the αj like:

αnew,clippedj =


L if αnewj < L
αnewj if αnewj ∈ [L,H]
H if αnewj > H

2. Calculate αi
Once we have got new αj , it won’t be hard to calculate αi, notice that we already have:

αoldi = γ − sαoldj
αnewi = γ − sαnew,clippedj

s = yiyj

=⇒ αnewi = αoldi + sαoldi − sα
new,clipped
j

= αoldi + yiyj(α
old
j − α

new,clipped
j)

21

3. Calculate b
When we calculate the bias b, we are based on the point whether it’s the non-bound points(support
vector) or not. (Like point A in Figure 9):

yif(xi) = 1.

Now we can divide the situations to four parts:

• if only αnew1 ∈ (0, C):

y1f(x1) = 1

=⇒ y1(αnew1 y1K1,1 + αnew,clipped2 y2K2,1 +
m∑
i=3

(αiyiKi,1) + bnew1) = 1

E1 = f(x1)− y1 = αold1 y1K1,1 + αold2 y2K2,1 +

m∑
i=3

(αiyiKi,1) + bold − y1

=⇒
m∑
i=3

(αiyiKi,1) = E1 − αold1 y1K1,1 − αold2 y2K2,1 − bold + y1

combine them

=⇒ bnewi = bnew1 = bold − E1 + (αold1 − αnew1)y1K1,1 + (αold2 − αnew2)y2K2,1

• if only αnew2 ∈ (0, C):
Same thing we could get

bnewj = bnew2 = bold − E2 + (αold1 − αnew1)y1K1,2 + (αold2 − αnew2)y2K2,2

• if both are non-bound:
Choose one of bnew1 or bnew2 .

• if both are not non-bound:
We choose could set bnew as:

bnew =
bnew1 + bnew2

2

Generally, we update b as:

bnew =


bnewi if αnewi ∈ (0, C)

bnewj if αnew,clippedj ∈ (0, C)
bnew
i +bnew

j

2 otherwise

7 Lagrange Duality [optional material]

As mentioned before, the problem is solving constrained optimization problems. In fact, we are familiar
with the problem of optimization without any constrains, we can consider gradient descent, Newtown’s
method, interval cutting etc. Before solving the constrained optimization problems, we need talk about the
Lagrangian, Primal and Dual problems.

7.1 Lagrange

Lagrange multipliers to solve the problem of the following form, whose constrain is an equality:

min
w
f(w)

s.t. hi(w) = 0, i = 1, . . . , l

22

We can use Lagrange multipliers on it. And in this method, we define the Lagrangian as following:

L(w, β) = f(w) +

l∑
i=1

βihi(w)

We would find and set L’s partial derivatives to zero:

∂L
∂wi

= 0;
∂L
∂βi

= 0

And then we can get the w∗ to be the solution from the partial derivatives step.

7.2 Primal Problem

Consider the following, which we will call the primal optimization problems, whose has inequality as well as
equality constraints.

min
w
f(w)

s.t. gi(w) ≤ 0, i = 1, . . . , k

fi(w) = 0, i = 1, . . . , l.

Then we can define the generalized Lagrangian

L(w,α, β) = f(w) +

k∑
i=1

αigi(w) +

l∑
i=1

βihi(w)

Here consider the quantity
θP(w) = max

α,β:αi≥0
L(w,α, β)

In the problem θP(w), if gi(w) > 0 or fi(w) 6= 0, which violates any of the primal constraints given
above, then you should be able to verify that

θP(w) = max
α,β:αi≥0

f(w) +

k∑
i=1

αigi(w) +

l∑
i=1

βihi(w)

=∞

Conversely, if the constraints are indeed satisfied for a particular value of w, then θP(w) = f(w). Hence,

θP(w) =

{
f(w) if w satisfies primal constraints
∞ otherwise

Thus, θP takes the same value as the objective in our problem for all values of w that satisfies the primal
constraints, and is positive infinity if the constraints are violated. Hence the minimization problem has been
transformed to

min
w
θP(w) = min

w
max

α,β:αi≥0
L(w,α, β)

For later use, we define p∗ = minw θP(w) as the value of the primal problem. In fact, we see that primal
problem has the same solutions as our original problem.

23

−5

0

5

10

15

20

−4
−2 0 2

4 6 8

−50

0

50

100

150

200

250

300

wbeta

f(w)=(w−7)2
h(w)=2w−8

solution w=4
beta=3

Figure 13: Saddle Point

7.3 Dual Problem

Then we can define
θD(α, β) = min

w
L(w,α, β)

and then pose the dual optimization problem:

max
α,β:α≥0

θD(α, β) = max
α,β:α≥0

min
w
L(w,α, β)

And we also define d∗ = maxα,β:α≥0 θD(α, β). We can see that dual problem is pretty similar to our primal
problem shown above, except that the order of the “max” and the “min” are now exchanged.

For problem with convex objectives and linear constraints the duality gap always closes (KKT theo-
rem) in the sense that

maxα,β:α≥0 minw L(w,α, β) = minw maxα,β:αi≥0 L(w,α, β)

The solution is exactly this ”saddle point” : maximum of the minimums of each convex slice, same as
minimum of the maximums of each concave slice (shown in Figure13.

7.4 Karush-Kuhn-Tucker conditions for duality gap

How are the primal and the dual problems related? And why should we introduce primal and dual problems?
We will talk a little bit in this section. Let’s start with why. Since we present our original problem as

24

following:

max
w,b

1

2
||w||2

s.t. yi(w
Txi + b) ≥ 1, i = 1, . . . ,m

By introducing Lagrange multipliers α, the original constrained problem can be expressed as a primal
problem:

w∗, b∗ = arg p∗ = arg min
w,b

θP(w, b)

= arg min
w,b

max
α≥0

(
1

2
||w||2 −

m∑
i=1

αi(yi(w
Txi + b)− 1))

this is a saddle point9. If we want to solve this primal problem, we can use QP, which is inefficient. We try
to transform the primal problem to the dual problem as following10:

α∗ = arg d∗ = arg max
α

θD(α)

= arg max
α

(

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjx
T
i xj)

s.t. αi ≥ 0
m∑
i=0

αiyi = 0

In dual problem, we get rid off two parameters w, b and the constrains are much easier than before. BTW,
notice that we have xTi xj in the formula, which gives us a chance apply kernel trick on it. We will talk about
it later.

We can notice that the dual problem is much better than primal problem. If we can transform the original
problem to primal problem, and then to dual problem, it will be good steps to the solutions. In fact, the
there is some relationship between primal and dual problems. Notice a fact that max min(f) ≤ min max(f),
thus

d∗ = max
α,β:α≥0

min
w
L(w,α, β) ≤ min

w
max

α,β:αi≥0
L(w,α, β) = p∗

That’s d∗ ≤ p∗. Further, d∗ = p∗ under the KKT conditions. Once the Primal problem and Dual problem
equal to each other, the parameters will meet the KKT conditions. We just introduce the five conditions as
following:

∂

∂wi
L(w∗, α∗, β∗) = 0, i = 1, . . . , n (22)

∂

∂βi
L(w∗, α∗, β∗) = 0, i = 1, . . . , l (23)

α∗i gi(w
∗) = 0, i = 1, . . . , k (24)

gi(w
∗) ≤ 0, i = 1, . . . , k (25)

α∗ ≥ 0, i = 1, . . . , k (26)

Later, we will just apply KKT conditions on primal problem to get the dual form problem.

9http://en.wikipedia.org/wiki/Saddle point
10http://en.wikipedia.org/wiki/Support vector machine

25

