
CS229 Simplified SMO Algorithm 1

CS 229, Autumn 2009
The Simplified SMO Algorithm

1 Overview of SMO

This document describes a simplified version of the Sequential Minimal Optimization (SMO)
algorithm for training support vector machines that you will implement for problem set #2.
The full algorithm is described in John Platt’s paper1 [1], and much of this document is based
on this source. However, the full SMO algorithm contains many optimizations designed to
speed up the algorithm on large datasets and ensure that the algorithm converges even under
degenerate conditions. For the data sets you will consider in problem set #2, a much simpler
version of the algorithm will suffice, and hopefully give you a better intuition about how the
optimization is done. However, it is important to note that the method we describe here is not

guaranteed to converge for all data sets, so if you want to use SVMs on a real-world application,
you should either implement the full SMO algorithm, or find a software package for SVMs. After
implementing the algorithm described here, it should be fairly easy to implement the full SMO
algorithm described in Platt’s paper.

2 Recap of the SVM Optimization Problem

Recall from the lecture notes that a support vector machine computes a linear classifier of the
form

f(x) = wT x + b. (1)

Since we want to apply this to a binary classification problem, we will ultimately predict y = 1 if
f(x) ≥ 0 and y = −1 if f(x) < 0, but for now we simply consider the function f(x). By looking
at the dual problem as we did in Section 6 of the notes, we see that this can also be expressed
using inner products as

f(x) =

m
∑

i=1

αiy
(i)〈x(i), x〉 + b (2)

where we can substitute a kernel K(x(i), x) in place of the inner product if we so desire.

The SMO algorithm gives an efficient way of solving the dual problem of the (regularized)
support vector machine optimization problem, given in Section 8 of the notes. Specifically, we
wish to solve:

maxα W (α) =
m

∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

y(i)y(j)αiαj〈x
(i), x(j)〉 (3)

subject to 0 ≤ αi ≤ C, i = 1, . . . ,m (4)
m

∑

i=1

αiy
(i) = 0 (5)

1This paper is available at http://research.microsoft.com/˜jplatt/smo.html. One important difference is that
Platt’s paper uses the convention that the linear classifier is of the form f(x) = wT x−b rather than the convention
we use in class (and in this document), that f(x) = wT x + b.

CS229 Simplified SMO Algorithm 2

The KKT conditions can be used to check for convergence to the optimal point. For this
problem the KKT conditions are

αi = 0 ⇒ y(i)(wT x(i) + b) ≥ 1 (6)

αi = C ⇒ y(i)(wT x(i) + b) ≤ 1 (7)

0 < αi < C ⇒ y(i)(wT x(i) + b) = 1. (8)

(9)

In other words, any αi’s that satisfy these properties for all i will be an optimal solution to the
optimization problem given above. The SMO algorithm iterates until all these conditions are
satisfied (to within a certain tolerance) thereby ensuring convergence.

3 The Simplified SMO Algorithm

As described in Section 9 of the class notes, the SMO algorithm selects two α parameters, αi and
αj and optimizes the objective value jointly for both these α’s. Finally it adjusts the b parameter
based on the new α’s. This process is repeated until the α’s converge. We now describe these
three steps in greater detail.

3.1 Selecting α Parameters

Much of the full SMO algorithm is dedicated to heuristics for choosing which αi and αj to
optimize so as to maximize the objective function as much as possible. For large data sets, this
is critical for the speed of the algorithm, since there are m(m − 1) possible choices for αi and
αj , and some will result in much less improvement than others.

However, for our simplified version of SMO, we employ a much simpler heuristic. We simply
iterate over all αi, i = 1, . . . m. If αi does not fulfill the KKT conditions to within some numerical
tolerance, we select αj at random from the remaining m− 1 α’s and attempt to jointly optimize
αi and αj . If none of the α’s are changed after a few iteration over all the αi’s, then the algorithm
terminates. It is important to realize that by employing this simplification, the algorithm is no

longer guaranteed to converge to the global optimum (since we are not attempting to optimize
all possible αi, αj pairs, there exists the possibility that some pair could be optimized which we
do not consider). However, for the data sets used in problem set #2, this method achieves the
same result as the selection method of the full SMO algorithm.

3.2 Optimizing αi and αj

Having chosen the Lagrange multipliers αi and αj to optimize, we first compute constraints on
the values of these parameters, then we solve the constrained maximization problem. Section 9
of the class notes explains the intuition behind the steps given here.

First we want to find bounds L and H such that L ≤ αj ≤ H must hold in order for αj to
satisfy the constraint that 0 ≤ αj ≤ C. It can be shown that these are given by the following:

• If y(i) 6= y(j), L = max(0, αj − αi), H = min(C,C + αj − αi) (10)

• If y(i) = y(j), L = max(0, αi + αj − C), H = min(C,αi + αj) (11)

CS229 Simplified SMO Algorithm 3

Now we want to find αj so as to maximize the objective function. If this value ends up lying
outside the bounds L and H, we simply clip the value of αj to lie within this range. It can
be shown (try to derive this yourself using the material in the class notes, or see [1]) that the
optimal αj is given by:

αj := αj −
y(j)(Ei − Ej)

η
(12)

where

Ek = f(x(k)) − y(k) (13)

η = 2〈x(i), x(j)〉 − 〈x(i), x(i)〉 − 〈x(j), x(j)〉. (14)

You can think of Ek as the error between the SVM output on the kth example and the true label
y(k). This can be calculated using equation (2). When calculating the η parameter you can use
a kernel function K in place of the inner product if desired. Next we clip αj to lie within the
range [L,H]

αj :=







H if αj > H
αj if L ≤ αj ≤ H
L if αj < L.

(15)

Finally, having solved for αj we want to find the value for αi. This is given by

αi := αi + y(i)y(j)(α
(old)
j − αj) (16)

where α
(old)
j is the value of αj before optimization by (12) and (15).

The full SMO algorithm can also handle the rare case that η = 0. For our purposes, if η = 0,
you can treat this as a case where we cannot make progress on this pair of α’s.

3.3 Computing the b threshold

After optimizing αi and αj , we select the threshold b such that the KKT conditions are satisfied
for the ith and jth examples. If, after optimization, αi is not at the bounds (i.e., 0 < αi < C),
then the following threshold b1 is valid, since it forces the SVM to output y(i) when the input is
x(i)

b1 = b − Ei − y(i)(αi − α
(old)
i)〈x(i), x(i)〉 − y(j)(αj − α

(old)
j)〈x(i), x(j)〉. (17)

Similarly, the following threshold b2 is valid if 0 < αj < C

b2 = b − Ej − y(i)(αi − α
(old)
i)〈x(i), x(j)〉 − y(j)(αj − α

(old)
j)〈x(j), x(j)〉. (18)

If both 0 < αi < C and 0 < αj < C then both these thresholds are valid, and they will be equal.
If both new α’s are at the bounds (i.e., αi = 0 or αi = C and αj = 0 or αj = C) then all the
thresholds between b1 and b2 satisfy the KKT conditions, we we let b := (b1 + b2)/2. This gives
the complete equation for b,

b :=







b1 if 0 < αi < C
b2 if 0 < αj < C
(b1 + b2)/2 otherwise

(19)

CS229 Simplified SMO Algorithm 4

4 Pseudo-Code for Simplified SMO

In this section we present pseudo-code for the simplified SMO algorithm. This should help you
get started with your implementation of the algorithm for problem set #2.

Algorithm: Simplified SMO

Input:

C: regularization parameter
tol: numerical tolerance
max passes: max # of times to iterate over α’s without changing
(x(1), y(1)), . . . , (x(m), y(m)): training data

Output:

α ∈ R
m: Lagrange multipliers for solution

b ∈ R : threshold for solution

◦ Initialize αi = 0,∀i, b = 0.
◦ Initialize passes = 0.
◦ while (passes < max passes)

◦ num changed alphas = 0.
◦ for i = 1, . . . m,

◦ Calculate Ei = f(x(i)) − y(i) using (2).
◦ if ((y(i)Ei < −tol && αi < C) || (y(i)Ei > tol && αi > 0))

◦ Select j 6= i randomly.
◦ Calculate Ej = f(x(j)) − y(j) using (2).

◦ Save old α’s: α
(old)
i = αi, α

(old)
j = αj .

◦ Compute L and H by (10) or (11).
◦ if (L == H)

continue to next i.
◦ Compute η by (14).
◦ if (η >= 0)

continue to next i.
◦ Compute and clip new value for αj using (12) and (15).

◦ if (|αj − α
(old)
j | < 10−5)

continue to next i.
◦ Determine value for αi using (16).
◦ Compute b1 and b2 using (17) and (18) respectively.
◦ Compute b by (19).
◦ num changed alphas := num changed alphas + 1.

◦ end if

◦ end for

◦ if (num changed alphas == 0)
passes := passes + 1

◦ else

passes := 0
◦ end while

CS229 Simplified SMO Algorithm 5

References

[1] Platt, John. Fast Training of Support Vector Machines using Sequential Minimal Optimiza-

tion, in Advances in Kernel Methods – Support Vector Learning, B. Scholkopf, C. Burges,
A. Smola, eds., MIT Press (1998).

