
A decision-theoretic generalization of on-line learningand an application to boosting�Yoav Freund Robert E. SchapireAT&T Labs180 Park AvenueFlorham Park, NJ 07932fyoav, schapireg@research.att.comDecember 19, 1996AbstractIn the �rst part of the paper we consider the problem of dynamically apportioningresources among a set of options in a worst-case on-line framework. The model we studycan be interpreted as a broad, abstract extension of the well-studied on-line predictionmodel to a general decision-theoretic setting. We show that the multiplicative weight-update rule of Littlestone and Warmuth [20] can be adapted to this model yielding boundsthat are slightly weaker in some cases, but applicable to a considerably more general classof learning problems. We show how the resulting learning algorithm can be applied to avariety of problems, including gambling, multiple-outcome prediction, repeated games andprediction of points in Rn. In the second part of the paper we apply the multiplicativeweight-update technique to derive a new boosting algorithm. This boosting algorithm doesnot require any prior knowledge about the performance of the weak learning algorithm.We also study generalizations of the new boosting algorithm to the problem of learningfunctions whose range, rather than being binary, is an arbitrary �nite set or a boundedsegment of the real line.1 IntroductionA gambler, frustrated by persistent horse-racing losses and envious of his friends' winnings,decides to allow a group of his fellow gamblers to make bets on his behalf. He decides he willwager a �xed sum of money in every race, but that he will apportion his money among hisfriends based on how well they are doing. Certainly, if he knew psychically ahead of time whichof his friends would win the most, he would naturally have that friend handle all his wagers.Lacking such clairvoyance, however, he attempts to allocate each race's wager in such a waythat his total winnings for the season will be reasonably close to what he would have won hadhe bet everything with the luckiest of his friends.In this paper, we describe a simple algorithm for solving such dynamic allocation problems,and we show that our solution can be applied to a great assortment of learning problems.�This paper appeared in Journal of Computer and System Sciences, 55(1):119-139, 1997. An extended abstractof this work appeared in the Proceedings of the Second European Conference on Computational Learning Theory,Barcelona, March, 1995. 1

Perhaps the most surprising of these applications is the derivation of a new algorithm for\boosting," i.e., for converting a \weak" PAC learning algorithm that performs just slightlybetter than random guessing into one with arbitrarily high accuracy.We formalize our on-line allocation model as follows. The allocation agent A has N optionsor strategies to choose from; we number these using the integers 1; : : : ; N . At each time stept = 1; 2; : : : ; T , the allocator A decides on a distribution pt over the strategies; that is pti � 0 isthe amount allocated to strategy i, and PNi=1 pti = 1. Each strategy i then su�ers some loss `tiwhich is determined by the (possibly adversarial) \environment." The loss su�ered by A is thenPNi=1 pti`ti = pt � `t, i.e., the average loss of the strategies with respect to A's chosen allocationrule. We call this loss function the mixture loss.In this paper, we always assume that the loss su�ered by any strategy is bounded so that,without loss of generality, `ti 2 [0; 1]. Besides this condition, we make no assumptions aboutthe form of the loss vectors `t, or about the manner in which they are generated; indeed, theadversary's choice for `t may even depend on the allocator's chosen mixture pt.The goal of the algorithm A is to minimize its cumulative loss relative to the loss su�eredby the best strategy. That is, A attempts to minimize its net lossLA �mini Liwhere LA = TXt=1pt � `tis the total cumulative loss su�ered by algorithm A on the �rst T trials, andLi = TXt=1 `tiis strategy i's cumulative loss.In Section 2, we show that Littlestone and Warmuth's [20] \weighted majority" algorithmcan be generalized to handle this problem, and we prove a number of bounds on the net loss.For instance, one of our results shows that the net loss of our algorithm can be bounded byO�pT lnN� or, put another way, that the average per trial net loss is decreasing at the rateO�p(lnN)=T�. Thus, as T increases, this di�erence decreases to zero.Our results for the on-line allocation model can be applied to a wide variety of learningproblems, as we describe in Section 3. In particular, we generalize the results of Littlestoneand Warmuth [20] and Cesa-Bianchi et al. [4] for the problem of predicting a binary sequenceusing the advice of a team of \experts." Whereas these authors proved worst-case bounds formaking on-line randomized decisions over a binary decision and outcome space with a f0; 1g-valued discrete loss, we prove (slightly weaker) bounds that are applicable to any bounded lossfunction over any decision and outcome spaces. Our bounds express explicitly the rate at whichthe loss of the learning algorithm approaches that of the best expert.Related generalizations of the expert prediction model were studied by Vovk [25], Kivinenand Warmuth [19], and Haussler, Kivinen and Warmuth [15]. Like us, these authors focusedprimarily on multiplicative weight-update algorithms. Chung [5] also presented a generalization,giving the problem a game-theoretic treatment.2

BoostingReturning to the horse-racing story, suppose now that the gambler grows weary of choosingamong the experts and instead wishes to create a computer program that will accurately predictthe winner of a horse race based on the usual information (number of races recently won byeach horse, betting odds for each horse, etc.). To create such a program, he asks his favoriteexpert to explain his betting strategy. Not surprisingly, the expert is unable to articulate agrand set of rules for selecting a horse. On the other hand, when presented with the data for aspeci�c set of races, the expert has no trouble coming up with a \rule-of-thumb" for that set ofraces (such as, \Bet on the horse that has recently won the most races" or \Bet on the horsewith the most favored odds"). Although such a rule-of-thumb, by itself, is obviously very roughand inaccurate, it is not unreasonable to expect it to provide predictions that are at least alittle bit better than random guessing. Furthermore, by repeatedly asking the expert's opinionon di�erent collections of races, the gambler is able to extract many rules-of-thumb.In order to use these rules-of-thumb to maximum advantage, there are two problems facedby the gambler: First, how should he choose the collections of races presented to the expertso as to extract rules-of-thumb from the expert that will be the most useful? Second, once hehas collected many rules-of-thumb, how can they be combined into a single, highly accurateprediction rule?Boosting refers to this general problem of producing a very accurate prediction rule bycombining rough and moderately inaccurate rules-of-thumb. In the second part of the paper,we present and analyze a new boosting algorithm inspired by the methods we used for solvingthe on-line allocation problem.Formally, boosting proceeds as follows: The booster is provided with a set of labeled trainingexamples (x1; y1); : : : ; (xN ; yN), where yi is the label associated with instance xi; for instance,in the horse-racing example, xi might be the observable data associated with a particularhorse race, and yi the outcome (winning horse) of that race. On each round t = 1; : : : ; T , thebooster devises a distribution Dt over the set of examples, and requests (from an unspeci�edoracle) a weak hypothesis (or rule-of-thumb) ht with low error �t with respect to Dt (thatis, �t = Pri�Dt [ht(xi) 6= yi]). Thus, distribution Dt speci�es the relative importance of eachexample for the current round. After T rounds, the booster must combine the weak hypothesesinto a single prediction rule.Unlike the previous boosting algorithms of Freund [10, 11] and Schapire [22], the newalgorithm needs no prior knowledge of the accuracies of the weak hypotheses. Rather, it adaptsto these accuracies and generates a weighted majority hypothesis in which the weight of eachweak hypothesis is a function of its accuracy. For binary prediction problems, we prove inSection 4 that the error of this �nal hypothesis (with respect to the given set of examples) isbounded by exp(�2PTt=1
2t) where �t = 1=2�
t is the error of the tth weak hypothesis. Sincea hypothesis that makes entirely random guesses has error 1=2,
t measures the accuracy ofthe tth weak hypothesis relative to random guessing. Thus, this bound shows that if we canconsistently �nd weak hypotheses that are slightly better than random guessing, then the errorof the �nal hypothesis drops exponentially fast.Note that the bound on the accuracy of the �nal hypothesis improves when any of theweak hypotheses is improved. This is in contrast with previous boosting algorithms whoseperformance bound depended only on the accuracy of the least accurate weak hypothesis. Atthe same time, if the weak hypotheses all have the same accuracy, the performance of the newalgorithm is very close to that achieved by the best of the known boosting algorithms.In Section 5, we give two extensions of our boosting algorithm to multi-class prediction3

Algorithm Hedge(�)Parameters: � 2 [0; 1]initial weight vector w1 2 [0; 1]N with PNi=1 w1i = 1number of trials TDo for t = 1; 2; : : : ; T1. Choose allocation pt = wtPNi=1 wti2. Receive loss vector `t 2 [0; 1]N from environment.3. Su�er loss pt � `t.4. Set the new weights vector to be wt+1i = wti�`tiFigure 1: The on-line allocation algorithm.problems in which each example belongs to one of several possible classes (rather than justtwo). We also give an extension to regression problems in which the goal is to estimate areal-valued function.2 The on-line allocation algorithm and its analysisIn this section, we present our algorithm, called Hedge(�), for the on-line allocation problem.The algorithm and its analysis are direct generalizations of Littlestone and Warmuth's weightedmajority algorithm [20].The pseudo-code for Hedge(�) is shown in Figure 1. The algorithm maintains a weightvector whose value at time t is denoted wt =
wt1; : : : ; wtN�. At all times, all weights will benonnegative. All of the weights of the initial weight vector w1 must be nonnegative and sum toone, so that PNi=1 w1i = 1. Besides these conditions, the initial weight vector may be arbitrary,and may be viewed as a \prior" over the set of strategies. Since our bounds are strongest forthose strategies receiving the greatest initial weight, we will want to choose the initial weightsso as to give the most weight to those strategies which we expect are most likely to perform thebest. Naturally, if we have no reason to favor any of the strategies, we can set all of the initialweights equally so that w1i = 1=N . Note that the weights on future trials need not sum to one.Our algorithm allocates among the strategies using the current weight vector, after normal-izing. That is, at time t, Hedge(�) chooses the distribution vectorpt = wtPNi=1 wti : (1)After the loss vector `t has been received, the weight vector wt is updated using the multi-plicative rule wt+1i = wti � �`ti : (2)4

More generally, it can be shown that our analysis is applicable with only minor modi�cation toan alternative update rule of the formwt+1i = wti � U�(`ti)where U� : [0; 1]! [0; 1] is any function, parameterized by � 2 [0; 1] satisfying�r � U�(r) � 1� (1� �)rfor all r 2 [0; 1].2.1 AnalysisThe analysis of Hedge(�) mimics directly that given by Littlestone and Warmuth [20]. Themain idea is to derive upper and lower bounds on PNi=1 wT+1i which, together, imply an upperbound on the loss of the algorithm. We begin with an upper bound.Lemma 1 For any sequence of loss vectors `1; : : : ; `T ,ln NXi=1wT+1i ! � �(1� �)LHedge(�):Proof: By a convexity argument, it can be shown that�r � 1� (1� �)r (3)for � � 0 and r 2 [0; 1]. Combined with Equations (1) and (2), this impliesNXi=1 wt+1i = NXi=1wti�`ti � NXi=1wti(1� (1� �)`ti) = NXi=1wti!(1� (1� �)pt � `t): (4)Applying repeatedly for t = 1; : : : ; T yieldsNXi=1wT+1i � TYt=1(1� (1� �)pt � `t)� exp �(1� �) TXt=1pt � `t!since 1 + x � ex for all x. The lemma follows immediately.Thus, LHedge(�) � � ln �PNi=1 wT+1i �1� � : (5)Note that, from Equation (2), wT+1i = w1i TYt=1�`ti = w1i �Li : (6)This is all that is needed to complete our analysis.5

Theorem 2 For any sequence of loss vectors `1; : : : ; `T , and for any i 2 f1; : : : ; Ng, we haveLHedge(�) � � ln(w1i)� Li ln �1� � : (7)More generally, for any nonempty set S � f1; : : : ; Ng, we haveLHedge(�) � � ln(Pi2S w1i)� (ln �)maxi2S Li1� � : (8)Proof: We prove the more general statement (8) since Equation (7) follows in the special casethat S = fig.From Equation (6),NXi=1wT+1i �Xi2S wT+1i =Xi2S w1i �Li � �maxi2S LiXi2S w1i :The theorem now follows immediately from Equation (5).The simpler bound (7) states that Hedge(�) does not perform \too much worse" than thebest strategy i for the sequence. The di�erence in loss depends on our choice of � and on theinitial weight w1i of each strategy. If each weight is set equally so that w1i = 1=N , then thisbound becomes LHedge(�) � mini Li ln(1=�) + lnN1� � : (9)Since it depends only logarithmically on N , this bound is reasonable even for a very largenumber of strategies.The more complicated bound (8) is a generalization of the simpler bound that is especiallyapplicable when the number of strategies is in�nite. Naturally, for uncountable collections ofstrategies, the sum appearing in Equation (8) can be replaced by an integral, and the maximumby a supremum.The bound given in Equation (9) can be written asLHedge(�) � cmini Li + a lnN; (10)where c = ln(1=�)=(1��) and a = 1=(1��). Vovk [24] analyzes prediction algorithms that haveperformance bounds of this form, and proves tight upper and lower bounds for the achievablevalues of c and a. Using Vovk's results, we can show that the constants a and c achieved byHedge(�) are optimal.Theorem 3 Let B be an algorithm for the on-line allocation problem with an arbitrary numberof strategies. Suppose that there exist positive real numbers a and c such that for any numberof strategies N and for any sequence of loss vectors `1; : : : ; `TLB � cmini Li + a lnN:Then for all � 2 (0; 1), either c � ln(1=�)1� � or a � 1(1� �) :The proof is given in the appendix. 6

2.2 How to choose �So far, we have analyzed Hedge(�) for a given choice of �, and we have proved reasonablebounds for any choice of �. In practice, we will often want to choose � so as to maximallyexploit any prior knowledge we may have about the speci�c problem at hand.The following lemma will be helpful for choosing � using the bounds derived above.Lemma 4 Suppose 0 � L � ~L and 0 < R � ~R. Let � = g(~L= ~R) where g(z) = 1=(1 +p2=z).Then �L ln � +R1� � � L+q2~L ~R+ R:Proof: (Sketch) It can be shown that � ln � � (1 � �2)=(2�) for � 2 (0; 1]. Applying thisapproximation and the given choice of � yields the result.Lemma 4 can be applied to any of the bounds above since all of these bounds have the formgiven in the lemma. For example, suppose we have N strategies, and we also know a priorbound ~L on the loss of the best strategy. Then, combining Equation (9) and Lemma 4, we haveLHedge(�) � mini Li +q2~L lnN + lnN (11)for � = g(~L= lnN). In general, if we know ahead of time the number of trials T , then we canuse ~L = T as an upper bound on the cumulative loss of each strategy i.Dividing both sides of Equation (11) by T , we obtain an explicit bound on the rate at whichthe average per-trial loss of Hedge(�) approaches the average loss for the best strategy:LHedge(�)T � mini LiT + p2~L lnNT + lnNT : (12)Since ~L � T , this gives a worst case rate of convergence of O�p(lnN)=T�. However, if ~L isclose to zero, then the rate of convergence will be much faster, roughly, O((lnN)=T).Lemma 4 can also be applied to the other bounds given in Theorem 2 to obtain analogousresults.The bound given in Equation (11) can be improved in special cases in which the loss is afunction of a prediction and an outcome and this function is of a special form (see example 4below). However, for the general case, one cannot improve the square-root term p2~L lnN , bymore than a constant factor. This is a corollary of the lower bound given by Cesa-Bianchi etal. ([4], Theorem 7) who analyze an on-line prediction problem that can be seen as a specialcase of the on-line allocation model.3 ApplicationsThe framework described up to this point is quite general and can be applied in a wide varietyof learning problems.Consider the following set-up used by Chung [5]. We are given a decision space �, a spaceof outcomes
, and a bounded loss function � : � �
 ! [0; 1]. (Actually, our results requireonly that � be bounded, but, by rescaling, we can assume that its range is [0; 1].) At everytime step t, the learning algorithm selects a decision �t 2 �, receives an outcome !t 2
, andsu�ers loss �(�t; !t). More generally, we may allow the learner to select a distribution Dt over7

the space of decisions, in which case it su�ers the expected loss of a decision randomly selectedaccording to Dt; that is, its expected loss is �(Dt; !t) where�(D; !) = E��D[�(�; !)]:To decide on distribution Dt, we assume that the learner has access to a set of N experts.At every time step t, expert i produces its own distribution E ti on �, and su�ers loss �(E ti ; !t).The goal of the learner is to combine the distributions produced by the experts so as tosu�er expected loss \not much worse" than that of the best expert.The results of Section 2 provide a method for solving this problem. Speci�cally, we run al-gorithm Hedge(�), treating each expert as a strategy. At every time step, Hedge(�) producesa distribution pt on the set of experts which is used to construct the mixture distributionDt = NXi=1 ptiE ti :For any outcome !t, the loss su�ered by Hedge(�) will then be�(Dt; !t) = NXi=1 pti�(E ti ; !t):Thus, if we de�ne `ti = �(E ti ; !t) then the loss su�ered by the learner is pt � `t, i.e., exactly themixture loss that was analyzed in Section 2.Hence, the bounds of Section 2 can be applied to our current framework. For instance,applying Equation (11), we obtain the following:Theorem 5 For any loss function �, for any set of experts, and for any sequence of outcomes,the expected loss of Hedge(�) if used as described above is at mostTXt=1�(Dt; !t) � mini TXt=1�(E ti ; !t) +q2~L lnN + lnNwhere ~L � T is an assumed bound on the expected loss of the best expert, and � = g(~L= lnN).Example 1. In the k-ary prediction problem, � =
 = f1; 2; : : : ; kg, and �(�; !) is 1 if � 6= !and 0 otherwise. In other words, the problem is to predict a sequence of letters over an alphabetof size k. The loss function � is 1 if a mistake was made, and 0 otherwise. Thus, �(D; !) isthe probability (with respect to D) of a prediction that disagrees with !. The cumulative lossof the learner, or of any expert, is therefore the expected number of mistakes on the entiresequence. So, in this case, Theorem 2 states that the expected number of mistakes of thelearning algorithm will exceed the expected number of mistakes of the best expert by at mostO�pT lnN�, or possibly much less if the loss of the best expert can be bounded ahead of time.Bounds of this type were previously proved in the binary case (k = 2) by Littlestone andWarmuth [20] using the same algorithm. Their algorithm was later improved by Vovk [25] andCesa-Bianchi et al. [4]. The main result of this section is a proof that such bounds can be shownto hold for any bounded loss function. 8

Example 2. The loss function � may represent an arbitrary matrix game, such as \rock, paper,scissors." Here, � =
 = fR; P; Sg, and the loss function is de�ned by the matrix:!R P SR 12 1 0� P 0 12 1S 1 0 12The decision � represents the learner's play, and the outcome ! is the adversary's play; then�(�; !), the learner's loss, is 1 if the learner loses the round, 0 if it wins the round, and 1=2 ifthe round is tied. (For instance, �(S; P) = 0 since \scissors cut paper.") So the cumulative lossof the learner (or an expert) is the expected number of losses in a series of rounds of game play(counting ties as half a loss). Our results show then that, in repeated play, the expected numberof rounds lost by our algorithm will converge quickly to the expected number that would havebeen lost by the best of the experts (for the particular sequence of moves that were actuallyplayed by the adversary).Example 3. Suppose that � and
 are �nite, and that � represents a game matrix as in the lastexample. Suppose further that we create one expert for each decision � 2 � and that expertalways recommends playing �. In game-theoretic terminology such experts would be identi�edwith pure strategies. von Neumann's classical min-max theorem states that for any �xed gamematrix there exists a distribution over the actions, also called a mixed strategy which achievesthe min-max optimal value of the expected loss against any adversarial strategy. This min-maxvalue is also called the value of the game.Suppose that we use algorithm Hedge(�) to choose distributions over the actions whenplaying a matrix game repeatedly. In this case, Theorem 2 implies that the gap between thelearner's average per-round loss can never be much larger than that of the best pure strategy, andthat the maximal gap decreases to zero at the rate O(1=pT log j�j). However, the expected lossof the optimal mixed strategy is a �xed convex combination of the losses of the pure strategies,thus it can never be smaller than the loss of the best pure strategy for a particular sequenceof events. We conclude that the expected per-trial loss of Hedge(�) is upper bounded by thevalue of the game plus O(1=pT log j�j). In other words, the algorithm can never perform muchworse that an algorithm that uses the optimal mixed strategy for the game, and it can be betterif the adversary does not play optimally. Moreover, this holds true even if the learner knowsnothing at all about the game that is being played (so that � is unknown to the learner), andeven if the adversarial opponent has complete knowledge both of the game that is being playedand the algorithm that is being used by the learner. Algorithms with similar properties (butweaker convergence bounds) were �rst devised by Blackwell [2] and Hannan [14]. For moredetails see our related paper [13].Example 4. Suppose that � =
 is the unit ball in Rn, and that �(�; !) = jj� � !jj. Thus,the problem here is to predict the location of a point !, and the loss su�ered is the Euclideandistance between the predicted point � and the actual outcome !. Theorem 2 can be appliedif probabilistic predictions are allowed. However, in this setting it is more natural to requirethat the learner and each expert predict a single point (rather than a measure on the space ofpossible points). Essentially, this is the problem of \tracking" a sequence of points !1; : : : ; !Twhere the loss function measures the distance to the predicted point.9

To see how to handle the problem of �nding deterministic predictions, notice that the lossfunction �(�; !) is convex with respect to �:jj(a�1 + (1� a)�2)� !jj � ajj�1 � !jj+ (1� a)jj�2 � !jj (13)for any a 2 [0; 1] and any ! 2
. Thus we can do as follows. At time t, the learner predicts withthe weighted average of the experts' predictions: �t =PNi=1 pti"ti where "ti 2 Rn is the predictionof the ith expert at time t. Regardless of the outcome !t, Equation (13) implies thatjj�t � !tjj � NXi=1 ptijj"ti � !tjj :Since Theorem 2 provides an upper bound on the right hand side of this inequality, we alsoobtain upper bounds for the left hand side. Thus, our results in this case give explicit boundson the total error (i.e., distance between predicted and observed points) for the learner relativeto the best of a team of experts.In the one-dimensional case (n = 1), this case was previously analyzed by Littlestone andWarmuth [20], and later improved upon by Kivinen and Warmuth [19].This result depends only on the convexity and the bounded range of the loss function �(�; !)with respect to �. Thus, it can also be applied, for example, to the squared-distance loss function�(�; !) = jj� � !jj2, as well as the log loss function �(�; !) = � ln(� � !) used by Cover [6] forthe design of \universal" investment portfolios. (In this last case, � is the set of probabilityvectors on n points, and
 = [1=B;B]n for some constant B > 1.)In many of the cases listed above, superior algorithms or analyses are known. Althoughweaker in speci�c cases, it should be emphasized that our results are far more general, and canbe applied in settings that exhibit considerably less structure, such as the horse-racing exampledescribed in the introduction.4 BoostingIn this section we show how the algorithm presented in Section 2 for the on-line allocationproblem can be modi�ed to boost the performance of weak learning algorithms.We very brie
y review the PAC learning model (see, for instance, Kearns and Vazirani [18]for a more detailed description). Let X be a set called the domain. A concept is a Booleanfunction c : X ! f0; 1g. A concept class C is a collection of concepts. The learner has accessto an oracle which provides labeled examples of the form (x; c(x)) where x is chosen randomlyaccording to some �xed but unknown and arbitrary distribution D on the domain X , andc 2 C is the target concept. After some amount of time, the learner must output a hypothesish : X ! [0; 1]. The value h(x) can be interpreted as a randomized prediction of the label of xthat is 1 with probability h(x) and 0 with probability 1�h(x). (Although we assume here thatwe have direct access to the bias of this prediction, our results can be extended to the case thath is instead a random mapping into f0; 1g.) The error of the hypothesis h is the expected valueEx�D(jh(x) � c(x)j) where x is chosen according to D. If h(x) is interpreted as a stochasticprediction, then this is simply the probability of an incorrect prediction.A strong PAC-learning algorithm is an algorithm that, given �; � > 0 and access to randomexamples, outputs with probability 1�� a hypothesis with error at most �. Further, the runningtime must be polynomial in 1=�, 1=� and other relevant parameters (namely, the \size" of the10

examples received, and the \size" or \complexity" of the target concept). A weak PAC-learningalgorithm satis�es the same conditions but only for � � 1=2�
 where
 > 0 is either a constant,or decreases as 1=p where p is a polynomial in the relevant parameters. We use WeakLearnto denote a generic weak learning algorithm.Schapire [22] showed that any weak learning algorithm can be e�ciently transformed or\boosted" into a strong learning algorithm. Later, Freund [10, 11] presented the \boost-by-majority" algorithm that is considerably more e�cient than Schapire's. Both algorithms workby calling a given weak learning algorithm WeakLearn multiple times, each time presentingit with a di�erent distribution over the domain X , and �nally combining all of the generatedhypotheses into a single hypothesis. The intuitive idea is to alter the distribution over thedomain X in a way that increases the probability of the \harder" parts of the space, thusforcing the weak learner to generate new hypotheses that make less mistakes on these parts.An important, practical de�ciency of the boost-by-majority algorithm is the requirementthat the bias
 of the weak learning algorithm WeakLearn be known ahead of time. Notonly is this worst-case bias usually unknown in practice, but the bias that can be achievedby WeakLearn will typically vary considerably from one distribution to the next. Unfor-tunately, the boost-by-majority algorithm cannot take advantage of hypotheses computed byWeakLearn with error signi�cantly smaller than the presumed worst-case bias of 1=2�
.In this section, we present a new boosting algorithm which was derived from the on-lineallocation algorithm of Section 2. This new algorithm is very nearly as e�cient as boost-by-majority. However, unlike boost-by-majority, the accuracy of the �nal hypothesis produced bythe new algorithm depends on the accuracy of all the hypotheses returned by WeakLearn,and so is able to more fully exploit the power of the weak learning algorithm.Also, this new algorithm gives a clean method for handling real-valued hypotheses whichoften are produced by neural networks and other learning algorithms.4.1 The new boosting algorithmAlthough boosting has its roots in the PAC model, for the remainder of the paper, we adopt amore general learning framework in which the learner receives examples (xi; yi) chosen randomlyaccording to some �xed but unknown distribution P on X � Y , where Y is a set of possiblelabels. As usual, the goal is to learn to predict the label y given an instance x.We start by describing our new boosting algorithm in the simplest case that the label setY consists of just two possible labels, Y = f0; 1g. In later sections, we give extensions of thealgorithm for more general label sets.Freund [11] describes two frameworks in which boosting can be applied: boosting by �lteringand boosting by sampling. In this paper, we use the boosting by sampling framework, whichis the natural framework for analyzing \batch" learning, i.e., learning using a �xed training setwhich is stored in the computer's memory.We assume that a sequence of N training examples (labeled instances) (x1; y1); : : : ; (xN ; yN)is drawn randomly fromX�Y according to distribution P . We use boosting to �nd a hypothesishf which is consistent with most of the sample (i.e., hf (xi) = yi for most 1 � i � N). In general,a hypothesis which is accurate on the training set might not be accurate on examples outsidethe training set; this problem is sometimes referred to as \over-�tting." Often, however, over-�tting can be avoided by restricting the hypothesis to be simple. We will come back to thisproblem in Section 4.3.The new boosting algorithm is described in Figure 2. The goal of the algorithm is to �nd11

a �nal hypothesis with low error relative to a given distribution D over the training examples.Unlike the distribution P which is over X � Y and is set by \nature," the distribution Dis only over the instances in the training set and is controlled by the learner. Ordinarily,this distribution will be set to be uniform so that D(i) = 1=N . The algorithm maintains aset of weights wt over the training examples. On iteration t a distribution pt is computedby normalizing these weights. This distribution is fed to the weak learner WeakLearn whichgenerates a hypothesis ht that (we hope) has small error with respect to the distribution.1 Usingthe new hypothesis ht, the boosting algorithm generates the next weight vector wt+1, and theprocess repeats. After T such iterations, the �nal hypothesis hf is output. The hypothesis hfcombines the outputs of the T weak hypotheses using a weighted majority vote.We call the algorithm AdaBoost because, unlike previous algorithms, it adjusts adaptivelyto the errors of the weak hypotheses returned by WeakLearn. If WeakLearn is a PAC weaklearning algorithm in the sense de�ned above, then �t � 1=2�
 for all t (assuming the exampleshave been generated appropriately with yi = c(xi) for some c 2 C). However, such a bound onthe error need not be known ahead of time. Our results hold for any �t 2 [0; 1], and dependonly on the performance of the weak learner on those distributions that are actually generatedduring the boosting process.The parameter �t is chosen as a function of �t and is used for updating the weight vector.The update rule reduces the probability assigned to those examples on which the hypothesismakes a good prediction and increases the probability of the examples on which the predictionis poor.2Note thatAdaBoost, unlike boost-by-majority, combines the weak hypotheses by summingtheir probabilistic predictions. Drucker, Schapire and Simard [9], in experiments they performedusing boosting to improve the performance of a real-valued neural network, observed that sum-ming the outcomes of the networks and then selecting the best prediction performs better thanselecting the best prediction of each network and then combining them with a majority rule. Itis interesting that the new boosting algorithm's �nal hypothesis uses the same combination rulethat was observed to be better in practice, but which previously lacked theoretical justi�cation.Since it was �rst introduced, several successful experiments have been conducted usingAdaBoost, including work by the authors [12], Drucker and Cortes [8], Jackson and Craven [16],Quinlan [21], and Breiman [3].4.2 AnalysisComparing Figures 1 and 2, there is an obvious similarity between the algorithms Hedge(�)and AdaBoost. This similarity re
ects a surprising \dual" relationship between the on-lineallocation model and the problem of boosting. Put another way, there is a direct mappingor reduction of the boosting problem to the on-line allocation problem. In such a reduction,one might naturally expect a correspondence relating the strategies to the weak hypothesesand the trials (and associated loss vectors) to the examples in the training set. However, thereduction we have used is reversed: the \strategies" correspond to the examples, and the trials1Some learning algorithms can be generalized to use a given distribution directly. For instance, gradient basedalgorithms can use the probability associated with each example to scale the update step size which is basedon the example. If the algorithm cannot be generalized in this way, the training sample can be re-sampled togenerate a new set of training examples that is distributed according to the given distribution. The computationrequired to generate each re-sampled example takes O(logN) time.2Furthermore, if ht is Boolean (with range f0; 1g), then it can be shown that this update rule exactly removesthe advantage of the last hypothesis. That is, the error of ht on distribution pt+1 is exactly 1=2.12

Algorithm AdaBoostInput: sequence of N labeled examples h(x1; y1); : : : ; (xN ; yN)idistribution D over the N examplesweak learning algorithm WeakLearninteger T specifying number of iterationsInitialize the weight vector: w1i = D(i) for i = 1; : : : ; N .Do for t = 1; 2; : : : ; T1. Set pt = wtPNi=1 wti2. Call WeakLearn, providing it with the distribution pt; get back a hypothesis ht : X ![0; 1].3. Calculate the error of ht: �t =PNi=1 ptijht(xi)� yij.4. Set �t = �t=(1� �t).5. Set the new weights vector to bewt+1i = wti�1�jht(xi)�yijtOutput the hypothesishf (x) = � 1 if PTt=1 �log 1�t�ht(x) � 12PTt=1 log 1�t0 otherwise :Figure 2: The adaptive boosting algorithm.
13

are associated with the weak hypotheses. Another reversal is in the de�nition of the loss: inHedge(�) the loss `ti is small if the ith strategy suggests a good action on the tth trial whilein AdaBoost the \loss" `ti = 1� jht(xi) � yij appearing in the weight-update rule (Step 5) issmall if the tth hypothesis suggests a bad prediction on the ith example. The reason is that inHedge(�) the weight associated with a strategy is increased if the strategy is successful whilein AdaBoost the weight associated with an example is increased if the example is \hard."The main technical di�erence between the two algorithms is that in AdaBoost the param-eter � is no longer �xed ahead of time but rather changes at each iteration according to �t. If weare given ahead of time the information that �t � 1=2�
 for some
 > 0 and for all t = 1; : : : ; T ,then we could instead directly apply algorithm Hedge(�) and its analysis as follows: Fix � tobe 1�
, and set `ti = 1�jht(xi)� yij, and hf as in AdaBoost, but with equal weight assignedto all T hypotheses. Then pt � `t is exactly the accuracy of ht on distribution pt, which, byassumption, is at least 1=2+
. Also, letting S = fi : hf (xi) 6= yig, it is straightforward to showthat if i 2 S thenLiT = 1T TXt=1 `ti = 1� 1T TXt=1 jyi � ht(xi)j = 1� �����yi � 1T TXt=1 ht(xi)����� � 1=2by hf 's de�nition, and since yi 2 f0; 1g. Thus, by Theorem 2,T � (1=2 +
) � TXt=1pt � `t � � ln(Pi2S D(i)) + (
 +
2)(T=2)
since � ln(�) = � ln(1�
) �
+
2 for
 2 [0; 1=2]. This implies that the error � =Pi2S D(i)of hf is at most e�T
2=2.The boosting algorithm AdaBoost has two advantages over this direct application ofHedge(�). First, by giving a more re�ned analysis and choice of �, we obtain a signi�cantlysuperior bound on the error �. Second, the algorithm does not require prior knowledge of theaccuracy of the hypotheses that WeakLearn will generate. Instead, it measures the accuracyof ht at each iteration and sets its parameters accordingly. The update factor �t decreases with�t which causes the di�erence between the distributions pt and pt+1 to increase. Decreasing �talso increases the weight ln(1=�t) which is associated with ht in the �nal hypothesis. This makesintuitive sense: more accurate hypotheses cause larger changes in the generated distributionsand have more in
uence on the outcome of the �nal hypothesis.We now give our analysis of the performance of AdaBoost. Note that this theorem appliesalso if, for some hypotheses, �t � 1=2.Theorem 6 Suppose the weak learning algorithm WeakLearn, when called by AdaBoost,generates hypotheses with errors �1; : : : ; �T (as de�ned in Step 3 of Figure 2.) Then the error� = Pri�D [hf (xi) 6= yi] of the �nal hypothesis hf output by AdaBoost is bounded above by� � 2T TYt=1q�t(1� �t): (14)Proof: We adapt the main arguments from Lemma 1 and Theorem 2. We use pt and wt asthey are de�ned in Figure 2. 14

Similar to Equation (4), the update rule given in Step 5 in Figure 2 implies thatNXi=1wt+1i = NXi=1wti�1�jht(xi)�yi jt � NXi=1wti(1�(1��t)(1� jht(xi)� yij)) = NXi=1wti! (1� (1� �t)(1� �t)) :(15)Combining this inequality over t = 1; : : : ; T , we get thatNXi=1wT+1i � TYt=1 (1� (1� �t)(1� �t)) : (16)The �nal hypothesis hf , as de�ned in Figure 2, makes a mistake on instance i only ifTYt=1��jht(xi)�yijt � TYt=1�t!�1=2 (17)(since yi 2 f0; 1g). The �nal weight of any instance i iswT+1i = D(i) TYt=1 �1�jht(xi)�yi jt : (18)Combining Equations (17) and (18) we can lower bound the sum of the �nal weights by thesum of the �nal weights of the examples on which hf is incorrect:NXi=1 wT+1i � Xi:hf (xi)6=yi wT+1i � 0@ Xi:hf (xi)6=yiD(i)1A TYt=1 �t!1=2 = � � TYt=1�t!1=2 (19)where � is the error of hf . Combining Equations (16) and (19), we get that� � TYt=1 1� (1� �t)(1� �t)p�t : (20)As all the factors in the product are positive, we can minimize the right hand side by minimizingeach factor separately. Setting the derivative of the tth factor to zero, we �nd that the choiceof �t which minimizes the right hand side is �t = �t=(1 � �t). Plugging this choice of �t intoEquation (20) we get Equation (14), completing the proof.The bound on the error given in Theorem 6, can also be written in the form� � TYt=1q1� 4
2t = exp � TXt=1KL(1=2 jj 1=2�
t)! � exp �2 TXt=1
2t! (21)where KL(a jj b) = a ln(a=b)+(1�a) ln((1� a)=(1� b)) is the Kullback-Leibler divergence, andwhere �t has been replaced by 1=2�
t. In the case where the errors of all the hypotheses areequal to 1=2�
, Equation (21) simpli�es to� � �1� 4
2�T=2 = exp (�T �KL(1=2 jj 1=2�
)) � exp ��2T
2�: (22)This is a form of the Cherno� bound for the probability that less than T=2 coin
ips turn out\heads" in T tosses of a random coin whose probability for \heads" is 1=2 �
. This bound15

has the same asymptotic behavior as the bound given for the boost-by-majority algorithm [11].From Equation (22) we get that the number of iterations of the boosting algorithm that issu�cient to achieve error � of hf isT = � 1KL(1=2 jj 1=2�
) ln 1� � � � 12
2 ln 1� � : (23)Note, however, that when the errors of the hypotheses generated by WeakLearn are notuniform, Theorem 6 implies that the �nal error depends on the error of all of the weak hypothe-ses. Previous bounds on the errors of boosting algorithms depended only on the maximal errorof the weakest hypothesis and ignored the advantage that can be gained from the hypotheseswhose errors are smaller. This advantage seems to be very relevant to practical applicationsof boosting, because there one expects the error of the learning algorithm to increase as thedistributions fed to WeakLearn shift more and more away from the target distribution.4.3 Generalization errorWe now come back to discussing the error of the �nal hypothesis outside the training set.Theorem 6 guarantees that the error of hf on the sample is small; however, the quantity thatinterests us is the generalization error of hf , which is the error of hf over the whole instancespace X ; that is, �g = Pr(x;y)�P [hf (x) 6= y]. In order to make �g close to the empirical error�̂ on the training set, we have to restrict the choice of hf in some way. One natural way ofdoing this in the context of boosting is to restrict the weak learner to choose its hypothesesfrom some simple class of functions and restrict T , the number of weak hypotheses that arecombined to make hf . The choice of the class of weak hypotheses is speci�c to the learningproblem at hand and should re
ect our knowledge about the properties of the unknown concept.As for the choice of T , various general methods can be devised. One popular method is to usean upper bound on the VC-dimension of the concept class. This method is sometimes called\structural risk minimization." See Vapnik's book [23] for an extensive discussion of the theoryof structural risk minimization. For our purposes, we quote Vapnik's Theorem 6.7:Theorem 7 (Vapnik) Let H be a class of binary functions over some domain X. Let d bethe VC-dimension of H. Let P be a distribution over the pairs X � f0; 1g. For h 2 H, de�nethe (generalization) error of h with respect to P to be�g(h) := Pr(x;y)�P [h(x) 6= y]:Let S = f(x1; y1); : : : ; (xN ; yN)g be a sample (training set) of N independent random examplesdrawn from X�f0; 1g according to P. De�ne the empirical error of h with respect to the sampleS to be �̂(h) := jfi : h(xi) 6= yigjN :Then, for any � > 0 we have thatPr 26649h 2 H : j�̂(h)� �g(h)j > 2vuutd �ln 2Nd + 1�+ ln 9�N 3775 � �where the probability is computed with respect to the random choice of the sample S.16

Let � : R! f0; 1g be de�ned by �(x) = � 1 if x � 00 otherwiseand, for any class H of functions, let �T (H) be the class of all functions de�ned as a linearthreshold of T functions in H :�T (H) = (� TXt=1 atht � b! : b; a1; : : : ; aT 2 R; h1; : : : ; hT 2 H) :Clearly, if all hypotheses generated by WeakLearn belong to some class H , then the �nalhypothesis of AdaBoost, after T rounds of boosting, belongs to �T (H). Thus, the nexttheorem provides an upper bound on the VC-dimension of the class of �nal hypotheses generatedby AdaBoost in terms of the weak hypothesis class.Theorem 8 Let H be a class of binary functions of VC-dimension d � 2. Then the VC-dimension of �T (H) is at most 2(d+1)(T+1) log2(e(T +1)) (where e is the base of the naturallogarithm.)Therefore, if the hypotheses generated by WeakLearn are chosen from a class of VC-dimension d � 2, then the �nal hypotheses generated by AdaBoost after T iterations belongto a class of VC-dimension at most 2(d+ 1)(T + 1) log2[e(T + 1)].Proof: We use a result about the VC-dimension of computation networks proved by Baumand Haussler [1]. We can view the �nal hypothesis output by AdaBoost as a function that iscomputed by a two-layer feed-forward network where the computation units of the �rst layerare the weak hypotheses and the computation unit of the second layer is the linear thresholdfunction which combines the weak hypotheses. The VC-dimension of the set of linear thresholdfunctions over RT is T +1 [26]. Thus the sum over all computation units of the VC-dimensionsof the classes of functions associated with each unit is Td+(T +1) < (T +1)(d+1). Baum andHaussler's Theorem 1 [1] implies that the number of di�erent functions that can be realizedby h 2 �T (H) when the domain is restricted to a set of size m is at most ((T + 1)em=(T +1)(d + 1))(T+1)(d+1). If d � 2, T � 1 and we set m = d2(T + 1)(d+ 1) log2[e(T + 1)]e, thenthe number of realizable functions is smaller than 2m which implies that the VC-dimension of�T (H) is smaller than m.Following the guidelines of structural risk minimization we can do the following (assumingwe know a reasonable upper bound on the VC-dimension of the class of weak hypotheses). LethTf be the hypothesis generated by running AdaBoost for T iterations. By combining theobserved empirical error of hTf with the bounds given in Theorems 7 and 8, we can compute anupper bound on the generalization error of hTf for all T . We would then select the hypothesishTf that minimizes the guaranteed upper bound.While structural risk minimization is a mathematically sound method, the upper bounds on�g that are generated in this way might be larger than the actual value and so the chosen numberof iterations T might be much smaller than the optimal value, leading to inferior performance. Asimple alternative is to use \cross-validation" in which a fraction of the training set is left outsidethe set used to generate hf as the so-called \validation" set. The value of T is then chosen tobe the one for which the error of the �nal hypothesis on the validation set is minimized. (Foran extensive analysis of the relations between di�erent methods for selecting model complexityin learning, see Kearns et al. [17].) 17

Some initial experiments using AdaBoost on real-world problems conducted by ourselvesand Drucker and Cortes [8] indicate that AdaBoost tends not to over-�t; on many problems,even after hundreds of rounds of boosting, the generalization error continues to drop, or at leastdoes not increase.4.4 A Bayesian interpretationThe �nal hypothesis generated by AdaBoost is closely related to one suggested by a Bayesiananalysis. As usual, we assume that examples (x; y) are being generated according to somedistribution P on X � f0; 1g; all probabilities in this subsection are taken with respect toP . Suppose we are given a set of f0; 1g-valued hypotheses h1; : : : ; hT and that our goal is tocombine the predictions of these hypotheses in the optimal way. Then, given an instance x andthe hypothesis predictions ht(x), the Bayes optimal decision rule says that we should predictthe label with the highest likelihood, given the hypothesis values, i.e., we should predict 1 ifPr [y = 1 j h1(x); : : : ; hT(x)] > Pr [y = 0 j h1(x); : : : ; hT (x)];and otherwise we should predict 0.This rule is especially easy to compute if we assume that the errors of the di�erent hypothesesare independent of one another and of the target concept, that is, if we assume that the eventht(x) 6= y is conditionally independent of the actual label y and the predictions of all the otherhypotheses h1(x); : : : ; ht�1(x); ht+1(x); : : : ; hT (x). In this case, by applying Bayes rule, we canrewrite the Bayes optimal decision rule in a particularly simple form in which we predict 1 ifPr [y = 1] Yt:ht(x)=0 �t Yt:ht(x)=1(1� �t) > Pr [y = 0] Yt:ht(x)=0(1� �t) Yt:ht(x)=1 �t;and 0 otherwise. Here �t = Pr [ht(x) 6= y]. We add to the set of hypotheses the trivial hypothesish0 which always predicts the value 1. We can then replace Pr [y = 0] by �0. Taking the logarithmof both sides in this inequality and rearranging the terms, we �nd that the Bayes optimaldecision rule is identical to the combination rule that is generated by AdaBoost.If the errors of the di�erent hypotheses are dependent, then the Bayes optimal decisionrule becomes much more complicated. However, in practice, it is common to use the simplerule described above even when there is no justi�cation for assuming independence. (This issometimes called \naive Bayes.") An interesting and more principled alternative to this practicewould be to use the algorithm AdaBoost to �nd a combination rule which, by Theorem 6, hasa guaranteed non-trivial accuracy.4.5 Improving the error boundWe show in this section how the bound given in Theorem 6 can be improved by a factor of two.The main idea of this improvement is to replace the \hard" f0; 1g-valued decision used by hfby a \soft" threshold.To be more precise, let r(xi) = PTt=1 �log 1�t�ht(xi)PTt=1 log 1�tbe a weighted average of the weak hypotheses ht. We will here consider �nal hypotheses ofthe form hf (xi) = F (r(xi)) where F : [0; 1] ! [0; 1]. For the version of AdaBoost given in18

Figure 2, F (r) is the hard threshold that equals 1 if r � 1=2 and 0 otherwise. In this section,we will instead use soft threshold functions that take values in [0; 1]. As mentioned above, whenhf (xi) 2 [0; 1], we can interpret hf as a randomized hypothesis and hf (xi) as the probabilityof predicting 1. Then the error Ei�D[jhf(xi) � yij] is simply the probability of an incorrectprediction.Theorem 9 Let �1; : : : ; �T be as in Theorem 6, and let r(xi) be as de�ned above. Let themodi�ed �nal hypothesis be de�ned by hf = F (r(xi)) where F satis�es the following for r 2 [0; 1]:F (1� r) = 1� F (r); and F (r) � 12 TYt=1 �t!1=2�r:Then the error � of hf is bounded above by� � 2T�1 TYt=1q�t(1� �t):For instance, it can be shown that the sigmoid function F (r) = �1 +QTt=1 �2r�1t ��1 satis�esthe conditions of the theorem.Proof: By our assumptions on F , the error of hf is� = NXi=1D(i) � jF (r(xi))� yij= NXi=1D(i)F (jr(xi)� yij)� 12 NXi=1 D(i) TYt=1 �1=2�jr(xi)�yijt !:Since yi 2 f0; 1g and by de�nition of r(xi), this implies that� � 12 NXi=1 D(i) TYt=1�1=2�jht(xi)�yijt != 12 NXi=1wT+1i ! TYt=1 ��1=2t� 12 TYt=1 �(1� (1� �t)(1� �t))��1=2t �:The last two steps follow from Equations (18) and (16), respectively. The theorem now followsfrom our choice of �t.5 Boosting for multi-class and regression problemsSo far, we have restricted our attention to binary classi�cation problems in which the set oflabels Y contains only two elements. In this section, we describe two possible extensions of19

AdaBoost to the multi-class case in which Y is any �nite set of class labels. We also give anextension for a regression problem in which Y is a real bounded interval.We start with the multiple-label classi�cation problem. Let Y = f1; 2; : : : ; kg be the set ofpossible labels. The boosting algorithms we present output hypotheses hf : X ! Y , and theerror of the �nal hypothesis is measured in the usual way as the probability of an incorrectprediction.The �rst extension of AdaBoost, which we call AdaBoost.M1, is the most direct. Theweak learner generates hypotheses which assign to each instance one of the k possible labels.We require that each weak hypothesis have prediction error less than 1=2 (with respect to thedistribution on which it was trained). Provided this requirement can be met, we are able provethat the error of the combined �nal hypothesis decreases exponentially, as in the binary case.Intuitively, however, this requirement on the performance of the weak learner is stronger thanmight be desired. In the binary case (k = 2), a random guess will be correct with probability1=2, but when k > 2, the probability of a correct random prediction is only 1=k < 1=2. Thus,our requirement that the accuracy of the weak hypothesis be greater than 1=2 is signi�cantlystronger than simply requiring that the weak hypothesis perform better than random guessing.In fact, when the performance of the weak learner is measured only in terms of error rate,this di�culty is unavoidable as is shown by the following informal example (also presented bySchapire [22]): Consider a learning problem where Y = f0; 1; 2g and suppose that it is \easy"to predict whether the label is 2 but \hard" to predict whether the label is 0 or 1. Then ahypothesis which predicts correctly whenever the label is 2 and otherwise guesses randomlybetween 0 and 1 is guaranteed to be correct at least half of the time (signi�cantly beatingthe 1=3 accuracy achieved by guessing entirely at random). On the other hand, boosting thislearner to an arbitrary accuracy is infeasible since we assumed that it is hard to distinguish 0-and 1-labeled instances.As a more natural example of this problem, consider classi�cation of handwritten digits inan OCR application. It may be easy for the weak learner to tell that a particular image of a\7" is not a \0" but hard to tell for sure if it is a \7" or a \9". Part of the problem here isthat, although the boosting algorithm can focus the attention of the weak learner on the harderexamples, it has no way of forcing the weak learner to discriminate between particular labelsthat may be especially hard to distinguish.In our second version of multi-class boosting, we attempt to overcome this di�culty byextending the communication between the boosting algorithm and the weak learner. First,we allow the weak learner to generate more expressive hypotheses whose output is a vector in[0; 1]k, rather than a single label in Y . Intuitively, the yth component of this vector representsa \degree of belief" that the correct label is y. The components with large values (close to 1)correspond to those labels considered to be plausible. Likewise, labels considered implausibleare assigned a small value (near 0), and questionable labels may be assigned a value near 1=2.If several labels are considered plausible (or implausible), then they all may be assigned large(or small) values.While we give the weak learning algorithm more expressive power, we also place a morecomplex requirement on the performance of the weak hypotheses. Rather than using the usualprediction error, we ask that the weak hypotheses do well with respect to a more sophisticatederror measure that we call the pseudo-loss. This pseudo-loss varies from example to example,and from one round to the next. On each iteration, the pseudo-loss function is supplied tothe weak learner by the boosting algorithm, along with the distribution on the examples. Bymanipulating the pseudo-loss function, the boosting algorithm can focus the weak learner on20

the labels that are hardest to discriminate. The boosting algorithm AdaBoost.M2, describedin Section 5.2, is based on these ideas and achieves boosting if each weak hypothesis has pseudo-loss slightly better than random guessing (with respect to the pseudo-loss measure that wassupplied to the weak learner).In addition to the two extensions described in this paper, we mention an alternative, stan-dard approach which would be to convert the given multi-class problem into several binaryproblems, and then to use boosting separately on each of the binary problems. There areseveral standard ways of making such a conversion, one of the most successful being the error-correcting output coding approach advocated by Dietterich and Bakiri [7].Finally, in Section 5.3 we extend AdaBoost to boosting regression algorithms. In thiscase Y = [0; 1], and the error of a hypothesis is de�ned as E(x;y)�P �(h(x)� y)2�. We de-scribe a boosting algorithm AdaBoost.R which, using methods similar to those used inAdaBoost.M2, boosts the performance of a weak regression algorithm.5.1 First multi-class extensionIn our �rst and most direct extension to the multi-class case, the goal of the weak learner is togenerate on round t a hypothesis ht : X ! Y with low classi�cation error �t := Pri�pt [ht(xi) 6= yi].Our extended boosting algorithm, called AdaBoost.M1, is shown in Figure 3, and di�ers onlyslightly from AdaBoost. The main di�erence is in the replacement of the error jht(xi) � yijfor the binary case by [[ht(xi) 6= yi]] where, for any predicate �, we de�ne [[�]] to be 1 if � holdsand 0 otherwise. Also, the �nal hypothesis hf , for a given instance x, now outputs the label ythat maximizes the sum of the weights of the weak hypotheses predicting that label.In the case of binary classi�cation (k = 2), a weak hypothesis h with error signi�cantlylarger than 1=2 is of equal value to one with error signi�cantly less than 1=2 since h can bereplaced by 1 � h. However, for k > 2, a hypothesis ht with error �t � 1=2 is useless to theboosting algorithm. If such a weak hypothesis is returned by the weak learner, our algorithmsimply halts, using only the weak hypotheses that were already computed.Theorem 10 Suppose the weak learning algorithmWeakLearn, when called byAdaBoost.M1,generates hypotheses with errors �1; : : : ; �T , where �t is as de�ned in Figure 3. Assume each �t �1=2. Then the error � = Pri�D [hf (xi) 6= yi] of the �nal hypothesis hf output by AdaBoost.M1is bounded above by � � 2T TYt=1q�t(1� �t):Proof: To prove this theorem, we reduce our setup for AdaBoost.M1 to an instantiationof AdaBoost, and then apply Theorem 6. For clarity, we mark with tildes variables in thereduced AdaBoost space. For each of the given examples (xi; yi), we de�ne an AdaBoostexample (~xi; ~yi) in which ~xi = i and ~yi = 0. We de�ne the AdaBoost distribution ~D overexamples to be equal to the AdaBoost.M1 distribution D. On the tth round, we provideAdaBoost with a hypothesis ~ht de�ned by the rule~ht(i) = [[ht(xi) 6= yi]]in terms of the tth hypothesis ht which was returned to AdaBoost.M1 by WeakLearn.Given this setup, it can be easily proved by induction on the number of rounds that theweight vectors, distributions and errors computed by AdaBoost and AdaBoost.M1 are iden-tical so that ~wt = wt, ~pt = pt, ~�t = �t and ~�t = �t.21

Algorithm AdaBoost.M1Input: sequence of N examples h(x1; y1); : : : ; (xN ; yN)i with labels yi 2 Y = f1; : : : ; kgdistribution D over the examplesweak learning algorithm WeakLearninteger T specifying number of iterationsInitialize the weight vector: w1i = D(i) for i = 1; : : : ; N .Do for t = 1; 2; : : : ; T1. Set pt = wtPNi=1 wti2. CallWeakLearn, providing it with the distribution pt; get back a hypothesis ht : X ! Y .3. Calculate the error of ht: �t =PNi=1 pti[[ht(xi) 6= yi]].If �t > 1=2, then set T = t � 1 and abort loop.4. Set �t = �t=(1� �t).5. Set the new weights vector to bewt+1i = wti�1�[[ht(xi)6=yi]]tOutput the hypothesis hf (x) = argmaxy2Y TXt=1�log 1�t�[[ht(x) = y]]:Figure 3: A �rst multi-class extension of AdaBoost.
22

Suppose that AdaBoost.M1's �nal hypothesis hf makes a mistake on instance i so thathf (xi) 6= yi. Then, by de�nition of hf ,TXt=1�t[[ht(xi) = yi]] � TXt=1 �t[[ht(xi) = hf (xi)]]where �t = ln(1=�t). This impliesTXt=1 �t[[ht(xi) = yi]] � 12 TXt=1�t;using the fact that each �t � 0 since �t � 1=2. By de�nition of ~ht, this impliesTXt=1 �t~ht(i) � 12 TXt=1�t;so ~hf (i) = 1 by de�nition of the �nal AdaBoost hypothesis.Therefore, Pri�D [hf(xi) 6= yi] � Pri�D h~hf (i) = 1i:Since each AdaBoost instance has a 0-label, Pri�D h~hf (i) = 1i is exactly the error of ~hf .Applying Theorem 6, we can obtain a bound on this error, completing the proof.It is possible, for this version of the boosting algorithm, to allow hypotheses which generatefor each x, not only a predicted class label h(x) 2 Y , but also a \con�dence" �(x) 2 [0; 1]. Thelearner then su�ers loss 1=2 � �(x)=2 if its prediction is correct and 1=2 + �(x)=2 otherwise.(Details omitted.)5.2 Second multi-class extensionIn this section we describe a second alternative extension of AdaBoost to the case where thelabel space Y is �nite. This extension requires more elaborate communication between theboosting algorithm and the weak learning algorithm. The advantage of doing this is that itgives the weak learner more
exibility in making its predictions. In particular, it sometimesenables the weak learner to make useful contributions to the accuracy of the �nal hypothesiseven when the weak hypothesis does not predict the correct label with probability greater than1=2.As described above, the weak learner generates hypotheses which have the form h : X�Y ![0; 1]. Roughly speaking, h(x; y) measures the degree to which it is believed that y is thecorrect label associated with instance x. If, for a given x, h(x; y) attains the same value forall y then we say that the hypothesis is uninformative on instance x. On the other hand, anydeviation from strict equality is potentially informative, because it predicts some labels to bemore plausible than others. As will be seen, any such information is potentially useful for theboosting algorithm.Below, we formalize the goal of the weak learner by de�ning a pseudo-loss which measuresthe goodness of the weak hypotheses. To motivate our de�nition, we �rst consider the followingsetup. For a �xed training example (xi; yi), we use a given hypothesis h to answer k� 1 binaryquestions. For each of the incorrect labels y 6= yi we ask the question:23

\Which is the label of xi: yi or y?"In other words, we ask that the correct label yi be discriminated from the incorrect label y.Assume momentarily that h only takes values in f0; 1g. Then if h(xi; y) = 0 and h(xi; yi) =1, we interpret h's answer to the question above to be yi (since h deems yi to be a plausiblelabel for xi, but y is considered implausible). Likewise, if h(xi; y) = 1 and h(xi; yi) = 0 then theanswer is y. If h(xi; y) = h(xi; yi), then one of the two answers is chosen uniformly at random.In the more general case that h takes values in [0; 1], we interpret h(x; y) as a randomizeddecision for the procedure above. That is, we �rst choose a random bit b(x; y) which is 1 withprobability h(x; y) and 0 otherwise. We then apply the above procedure to the stochasticallychosen binary function b. The probability of choosing the incorrect answer y to the questionabove isPr [b(xi; yi) = 0 ^ b(xi; y) = 1] + 12Pr [b(xi; yi) = b(xi; y)] = 12(1� h(xi; yi) + h(xi; y)):If the answers to all k � 1 questions are considered equally important, then it is natural tode�ne the loss of the hypothesis to be the average, over all k � 1 questions, of the probabilityof an incorrect answer:1k � 1 Xy 6=yi 12(1� h(xi; yi) + h(xi; y)) = 12 0@1� h(xi; yi) + 1k � 1 Xy 6=yi h(xi; y)1A : (24)However, as was discussed in the introduction to Section 5, di�erent discrimination questionsare likely to have di�erent importance in di�erent situations. For example, considering theOCR problem described earlier, it might be that at some point during the boosting process,some example of the digit \7" has been recognized as being either a \7" or a \9". At this stagethe question that discriminates between \7" (the correct label) and \9" is clearly much moreimportant than the other eight questions that discriminate \7" from the other digits.A natural way of attaching di�erent degrees of importance to the di�erent questions is toassign a weight to each question. So, for each instance xi and incorrect label y 6= yi, we assign aweight q(i; y) which we associate with the question that discriminates label y from the correctlabel yi. We then replace the average used in Equation (24) with an average weighted accordingto q(i; y); the resulting formula is called the pseudo-loss of h on training instance i with respectto q: plossq(h; i) := 120@1� h(xi; yi) + Xy 6=yi q(i; y)h(xi; y)1A:The function q : f1; : : : ; Ng � Y ! [0; 1], called the label weighting function, assigns to eachexample i in the training set a probability distribution over the k � 1 discrimination problemsde�ned above. So, for all i, Xy 6=yi q(i; y) = 1:The weak learner's goal is to minimize the expected pseudo-loss for given distribution D andweighting function q: plossD;q(h) := Ei�D hplossq(h; i)i:As we have seen, by manipulating both the distribution on instances, and the label weightingfunction q, our boosting algorithm e�ectively forces the weak learner to focus not only on the24

hard instances, but also on the incorrect class labels that are hardest to eliminate. Conversely,this pseudo-loss measure may make it easier for the weak learner to get a weak advantage. Forinstance, if the weak learner can simply determine that a particular instance does not belongto a certain class (even if it has no idea which of the remaining classes is the correct one), then,depending on q, this may be enough to gain a weak advantage.Theorem 11, the main result of this section, shows that a weak learner can be boosted ifit can consistently produce weak hypotheses with pseudo-losses smaller than 1=2. Note thatpseudo-loss 1=2 can be achieved trivially by any uninformative hypothesis. Furthermore, a weakhypothesis h with pseudo-loss � > 1=2 is also bene�cial to boosting since it can be replaced bythe hypothesis 1� h whose pseudo-loss is 1� � < 1=2.Example 5. As a simple example illustrating the use of pseudo-loss, suppose we seek an obliviousweak hypothesis, i.e., a weak hypothesis whose value depends only on the class label y so thath(x; y) = h(y) for all x. Although oblivious hypotheses per se are generally too weak to beof interest, it may often be appropriate to �nd the best oblivious hypothesis on a part of theinstance space (such as the set of instances covered by a leaf of a decision tree).Let D be the target distribution, and q the label weighting function. For notational conve-nience, let us de�ne q(i; yi) = �1 for all i so thatplossq(h; i) = 120@1 + Xy2Y q(i; y)h(xi; y)1A:Setting �(y) =PiD(i)q(i; y), it can be veri�ed that for an oblivious hypothesis h,plossD;q(h) = 120@1 + Xy2Y h(y)�(y)1A;which is clearly minimized by the choiceh(y) = (1 if �(y) < 00 otherwise.Suppose now that q(i; y) = 1=(k � 1) for y 6= yi, and let d(y) = Pri�D [yi = y] be theproportion of examples with label y. Then it can be veri�ed that h will always have pseudo-lossstrictly smaller than 1=2 except in the case of a uniform distribution of labels (d(y) = 1=kfor all y). In contrast, when the weak learner's goal is minimization of prediction error (as inSection 5.1), it can be shown that an oblivious hypothesis with prediction error strictly less than1=2 can only be found when one label y covers more than 1=2 the distribution (d(y) > 1=2).So in this case, it is much easier to �nd a hypothesis with small pseudo-loss rather than smallprediction error.On the other hand, if q(i; y) = 0 for some values of y, then the quality of prediction onthese labels is of no consequence. In particular, if q(i; y) = 0 for all but one incorrect label foreach instance i, then in order to make the pseudo-loss smaller than 1=2 the hypothesis has topredict the correct label with probability larger than 1=2, which means that in this case thepseudo-loss criterion is as stringent as the usual prediction error. However, as discussed above,this case is unavoidable because a hard binary classi�cation problem can always be embeddedin a multi-class problem. 25

This example suggests that it may often be signi�cantly easier to �nd weak hypotheseswith small pseudo-loss rather than hypotheses whose prediction error is small. On the otherhand, our theoretical bound for boosting using the prediction error (Theorem 10) is strongerthan the bound for ploss (Theorem 11). Empirical tests [12] have shown that pseudo-loss isgenerally more successful when the weak learners use very restricted hypotheses. However, formore powerful weak learners, such as decision-tree learning algorithms, there is little di�erencebetween using pseudo-loss and prediction error.Our algorithm, called AdaBoost.M2, is shown in Figure 4. Here, we maintain weights wti;yfor each instance i and each label y 2 Y � fyig. The weak learner must be provided both witha distribution Dt and a label weight function qt. Both of these are computed using the weightvector wt as shown in Step 1. The weak learner's goal then is to minimize the pseudo-loss�t, as de�ned in Step 3. The weights are updated as shown in Step 5. The �nal hypothesishf outputs, for a given instance x, the label y that maximizes a weighted average of the weakhypothesis values ht(x; y).Theorem 11 Suppose the weak learning algorithmWeakLearn, when called byAdaBoost.M2generates hypotheses with pseudo-losses �1; : : : ; �T , where �t is as de�ned in Figure 4. Then theerror � = Pri�D [hf (i) 6= yi] of the �nal hypothesis hf output by AdaBoost.M2 is boundedabove by � � (k � 1)2T TYt=1q�t(1� �t):Proof: As in the proof of Theorem 10, we reduce to an instance of AdaBoost and applyTheorem 6. As before, we mark AdaBoost variables with a tilde.For each training instance (xi; yi) and for each incorrect label y 2 Y � fyig, we de�ne oneAdaBoost instance ~xi;y = (i; y) with associated label ~yi;y = 0. Thus, there are ~N = N(k � 1)AdaBoost instances, each indexed by a pair (i; y). The distribution over these instances isde�ned to be ~D(i; y) = D(i)=(k � 1). The tth hypothesis ~ht provided to AdaBoost for thisreduction is de�ned by the rule~ht(i; y) = 12(1� ht(xi; yi) + ht(xi; y)):With this setup, it can be veri�ed that the computed distributions and errors will be identicalso that ~wti;y = wti;y , ~pti;y = pti;y , ~�t = �t and ~�t = �t.Suppose now that hf(xi) 6= yi for some example i. Then, by de�nition of hf ,TXt=1 �tht(xi; yi) � TXt=1 �tht(xi; hf(xi));where �t = ln(1=�t). This implies thatTXt=1 �t~ht(i; hf(xi)) = 12 TXt=1 �t(1� ht(xi; yi) + ht(xi; hf(xi))) � 12 TXt=1 �tso ~hf (i; hf(xi)) = 1 by de�nition of ~hf .Therefore, Pri�D [hf (xi) 6= yi] � Pri�D h9y 6= yi : ~hf (i; y) = 1i:26

Algorithm AdaBoost.M2Input: sequence of N examples h(x1; y1); : : : ; (xN ; yN)i with labels yi 2 Y = f1; : : : ; kgdistribution D over the examplesweak learning algorithm WeakLearninteger T specifying number of iterationsInitialize the weight vector: w1i;y = D(i)=(k � 1) for i = 1; : : : ; N , y 2 Y � fyig.Do for t = 1; 2; : : : ; T1. Set W ti =Py 6=yi wti;y; qt(i; y) = wti;yW tifor y 6= yi; and set Dt(i) = W tiPNi=1W ti :2. Call WeakLearn, providing it with the distribution Dt and label weighting function qt;get back a hypothesis ht : X � Y ! [0; 1].3. Calculate the pseudo-loss of ht:�t = 12 NXi=1Dt(i)0@1� ht(xi; yi) + Xy 6=yi qt(i; y)ht(xi; y)1A:4. Set �t = �t=(1� �t).5. Set the new weights vector to bewt+1i;y = wti;y�(1=2)(1+ht(xi;yi)�ht(xi;y))tfor i = 1; : : : ; N , y 2 Y � fyig.Output the hypothesis hf(x) = argmaxy2Y TXt=1�log 1�t�ht(x; y):Figure 4: A second multi-class extension of AdaBoost.27

Since all AdaBoost instances have a 0-label, and by de�nition of ~D, the error of ~hf isPr(i;y)� ~D h~hf (i; y) = 1i � 1k � 1Pri�D h9y 6= yi : ~hf (i; y) = 1i:Applying Theorem 6 to bound the error of ~hf , this completes the proof.Although we omit the details, the bound for AdaBoost.M2 can be improved by a factorof two in a manner similar to that described in Section 4.5.5.3 Boosting regression algorithmsIn this section we show how boosting can be used for a regression problem. In this setting,the label space is Y = [0; 1]. As before, the learner receives examples (x; y) chosen at randomaccording to some distribution P , and its goal is to �nd a hypothesis h : X ! Y which, givensome x value, predicts approximately the value y that is likely to be seen. More precisely, thelearner attempts to �nd an h with small mean squared error (MSE):E(x;y)�P h(h(x)� y)2i: (25)Our methods can be applied to any reasonable bounded error measure, but, for the sake ofconcreteness, we concentrate here on the squared error measure.Following our approach for classi�cation problems, we assume that the learner has beenprovided with a training set (x1; y1); : : : ; (xN ; yN) of examples distributed according to P , andwe focus only on the minimization of the empirical MSE:1N NXi=1(h(xi)� yi)2:Using techniques similar to those outlined in Section 4.3, the true MSE given in Equation (25)can be related to the empirical MSE.To derive a boosting algorithm in this context, we reduce the given regression problem toa binary classi�cation problem, and then apply AdaBoost. As was done for the reductionsused in the proofs of Theorems 10 and 11, we mark with tildes all variables in the reduced(AdaBoost) space. For each example (xi; yi) in the training set, we de�ne a continuum ofexamples indexed by pairs (i; y) for all y 2 [0; 1]: the associated instance is ~xi;y = (xi; y), andthe label is ~yi;y = [[y � yi]]. (Recall that [[�]] is 1 if predicate � holds and 0 otherwise.) Althoughit is obviously infeasible to explicitly maintain an in�nitely large training set, we will see laterhow this method can be implemented e�ciently. Also, although the results of Section 4 onlydealt with �nitely large training sets, the extension to in�nite training sets is straightforward.Thus, informally, each instance (xi; yi) is mapped to an in�nite set of binary questions, onefor each y 2 Y , and each of the form: \Is the correct label yi bigger or smaller than y?"In a similar manner, each hypothesis h : X ! Y is reduced to a binary-valued hypothesis~h : X � Y ! f0; 1g de�ned by the rule~h(x; y) = [[y � h(x)]]:Thus, ~h attempts to answer these binary questions in a natural way using the estimated valueh(x).Finally, as was done for classi�cation problems, we assume we are given a distribution Dover the training set; ordinarily, this will be uniform so that D(i) = 1=N . In our reduction,28

this distribution is mapped to a density ~D over pairs (i; y) in such a way that minimization ofclassi�cation error in the reduced space is equivalent to minimization of MSE for the originalproblem. To do this, we de�ne ~D(i; y) = D(i)jy� yijZwhere Z is a normalization constant:Z = NXi=1D(i) Z 10 jy � yijdy:It is straightforward to show that 1=4 � Z � 1=2.If we calculate the binary error of ~h with respect to the density ~D, we �nd that, as desired,it is directly proportional to the mean squared error:NXi=1 Z 10 ���~yi;y � ~h(~xi;y)��� ~D(i; y)dy = 1Z NXi=1D(i)�����Z h(xi)yi jy � yijdy�����= 12Z NXi=1D(i)(h(xi)� yi)2:The constant of proportionality is 1=(2Z) 2 [1; 2].Unraveling this reduction, we obtain the regression boosting procedureAdaBoost.R shownin Figure 5. As prescribed by the reduction, AdaBoost.R maintains a weight wti;y for eachinstance i and label y 2 Y . The initial weight function w1 is exactly the density ~D de�nedabove. By normalizing the weights wt, a density pt is de�ned at Step 1 and provided to theweak learner at Step 2. The goal of the weak learner is to �nd a hypothesis ht : X ! Y thatminimizes the loss �t de�ned in Step 3. Finally, at Step 5, the weights are updated as prescribedby the reduction.The de�nition of �t at Step 3 follows directly from the reduction above; it is exactly the clas-si�cation error of ~hf in the reduced space. Note that, similar toAdaBoost.M2, AdaBoost.Rnot only varies the distribution over the examples (xi; yi), but also modi�es from round to roundthe de�nition of the loss su�ered by a hypothesis on each example. Thus, although our ultimategoal is minimization of the squared error, the weak learner must be able to handle loss functionsthat are more complicated than MSE.The �nal hypothesis hf also is consistent with the reduction. Each reduced weak hypoth-esis ~ht(x; y) is non-decreasing as a function of y. Thus, the �nal hypothesis ~hf generated byAdaBoost in the reduced space, being the threshold of a weighted sum of these hypotheses,also is non-decreasing as a function of y. As the output of ~hf is binary, this implies that forevery x there is one value of y for which ~hf (x; y0) = 0 for all y0 < y and ~hf (x; y0) = 1 for ally0 > y. This is exactly the value of y given by hf (x) as de�ned in the �gure. Note that hf isactually computing a weighted median of the weak hypotheses.At �rst, it might seem impossible to maintain weights wti;y over an uncountable set of points.However, on closer inspection, it can be seen that, when viewed as a function of y, wti;y is apiece-wise linear function. For t = 1, w1i;y has two linear pieces, and each update at Step 5potentially breaks one of the pieces in two at the point ht(xi). Initializing, storing and updatingsuch piece-wise linear functions are all straightforward operations. Also, the integrals whichappear in the �gure can be evaluated explicitly since these only involve integration of piece-wiselinear functions. 29

Algorithm AdaBoost.RInput: sequence of N examples h(x1; y1); : : : ; (xN ; yN)i with labels yi 2 Y = [0; 1]distribution D over the examplesweak learning algorithm WeakLearninteger T specifying number of iterationsInitialize the weight vector: w1i;y = D(i)jy � yijZfor i = 1; : : : ; N , y 2 Y , where Z = NXi=1D(i) Z 10 jy � yijdy:Do for t = 1; 2; : : : ; T1. Set pt = wtPNi=1 R 10 wti;ydy :2. Call WeakLearn, providing it with the density pt; get back a hypothesis ht : X ! Y .3. Calculate the loss of ht: �t = NXi=1 �����Z ht(xi)yi pti;ydy�����:If �t > 1=2, then set T = t � 1 and abort loop.4. Set �t = �t=(1� �t).5. Set the new weights vector to bewt+1i;y = (wti;y if yi � y � ht(xi) or ht(xi) � y � yiwti;y�t otherwise.for i = 1; : : : ; N , y 2 Y .Output the hypothesishf (x) = inffy 2 Y : Xt:ht(x)�y log(1=�t) � 12Xt log(1=�t)g:Figure 5: An extension of AdaBoost to regression problems.30

The following theorem describes our performance guarantee for AdaBoost.R. The prooffollows from the reduction described above coupled with a direct application of Theorem 6.Theorem 12 Suppose the weak learning algorithmWeakLearn, when called byAdaBoost.R,generates hypotheses with errors �1; : : : ; �T , where �t is as de�ned in Figure 5. Then the meansquared error � = Ei�D �(hf(xi)� yi)2� of the �nal hypothesis hf output by AdaBoost.R isbounded above by � � 2T TYt=1q�t(1� �t): (26)An unfortunate property of this setup is that there is no trivial way to generate a hypoth-esis whose loss is 1=2. This is a similar situation to the one we encountered with algorithmAdaBoost.M1. A remedy to this problem might be to allow weak hypotheses from a moregeneral class of functions. One simple generalization is to allow for weak hypotheses that arede�ned by two functions: h : X ! [0; 1] as before, and � : X ! [0; 1] which associates ameasure of con�dence to each prediction of h. The reduced hypothesis which we associate withthis pair of functions is ~h(x; y) = � (1 + �(x))=2 if h(x) � y(1� �(x))=2 otherwise.These hypotheses are used in the same way as the ones de�ned before and a slight variationof algorithm AdaBoost.R can be used to boost the accuracy of these more general weaklearners (details omitted). The advantage of this variant is that any hypothesis for which �(x)is identically zero has pseudo-loss exactly 1=2 and slight deviations from this hypothesis can beused to encode very weak predictions.The method presented in this section for boosting with square loss can be used with anyreasonable bounded loss function L : Y � Y ! [0; 1]. Here, L(y0; y) is a measure of the\discrepancy" between the observed label y and a predicted label y0; for instance, above weused L(y0; y) = (y0 � y)2. The goal of learning is to �nd a hypothesis h with small averageloss E(x;y)�P [L(h(x); y)]. Assume, for any y, that L(y; y) = 0 and that L(y0; y) is di�erentiablewith respect to y0, non-increasing for y0 � y and non-decreasing for y0 � y. Then, to modifyAdaBoost.R to handle such a loss function, we need only replace jy � yij in the initializationstep with j@L(y; yi)=@yj. The rest of the algorithm is unchanged, and the modi�cations neededfor the analysis are straightforward.AcknowledgmentsThanks to Corinna Cortes, Harris Drucker, David Helmbold, Keith Messer, Volodya Vovk andManfred Warmuth for helpful discussions.References[1] Eric B. Baum and David Haussler. What size net gives valid generalization? In Advancesin Neural Information Processing Systems I, pages 81{90. Morgan Kaufmann, 1989.[2] David Blackwell. An analog of the minimax theorem for vector payo�s. Paci�c Journal ofMathematics, 6(1):1{8, Spring 1956.[3] Leo Breiman. Bias, variance, and arcing classi�ers. Unpublished manuscript. Availablefrom ftp://ftp.stat.berkeley.edu/pub/users/breiman/arcall.ps.Z., 1996.31

[4] Nicol�o Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, Robert E.Schapire, and Manfred K. Warmuth. How to use expert advice. In Proceedings of theTwenty-Fifth Annual ACM Symposium on the Theory of Computing, pages 382{391, 1993.[5] Thomas H. Chung. Approximate methods for sequential decision making using expertadvice. In Proceedings of the Seventh Annual ACM Conference on Computational LearningTheory, pages 183{189, 1994.[6] Thomas M. Cover. Universal portfolios. Mathematical Finance, 1(1):1{29, January 1991.[7] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Arti�cial Intelligence Research, 2:263{286, January1995.[8] Harris Drucker and Corinna Cortes. Boosting decision trees. In Advances in Neural Infor-mation Processing Systems 8, 1996.[9] Harris Drucker, Robert Schapire, and Patrice Simard. Boosting performance in neural net-works. International Journal of Pattern Recognition and Arti�cial Intelligence, 7(4):705{719, 1993.[10] Yoav Freund. Data Filtering and Distribution Modeling Algorithms for Machine Learn-ing. PhD thesis, University of California at Santa Cruz, 1993. Retrievable from:ftp.cse.ucsc.edu/pub/tr/ucsc-crl-93-37.ps.Z.[11] Yoav Freund. Boosting a weak learning algorithm by majority. Information and Com-putation, To appear. An extended abstract appeared in Proceedings of the Third AnnualWorkshop on Computational Learning Theory, 1990.[12] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. InMachine Learning: Proceedings of the Thirteenth International Conference, pages 148{156, 1996.[13] Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boosting. InProceedings of the Ninth Annual Conference on Computational Learning Theory, pages325{332, 1996.[14] James Hannan. Approximation to Bayes risk in repeated play. In M. Dresher, A. W.Tucker, and P. Wolfe, editors, Contributions to the Theory of Games, volume III, pages97{139. Princeton University Press, 1957.[15] David Haussler, Jyrki Kivinen, and Manfred K. Warmuth. Tight worst-case loss boundsfor predicting with expert advice. In Computational Learning Theory: Second EuropeanConference, EuroCOLT '95, pages 69{83. Springer-Verlag, 1995.[16] Je�rey C. Jackson and Mark W. Craven. Learning sparse perceptrons. In Advances inNeural Information Processing Systems 8, 1996.[17] Michael Kearns, Yishay Mansour, Andrew Y. Ng, and Dana Ron. An experimental andtheoretical comparison of model selection methods. In Proceedings of the Eighth AnnualConference on Computational Learning Theory, 1995.32

[18] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational LearningTheory. MIT Press, 1994.[19] Jyrki Kivinen and Manfred K.Warmuth. Using experts for predicting continuous outcomes.In Computational Learning Theory: EuroCOLT '93, pages 109{120. Springer-Verlag, 1994.[20] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Informationand Computation, 108:212{261, 1994.[21] J. Ross Quinlan. Bagging, boosting, and C4.5. In Proceedings, Fourteenth National Con-ference on Arti�cial Intelligence, 1996.[22] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197{227,1990.[23] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982.[24] V. G. Vovk. A game of prediction with expert advice. In Proceedings of the Eighth AnnualConference on Computational Learning Theory, 1995.[25] Volodimir G. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshopon Computational Learning Theory, pages 371{383, 1990.[26] R. S. Wenocur and R. M. Dudley. Some special Vapnik-Chervonenkis classes. DiscreteMathematics, 33:313{318, 1981.A Proof of Theorem 3We start with a brief review of a framework used by Vovk [24], which is very similar to theframework used in Section 3. In this framework, an on-line decision problem consists of adecision space �, an outcome space
 and a loss function � : ��
! [0;1], which associatesa loss to each decision and outcome pair. At each trial t the learning algorithm receives thedecisions "t1; : : : ; "tN 2 � of N experts, and then generates its own decision �t 2 �. Uponreceiving an outcome !t 2
, the learner and each expert i incur loss �(�t; !t) and �("ti; !t),respectively. The goal of the learning algorithm is to generate decisions in such a way thatits cumulative loss will not be much larger than the cumulative loss of the best expert. Thefollowing four properties are assumed to hold:1. � is a compact topological space.2. For each !, the function � ! �(�; !) is continuous.3. There exists � such that, for all !, �(�; !) <1.4. There exists no � such that, for all !, �(�; !) = 0.We now give Vovk's main result [24]. Let a decision problem de�ned by
, � and � obeyAssumptions 1{4. Let c and a be positive real numbers. We say that the decision problem is(c; a)-bounded if there exists an algorithm A such that for any �nite set of experts and for any�nite sequence of trials, the cumulative loss of the algorithm is bounded byTXt=1�(�t; !t) � cmini TXt=1�("ti; !t) + a lnN;33

where N is the number of experts.We say that a distribution D is simple if it is non-zero on a �nite set denoted dom(D). Let Sbe the set of simple distributions over �. Vovk de�nes the following function c : (0; 1)! [0;1]which characterizes the hardness of any decision problem:c(�) = supD2S inf�2� sup!2
 �(�; !)log�P"2dom(D) ��(";!)D(") : (27)He then proves the following powerful theorem:Theorem 13 (Vovk) A decision problem is (c; a)-bounded if and only if for all � 2 (0; 1),c � c(�) or a � c(�)= ln(1=�).Proof of Theorem 3: The proof consists of the following three steps: We �rst de�ne a decisionproblem that conforms to Vovk's framework. We then show a lower bound on the function c(�)for this problem. Finally, we show how any algorithm A, for the on-line allocation problem canbe used to generate decisions in the de�ned problem, and so we get from Theorem 13 a lowerbound on the worst case cumulative loss of A.The decision problem is de�ned as follows. We �x an integer K > 1 and set � = SK whereSK is the K dimensional simplex, i.e., SK = fx 2 [0; 1]K :PKi=1 xi = 1g. We set
 to be the setof unit vectors in RK , i.e.,
 = fe1; : : : ; eKg where ei 2 f0; 1gK has a 1 in the ith component,and 0 in all other components. Finally, we de�ne the loss function to be �(�; ei) := � � ei = �i.One can easily verify that these de�nitions conform to Assumptions 1{4.To prove a lower bound on c(�) for this decision problem we choose a particular simpledistribution over the decision space �. Let D be the uniform distribution over the unit vectors,i.e., dom(D) = fe1; : : : ; eKg. For this distribution, we can explicitly calculatec(�) � inf�2� sup!2
 �(�; !)log�P"2dom(D) ��(";!)D(") : (28)First, it is easy to see that the denominator in Equation (28) is a constant:X"2dom(D)��(";!)D(") = �K + K � 1K : (29)For any probability vector � 2 �, there must exist one component i for which �i � 1=K. Thusinf�2� sup!2
�(�; !) = 1=K: (30)Combining Equations (28), (29) and (30), we get thatc(�) � ln(1=�)K ln(1� 1��K) : (31)We now show how an on-line allocation algorithm A can be used as a subroutine for solvingthis decision problem. We match each of the N experts of the decision problem with a strategyof the allocation problem. Each iteration t of the decision problem proceeds as follows.1. Each of the N experts generates a decision "ti 2 SK .2. The algorithm A generates a distribution pt 2 SN .34

3. The learner chooses the decision �t =PNi=1 pti"ti.4. The outcome !t 2
 is generated.5. The learner incurs loss �t � !t, and each expert su�ers loss "ti � !t.6. Algorithm A receives the loss vector `t where `ti = "ti � !t, and incurs losspt � `t = NXi=1 pti("ti � !t) = (NXi=1 pti"ti) � !t = �t � !t:Observe that the loss incurred by the learner in the decision problem is equal to the lossincurred by A. Thus, if for algorithm A we have an upper bound of the formLA � cmini Li + a lnN;then the decision problem is (c; a)-bounded. On the other hand, using the lower bound givenby Theorem 13 and the lower bound on c(�) given in Equation (31), we get that for any K andany �, either c � ln(1=�)K ln(1� 1��K) or a � 1K ln(1� 1��K) : (32)As K is a free parameter we can let K ! 1 and the denominators in Equation (32) become1� � which gives the statement of the theorem.

35

