Naive Bayes
Density Estimation Problem

- \(P(y|x) = P(y|x^1, x^2, \ldots, x^d) \) joint \((d+1)\)-dim distribution
- ... actually we cannot estimate this joint
- if each feature has 10 buckets, and we have 100 features (very reasonable assumptions)
- then the joint distribution has \(10^{100}\) cells - impossible
how to get around estimating the joint $P(x^1, x^2, \ldots, x^d | y)$?

SOLUTION : assume feature independence
- then $P(x^1, x^2, \ldots, x^d | y) = P(x^1 | y) * P(x^2 | y) * \ldots * P(x^d | y)$
- estimate each feature density, usually easy
- the independence assumption rarely holds perfectly, but the model kind-of-works if it approx. holds

- it is called **NAIVE BAYES**
 - very easy to implement
 - smoothing often necessary
 - very popular
- $P(x_1, x_2, \ldots, x_d \mid y) = P(x_1 \mid y) \times P(x_2 \mid y) \times \ldots \times P(x_d \mid y)$
- $d+1$ joint distribution problem \Rightarrow d problems of simple conditional distributions
- Each $P(x_j \mid y)$ estimated separately, independent of the other features
 - Assumes features are independent
 - Assumption doesn’t really hold, but Naive Bayes still works in many cases
how to estimate the simple distributions

- want to estimate $P(x_j|y) = \text{density of feature } j \text{ values for class } y$
 - usually easy, since x_j is unidimensional

- **OPTION1-MODEL**: apply an imposed model, calculate Max-Likelihood parameters for the model
 - gaussian (normal), bernoulli, binomial, exponential etc
 - mixture of distributions
 - for many models, there are closed form equation stat give the max-likelihood params
how to estimate the simple distributions

- want to estimate $P(x^j | y) = \text{density of feature } j \text{ values for class } y$
 - usually easy, since x^j is unidimensional

- **OPTION1-MODEL**: apply an imposed model, calculate Max-Likelihood parameters for the model
how to estimate the simple distributions

- want to estimate $P(x^j | y)$ = density of feature j values for class y
 - usually easy, since x^j is unidimensional

- **OPTION2-HISTOGRAM**: bucket/cluster/bin and count feature value in each bucket/bin
Naive Bayes problem 1: constant feature

- if x^j is constant, some estimates could be unusable
 - example: the variance of the gaussian fit is 0, and the probability of a single value is 1

- solution: CONTROL THE PARAMETERS (like variance) to not allow values close to zero
 - if $\Sigma < \epsilon$ then $\Sigma = \epsilon$

- solution: SMOOTHING
 - generally a good idea for all probability estimates

- solution: FEATURE SELECTION
 - discussed later in the course
Naive Bayes Problem 2: “zero probability”

- in the case of histograms (bins), estimate of zero probability is quite possible
 - when there are many bins, and not so many data points

- especially true for text documents, when features are word occurrences
 - there are many words, and most of them do not appear in most documents
 - probability estimate by count often gives 0 probability

- solution: **SMOOTHING** the estimate
- N possibilities / cases
- $t_1, t_2, t_3, \ldots, t_N$ observed counts for each case
- $M = t_1 + t_2 + t_3 + \ldots + t_N$ number of observations
- direct estimate $P(i) = \frac{t_i}{M}$
- Laplace estimate $P(i) = \frac{t_i + 1}{M+N}$
 - note that Laplace $P(i)$ still sum to 1
Smoothing: Foreground and Background

- N possibilities / cases
- t1, t2, t3, ... , tN observed counts for each case
- M = t1 + t2 + t3 + ... + tN number of observations
- direct (foreground) estimate $P(i) = \frac{t_i}{M}$

- Background estimate in a larger setting
 - each experiment j has Nj, Mj, tij etc
- $Q(i) = \frac{\sum_{j} t_{ij}}{\sum_{j} M_{j}}$ background probability
 - note that Laplace $P(i)$ still sum to 1

- smoothed estimate $\text{Prob}(i) = \lambda P(i) + (1-\lambda)Q(i)$
 - note that smoothed estimates still sum to 1
Naive Bayes overview

- **Training**
 - \(P(x|y) = P(x^1,x^2,...,x^d|y) = P(x^i|y)*P(x^2|y)*...P(x^d|y) \)
 - estimate separately each \(P(x^i|y) \) from training
 - store the model

- **Testing**
 - for datapoint \(x \) apply the estimates to compute
 \[P(x|y) = P(x^1,x^2,...,x^d|y) = P(x^1|y)*P(x^2|y)*...P(x^d|y) \]
 - use Bayes Rule \(P(y|x) = P(x|y)* P(y) / P(x) \)
 - predict \(y \) that maximizes \(P(x|y)* P(y) \)