
CS6140 Machine Learning Kernelization of ML algorithms by loss function

Kernelization of ML algorithms by loss function
Bilal Ahmed, Virgil Pavlu

December 8, 2014

1 Representer Theorem

We have seen that the dual perceptron and the support vector machine (SVM) have identical forms for the

final weight vector i.e., w∗ =
∑N
i=1 αiyixi. We have also seen that both these algorithms can work with

kernels, that allows us to work efficiently in high dimensional spaces enabling us to learn complex non-linear
decision boundaries and use these learning methods to work with other types of data such as strings, trees,
etc. But, is the use of kernels limited to only these algorithms or is it possible to kernelize other learning
methods as well? The answer to this is provided by the Representer theorem, which “roughly” states that:

If a learning algorithm can posed as a minimization problem of the form:

min
w

Loss(y, f(w, x)) + λPenalty(w) (1)

where, w are the model parameters, f(w, x) represents the classifier output, y is the actual label and λ
is a regularization parameter. Then under some “weak” conditions on the loss and penalty functions, the
solution has the form w∗ =

∑
i αiyixi, i.e., a linear combination of the training instances.

This is a very powerful result that allows us to apply the kernel trick to a broader range of learning
algorithms. In the following sections we will see how the Representer theorem can be applied to SVMs, ridge
regression and Logistic regression.

2 Loss functions

3 Support Vector Machines

Recall, the primal SVM problem:

min
w,ξi

1

2
‖w‖2 +

N∑
i=1

ξi

subject to:

∀i : yi(w
Txi + b) ≥ 1− ξi

ξti ≥ 0

(2)

From the objective function we can see that the loss function for a particular training instance is represented
by ξi. The constraints can be combined to show that ξi = max(0, 1− yi(wTxi + b)), which is also known as
the Hinge loss for the ith instance. Therefore, we can represent (2) equivalently as:

1



Figure 1: Various loss objectives as a function of the margin. What is the corresponding machine learning
algorithm for each loss?

min
w

1

2
‖w‖2 +

N∑
i=1

max(0, 1− yi(wTxi + b)) (3)

According to the Representer theorem (1), the primal SVM (3) will have a solution of the form w∗ =∑
i αiyixi. Recall, that this is exactly the solution that we recovered for the optimal w∗ by solving the

Lagrangian of (2).

4 Regularized Least Squares Classification

Regularized Least Squares classification adapts the regularized linear regression framework to the task of
classification. To this end it uses an objective function that minimizes the square of the difference between
the actual label of the instance and the classifier output. Let (xi, yi), i ∈ {1, 2, . . . , N} represent the training
data where xi ∈ Rd and yi ∈ {−1, 1}. The objective that we want to minimize in this case is:

min
w

λ

2
‖w‖2 +

N∑
i=1

(wTxi − yi)2 (4)

Applying the Representer theorem to this objective function we obtain its dual version:

min
α

λ

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi, xj) +

N∑
j=1

(

N∑
i=1

αiyiK(xi, xj)− yi)2 (5)

where, K(.,.) is the value of the kernel function.

2



5 Regularized Logistic Regression

Let (xi, yi), i ∈ {1, 2, . . . , N} represent the training data where xi ∈ Rd and yi ∈ {−1, 1}. Then the
probability of an instance belonging to a particular class is given as:

P (yi|w, xi) =
1

1 + e−yiwT xi
(6)

where, w are the model parameters. The maximum likelihood solution can be obtained by minimizing the
negative log-likelihood. For the regularized case, we add an L2 penalty on the norm of w. The final objective
function for RLR is:

min
w

λ

2
‖w‖2 +

N∑
i=1

ln(1 + e−yiw
T xi) (7)

Comparing (7) to (1), we can see that the loss function that RLR minimizes is given by the second term in
the objective also known as log loss. Based on the Representer theorem we can safely replace w =

∑
i αiyixi

to get the dual version of RLR:

min
α

λ

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi, xj) +

N∑
j=1

ln(1 + exp(−yj
N∑
i=1

αiyiK(xi, xj)) (8)

where, K(.,.) is the value of the kernel function.

6 Dual perceptron

Recall the perceptron training algorithm PERCEPTRON-PRIMAL-PROBLEM:

• assume all training points have been processed so that yi = 1;

• start with vector w=0

• repeat until no mistakes made
for all mistakes x (that is when wx < 0), add x to the plane normal w, to cause a plane correction
towards x : wnew = w + x

6.0.1 Duality intuition (without representer theorem)

. The primal variables are vector w. We can dualize the perceptron, just like we did with the SVM, by
observing that when its finished, the w must be the sum of the x-s added to it, which is the form

w =
∑
imixi

where mi is the count of times/rounds when xi was a mistake. Lets write the prediction for any point z
as wz =

∑
imixiz =

∑
imi < xi ∗ z >, and thus a mistake on xj is detected by

∑
imi < xi ∗ xj > < 0.

We can then rewrite the perceptron into the PERCEPTRON-DUAL-PROBLEM:

• assume all training points are not processed, so that yi ∈ {−1, 1}

• start with vector of counts m = (m1,m2, ...mn)=0

• repeat until no mistakes made
for all mistakes xt tested as yt

∑
imi < xi ∗ xt > ≤ 0, simulate adding x to the plane normal w, by

increasing xt count in w: mt = mt + yt

The vector m are the dual variables. We can use a kernel with the DUAL-PERCEPTRON, because like
with the SVM, both training and testing is written with formulas only containing dot product < x ∗ z >,
never x or z single variables; thus we can solve the dual for a kernel k(x, z) replacing the dot product.

3



6.0.2 HW Questions

• Why in the dual perceptron we are not processing data to invert negative-labeled points (like we do
for the primal perceptron), so that all datapoints have positive labels?

• What is the perceptron primal loss function? Write the primal perceptron as an optimization problem.

• Apply the representer theorem and substitute w =
∑
i yiαixi in the objective to obtain the dual from

4


