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Part I: The Bias-Variance Tradeoff
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Part I: The Bias-Variance Tradeoff

Estimating β

As usual, we assume the model:

y = f (z) + ε, ε ∼ (0, σ2)

In regression analysis, our major goal is to come up with some
good regression function f̂ (z) = z⊤β̂

So far, we’ve been dealing with β̂
ls
, or the least squares

solution:

β̂
ls

has well known properties (e.g., Gauss-Markov, ML)

But can we do better?
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Part I: The Bias-Variance Tradeoff

Choosing a good regression function

Suppose we have an estimator f̂ (z) = z⊤β̂

To see if f̂ (z) = z⊤β̂ is a good candidate, we can ask
ourselves two questions:

1.) Is β̂ close to the true β?
2.) Will f̂ (z) fit future observations well?
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Part I: The Bias-Variance Tradeoff

1.) Is β̂ close to the true β?

To answer this question, we might consider the mean

squared error of our estimate β̂:

i.e., consider squared distance of β̂ to the true β:

MSE (β̂) = E[||β̂ − β||2] = E[(β̂ − β)⊤(β̂ − β)]

Example: In least squares (LS), we now that:

E[(β̂
ls − β)⊤(β̂

ls − β)] = σ2tr[(Z⊤Z)−1]
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Part I: The Bias-Variance Tradeoff

2.) Will f̂ (z) fit future observations well?

Just because f̂ (z) fits our data well, this doesn’t mean that it
will be a good fit to new data

In fact, suppose that we take new measurements y ′
i at the

same zi ’s:
(z1, y

′
1), (z2, y

′
2), . . . , (zn, y

′
n)

So if f̂ (·) is a good model, then f̂ (zi ) should also be close to
the new target y ′

i

This is the notion of prediction error (PE)
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Part I: The Bias-Variance Tradeoff

Prediction error and the bias-variance tradeoff

So good estimators should, on average have, small prediction
errors

Let’s consider the PE at a particular target point z0 (see the
board for a derivation):

PE(z0) = EY |Z=z0
{(Y − f̂ (Z))2|Z = z0}

= σ2
ε + Bias2(f̂ (z0)) + Var(f̂ (z0))

Such a decomposition is known as the bias-variance tradeoff
As model becomes more complex (more terms included), local
structure/curvature can be picked up
But coefficient estimates suffer from high variance as more
terms are included in the model

So introducing a little bias in our estimate for β might lead to
a substantial decrease in variance, and hence to a substantial
decrease in PE
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Part I: The Bias-Variance Tradeoff

Depicting the bias-variance tradeoff
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Figure: A graph depicting the bias-variance tradeoff.
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Part II: Ridge Regression

Part II

Ridge Regression
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Ridge regression as regularization

If the βj ’s are unconstrained...
They can explode
And hence are susceptible to very high variance

To control variance, we might regularize the coefficients
i.e., Might control how large the coefficients grow

Might impose the ridge constraint:

minimize
n
∑

i=1

(yi − β⊤zi)
2 s.t.

p
∑

j=1

β2
j ≤ t

⇔ minimize (y − Zβ)⊤(y − Zβ) s.t.

p
∑

j=1

β2
j ≤ t

By convention (very important!):
Z is assumed to be standardized (mean 0, unit variance)
y is assumed to be centered
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Ridge regression: ℓ2-penalty

Can write the ridge constraint as the following penalized

residual sum of squares (PRSS):

PRSS(β)ℓ2
=

n
∑

i=1

(yi − z⊤i β)2 + λ

p
∑

j=1

β2
j

= (y − Zβ)⊤(y − Zβ) + λ||β||22

Its solution may have smaller average PE than β̂
ls

PRSS(β)ℓ2
is convex, and hence has a unique solution

Taking derivatives, we obtain:

∂PRSS(β)ℓ2

∂β
= −2Z⊤(y − Zβ) + 2λβ
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

The ridge solutions

The solution to PRSS(β̂)ℓ2
is now seen to be:

β̂
ridge
λ = (Z⊤Z + λIp)−1Z⊤y

Remember that Z is standardized
y is centered

Solution is indexed by the tuning parameter λ (more on this
later)

Inclusion of λ makes problem non-singular even if Z⊤Z is not
invertible

This was the original motivation for ridge regression (Hoerl
and Kennard, 1970)
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Tuning parameter λ

Notice that the solution is indexed by the parameter λ

So for each λ, we have a solution
Hence, the λ’s trace out a path of solutions (see next page)

λ is the shrinkage parameter

λ controls the size of the coefficients
λ controls amount of regularization

As λ ↓ 0, we obtain the least squares solutions

As λ ↑ ∞, we have β̂
ridge

λ=∞ = 0 (intercept-only model)
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Ridge coefficient paths

The λ’s trace out a set of ridge solutions, as illustrated below
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Ridge Regression Coefficient Paths

Figure: Ridge coefficient path for the diabetes data set found in
the lars library in R.
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Choosing λ

Need disciplined way of selecting λ:

That is, we need to “tune” the value of λ

In their original paper, Hoerl and Kennard introduced ridge
traces:

Plot the components of β̂
ridge

λ against λ

Choose λ for which the coefficients are not rapidly changing
and have “sensible” signs
No objective basis; heavily criticized by many

Standard practice now is to use cross-validation (defer
discussion until Part 3)
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Proving that β̂
ridge

λ is biased

Let R = Z⊤Z

Then:

β̂
ridge
λ = (Z⊤Z + λIp)

−1Z⊤y

= (R + λIp)
−1R(R−1Z⊤y)

= [R(Ip + λR−1)]−1R[(Z⊤Z)−1Z⊤y]

= (Ip + λR−1)−1R−1Rβ̂
ls

= (Ip + λR−1)β̂
ls

So:

E(β̂
ridge
λ ) = E{(Ip + λR−1)β̂

ls}
= (Ip + λR−1)β

(if λ6=0)

6= β.
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Data augmentation approach

The ℓ2 PRSS can be written as:

PRSS(β)ℓ2
=

n
∑

i=1

(yi − z⊤i β)2 + λ

p
∑

j=1

β2
j

=

n
∑

i=1

(yi − z⊤i β)2 +

p
∑

j=1

(0−
√

λβj)
2

Hence, the ℓ2 criterion can be recast as another least squares
problem for another data set
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Data augmentation approach continued

The ℓ2 criterion is the RSS for the augmented data set:
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





























z1,1 z1,2 z1,3 · · · z1,p

...
...

...
...

...
zn,1 zn,2 zn,3 · · · zn,p√

λ 0 0 · · · 0

0
√

λ 0 · · · 0

0 0
√

λ
. . . 0

0 0 0
. . . 0

0 0 0 0
√

λ































; yλ =





























y1
...
yn

0
0
0
...
0





























So:

Zλ =

(
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y
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Solving the augmented data set

So the “least squares” solution for the augmented data set is:

(Z⊤
λ Zλ)−1Z⊤

λ yλ =

(

(Z⊤,
√

λIp)

(

Z√
λIp

))−1

(Z⊤,
√

λIp)

(

y

0

)

= (Z⊤Z + λIp)
−1Z⊤y,

which is simply the ridge solution
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Bayesian framework

Suppose we imposed a multivariate Gaussian prior for β:

β ∼ N
(

0,
1

2p
Ip

)

Then the posterior mean (and also posterior mode) of β is:

β
ridge
λ

= (Z⊤Z + λIp)−1Z⊤y
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Computing the ridge solutions via the SVD

Recall β̂
ridge
λ = (Z⊤Z + λIp)

−1Z⊤y

When computing β̂
ridge
λ numerically, matrix inversion is

avoided:

Inverting Z⊤Z can be computationally expensive: O(p3)

Rather, the singular value decomposition is utilized; that is,

Z = UDV⊤,

where:

U = (u1,u2, . . . ,up) is an n× p orthogonal matrix
D = diag(d1, d2, . . . ,≥ dp) is a p × p diagonal matrix
consisting of the singular values d1 ≥ d2 ≥ · · · dp ≥ 0
V⊤ = (v⊤1 , v⊤2 , . . . , v⊤p ) is a p × p matrix orthogonal matrix
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Numerical computation of β̂
ridge

λ

Will show on the board that:

β̂
ridge
λ = (Z⊤Z + λIp)

−1Z⊤y

= V diag

(

dj

d2
j + λ

)

U⊤y

Result uses the eigen (or spectral) decomposition of Z⊤Z:

Z⊤Z = (UDV⊤)⊤(UDV⊤)

= VD⊤U⊤UDV⊤

= VD⊤DV⊤

= VD2V⊤
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

ŷ
ridge
λ and principal components

A consequence is that:

ŷridge = Zβ̂
ridge
λ

=

p
∑

j=1

(

uj

d2
j

d2
j + λ

u⊤
j

)

y

Ridge regression has a relationship with principal components
analysis (PCA):

Fact: The derived variable γ j = Zvj = ujdj is the jth principal
component (PC) of Z

Hence, ridge regression projects y onto these components with
large dj

Ridge regression shrinks the coefficients of low-variance
components
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Orthonormal Z in ridge regression

If Z is orthonormal, then Z⊤Z = Ip, then a couple of closed
form properties exist

Let β̂
ls

denote the LS solution for our orthonormal Z; then

β̂
ridge
λ =

1

1 + λ
β̂

ls

The optimal choice of λ minimizing the expected prediction
error is:

λ∗ =
pσ2

∑p
j=1 β2

j

,

where β = (β1, β2, . . . , βp) is the true coefficient vector
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Smoother matrices and effective degrees of freedom

A smoother matrix S is a linear operator satisfying:

ŷ = Sy

Smoothers put the “hats” on y

So the fits are a linear combination of the yi ’s, i = 1, . . . , n

Example: In ordinary least squares, recall the hat matrix

H = Z(Z⊤Z)−1Z⊤

For rank(Z) = p, we know that tr(H) = p, which is how many
degrees of freedom are used in the model

By analogy, define the effective degrees of freedom (or
effective number of parameters) for a smoother to be:

df(S) = tr(S)
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Part II: Ridge Regression

1. Solution to the ℓ2 Problem and Some Properties
2. Data Augmentation Approach
3. Bayesian Interpretation
4. The SVD and Ridge Regression

Degrees of freedom for ridge regression

In ridge regression, the fits are given by:

ŷ = Z(Z⊤Z + λIp)
−1Z⊤y

So the smoother or “hat” matrix in ridge takes the form:

Sλ = Z(Z⊤Z + λIp)
−1Z⊤

So the effective degrees of freedom in ridge regression are
given by:

df(λ) = tr(Sλ) = tr[Z(Z⊤Z + λIp)
−1Z⊤] =

p
∑

j=1

d2
j

d2
j + λ

Note that df(λ) is monotone decreasing in λ

Question: What happens when λ = 0?
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Part III: Cross Validation

Part III

Cross Validation
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Part III: Cross Validation
1. K -Fold Cross Validation
2. Generalized CV

How do we choose λ?

We need a disciplined way of choosing λ

Obviously want to choose λ that minimizes the mean squared
error

Issue is part of the bigger problem of model selection
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Part III: Cross Validation
1. K -Fold Cross Validation
2. Generalized CV

Training sets versus test sets

If we have a good model, it should predict well when we have
new data

In machine learning terms, we compute our statistical model
f̂ (·) from the training set

A good estimator f̂ (·) should then perform well on a new,
independent set of data

We “test” or assess how well f̂ (·) performs on the new data,
which we call the test set
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Part III: Cross Validation
1. K -Fold Cross Validation
2. Generalized CV

More on training and testing

Ideally, we would separate our available data into both
training and test sets

Of course, this is not always possible, especially if we have a
few observations

Hope to come up with the best-trained algorithm that will
stand up to the test

Example: The Netflix contest
(http://www.netflixprize.com/)

How can we try to find the best-trained algorithm?
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Part III: Cross Validation
1. K -Fold Cross Validation
2. Generalized CV

K -fold cross validation

Most common approach is K -fold cross validation:
(i) Partition the training data T into K separate sets of equal size

Suppose T = (T1, T2, . . . , TK )
Commonly chosen K ’s are K = 5 and K = 10

(ii) For each k = 1, 2, . . . , K , fit the model f̂
(λ)
−k (z) to the training

set excluding the kth-fold Tk

(iii) Compute the fitted values for the observations in Tk , based on
the training data that excluded this fold

(iv) Compute the cross-validation (CV) error for the k-th fold:

(CV Error)
(λ)
k = |Tk |−1

∑

(z,y)∈Tk

(y − f̂
(λ)
−k (z))2
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Part III: Cross Validation
1. K -Fold Cross Validation
2. Generalized CV

K -fold cross validation (continued)

The model then has overall cross-validation error:

(CV Error)(λ) = K−1
K
∑

k=1

(CV Error)
(λ)
k

Select λ∗ as the one with minimum (CV Error)(λ)

Compute the chosen model f̂ (z)(λ
∗) on the entire training set

T = (T1,T2, . . . ,Tk)

Apply f̂ (z)(λ
∗) to the test set to assess test error
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Part III: Cross Validation
1. K -Fold Cross Validation
2. Generalized CV

Plot of CV errors and standard error bands
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Figure: Cross validation errors from a ridge regression example on spam
data.
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Part III: Cross Validation
1. K -Fold Cross Validation
2. Generalized CV

Cross validation with few observations

Remark: Our data set might be small, so we might not have
enough observations to put aside a test set:

In this case, let all of the available data be our training set
Still apply K -fold cross validation
Still choose λ∗ as the minimizer of CV error
Then refit the model with λ∗ on the entire training set
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Part III: Cross Validation
1. K -Fold Cross Validation
2. Generalized CV

Leave-one-out CV

What happens when K = 1?

This is called leave-one-out cross validation

For squared error loss, there is a convenient approximation to
CV(1), which is the leave one-out CV error
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Part III: Cross Validation
1. K -Fold Cross Validation
2. Generalized CV

Generalized CV for smoother matrices

Recall that a smoother matrix S satisfies:

ŷ = Sy

In many linear fitting methods (as in LS), we have:

CV(1) =
1

n

n
∑

i=1

(yi − f̂−i(zi ))
2 =

1

n

n
∑

i=1

(

yi − f̂ (zi )

1− Sii

)2

A convenient approximation to CV(1) is called the
generalized cross validation, or GCV error:

GCV =
1

n

n
∑

i=1

(

yi − f̂ (zi )

1− tr(S)
n

)2

Recall that tr(S) is the effective degrees of freedom, or
effective number of parameters
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Part IV: The LASSO

Part IV

The LASSO
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Part IV: The LASSO

The LASSO: ℓ1 penalty

Tibshirani (Journal of the Royal Statistical Society 1996)
introduced the LASSO: least absolute shrinkage and selection

operator

LASSO coefficients are the solutions to the ℓ1 optimization
problem:

minimize (y − Zβ)⊤(y − Zβ) s.t.

p
∑

j=1

|βj | ≤ t

This is equivalent to loss function:

PRSS(β)ℓ1
=

n
∑

i=1

(yi − z⊤i β)2 + λ

p
∑

j=1

|βj |

= (y − Zβ)⊤(y − Zβ) + λ||β||1
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Part IV: The LASSO

λ (or t) as a tuning parameter

Again, we have a tuning parameter λ that controls the
amount of regularization

One-to-one correspondence with the threshhold t:
recall the constraint:

p
∑

j=1

|βj | ≤ t

Hence, have a “path” of solutions indexed by t

If t0 =
∑p

j=1 |β̂ls
j | (equivalently, λ = 0), we obtain no shrinkage

(and hence obtain the LS solutions as our solution)
Often, the path of solutions is indexed by a fraction of
shrinkage factor of t0
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Part IV: The LASSO

Sparsity and exact zeros

Often, we believe that many of the βj ’s should be 0

Hence, we seek a set of sparse solutions

Large enough λ (or small enough t) will set some coefficients
exactly equal to 0!

So the LASSO will perform model selection for us!
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Part IV: The LASSO

Computing the LASSO solution

Unlike ridge regression, β̂
lasso
λ has no closed form

Original implementation involves quadratic programming
techniques from convex optimization

lars package in R implements the LASSO

But Efron et al. (Annals of Statistics 2004) proposed LARS
(least angle regression), which computes the LASSO path
efficiently

Interesting modification called is called forward stagewise

In many cases it is the same as the LASSO solution
Forward stagewise is easy to implement:
http://www-stat.stanford.edu/~hastie/TALKS/nips2005.pdf
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Part IV: The LASSO

Forward stagewise algorithm

As usual, assume Z is standardized and y is centered

Choose a small ε. The forward-stagewise algorithm then
proceeds as follows:

1 Start with initial residual r = y, and β1 = β2 = · · · = βp = 0.
2 Find the predictor Zj (j = 1, . . . , p) most correlated with r
3 Update βj ← βj + δj , where δj = ε · sign〈r,Zj〉 = ε · sign(Z⊤

j r).
4 Set r← r− δjZj , and repeat Steps 2 and 3 many times.

Try implementing forward stagewise yourself! It’s easy!
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Part IV: The LASSO

Example: diabetes data

Example taken from lars package documentation:

Call:

lars(x = x, y = y)

R-squared: 0.518

Sequence of LASSO moves:

bmi ltg map hdl sex glu tc tch ldl age hdl hdl

Var 3 9 4 7 2 10 5 8 6 1 -7 7

Step 1 2 3 4 5 6 7 8 9 10 11 12
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Part IV: The LASSO

The LASSO, LARS, and Forward Stagewise paths
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Figure: Comparison of the LASSO, LARS, and Forward Stagewise
coefficient paths for the diabetes data set.
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Part V: Model Selection, Oracles, and the Dantzig Selector

Comparing LS, Ridge, and the LASSO

Even though Z⊤Z may not be of full rank, both ridge
regression and the LASSO admit solutions

We have a problem when p ≫ n (more predictor variables
than observations)

But both ridge regression and the LASSO have solutions
Regularization tends to reduce prediction error
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Part V: Model Selection, Oracles, and the Dantzig Selector

Variable selection

The ridge and LASSO solutions are indexed by the continuous
parameter λ:

Variable selection in least squares is “discrete”:

Perhaps consider “best” subsets, which is of order O(2p)
(combinatorial explosion – compare to ridge and LASSO)
Stepwise selection

In stepwise procedures, a new variable may be added into the
model even with a miniscule improvement in R

2

When applying stepwise to a perturbation of the data,
probably have different set of variables enter into the model at
each stage

Many model selection techniques based on Mallow’s Cp, AIC ,
and BIC
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Part V: Model Selection, Oracles, and the Dantzig Selector

More comments on variable selection

Now suppose p ≫ n

Of course, we would like a parsimonious model (Occam’s
Razor)

Ridge regression produces coefficient values for each of the
p-variables

But because of its ℓ1 penalty, the LASSO will set many of the
variables exactly equal to 0!

That is, the LASSO produces sparse solutions

So LASSO takes care of model selection for us

And we can even see when variables jump into the model by
looking at the LASSO path

Statistics 305: Autumn Quarter 2006/2007 Regularization: Ridge Regression and the LASSO



Part V: Model Selection, Oracles, and the Dantzig Selector

Variants

Zou and Hastie (2005) propose the elastic net, which is a
convex combination of ridge and the LASSO

Paper asserts that the elastic net can improve error over
LASSO
Still produces sparse solutions

Frank and Friedman (1993) introduce bridge regression,
which generalizes ℓq norms

Regularization ideas extended to other contexts:

Park (Ph.D. Thesis, 2006) computes ℓ1 regularized paths for
generalized linear models
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High-dimensional data and underdetermined systems

In many modern data analysis problems, we have p ≫ n

These comprise “high-dimensional” problems

When fitting the model y = z⊤β, we can have many solutions

i.e., our system is underdetermined

Reasonable to suppose that most of the coefficients are
exactly equal to 0
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S-sparsity and Oracles

Suppose that only S elements of β are non-zero

Candès and Tao call this S-sparsity

Now suppose we had an “Oracle” that told us which
components of the β = (β1, β2, . . . , βp) are truly non-zero

Let β⋆ be the least squares estimate of this “ideal” estimator;

So β⋆ is 0 in every component that β is 0
The non-zero elements of β⋆ are computed by regressing y on
only the S important covariates
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The Dantzig selector

Candès and Tao developed the Dantzig selector β̂
Dantzig

:

minimize||β||ℓ1
s.t. ||Z⊤

j r||ℓ∞ ≤ (1 + t−1)
√

2 log p · σ

Here, r is the residual vector and t > 0 is a scalar

They showed that with high probability,

||β̂Dantzig − β||2 = O(log p)E(||β∗ − β||2)

So the Dantzig selector does comparably well as someone who
was told was S variables to regress on
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