Created: Wed 24 June 2009
Last modified:
Note: "CMS" refers to the course text by Croft, Metzler, and Strohan. "MRS" refers to the second text by Manning, Raghavan, and Schütze, available on-line. This is an approximate syllabus; it may change at any time.
- Lecture 01, Mon 06-29-09
- Administrivia and an Introduction to Information Retrieval
- Reading:
- Slides:
- Lecture 02, Tue 06-30-09
- Evaluation of Information Retrieval systems
- Reading:
- Slides:
- Homework 01 assigned
- Lecture 03, Wed 07-01-09
- Finish evaluation
- Boolean retrieval model
- Start Vector space model...
- Reading:
- Slides:
- Lecture 04, Thu 07-02-09
- Finish vector space model
- Start probabilistic models...
- Reading:
- Slides:
- Lecture 05, Mon 07-06-09
- BM25
- Start language models...
- Start smoothing...
- Reading:
- Slides:
- Lecture 06, Tue 07-07-09
- Smoothing ...
- Reading:
- Slides:
- Project Phase I
- Lecture 07, Wed 07-08-09
- Lecture 08, Thu 07-09-09
- Finish statistics of text
- Start text processing ...
- Reading:
- Slides:
- Lecture 09, Mon 07-13-09
- Finish text processing (Information Extraction)
- Reading:
- Slides:
- Lecture 10, Tue 07-14-09
- Indexing
- Inverted Indexes
- Start Compression...
- Reading:
- Slides:
- Project Phase II
- Lecture 11, Wed 07-15-09
- Indexing
- Reading:
- Slides:
- Lecture 12, Thu 07-16-09
- Web retrieval / Link Analysis
- PageRank and Markov Chains
- HITS
- Reading:
- Slides:
- Homework 02 due
- Homework 03 assigned
- Lecture 13, Mon 07-20-09
- Relevance Feedback and Query Expansion
- Reading:
- CMS Chap 6; Sections 6.2.3, 6.2.4
CMS Chap 7; Sections 7.1.2 (p242-243), 7.2.1 (p248-249), and 7.3.2
- Slides:
- Lecture 14, Tue 07-21-09
- Metasearch: data fusion
- Metasearch: on-line learning
- Slides:
- Lecture 15, Wed 07-22-09
- Metasearch: collection fusion
- Slides:
- Lecture 16, Thu 07-23-09
- Clustering
- Reading:
- Slides:
- Lecture 17, Mon 07-27-09
- Collaborative filtering
- Reading:
- Slides:
- Homework 03 due
- Project Phase II due
- Project Phase III
- Lecture 18, Tue 07-28-09
- Learning-To-Rank
- Start Linear Regression (Least Squares, Gradient Descent)...
- Reading:
- Slides:
- Lecture 19, Wed 07-29-09
- Learning-To-Rank
- Finish Linear Regression (Normal Equations)
- Logistic Regression
- Reading:
- Lecture 20, Thu 07-30-09
- Learning-To-Rank
- Support Vector Machines (SVMs)
- Reading:
- Lecture 20, Mon 08-03-09
- Filtering and Bayesian Classifiers
- Lecture 21, Tue 08-04-09
- Lecture 22, Wed 08-05-09
- Lecture 23, Thu 08-06-09
- Lecture 24, Mon 08-10-09
- Lecture 25, Tue 08-11-09
- Lecture 26, Wed 08-12-09
- Review (Compression, PageRank, Metasearch, etc.)
- Review material on
- Lecture 27, Thu 08-13-09
- Final exam
- Project Phase III due
Switch to:
ekanou@ccs.neu.edu