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LECTURE 2

What is indexing? Indexing is the process of extracting features (such as word counts) from the 
documents (in other words: preprocessing the documents). The process ends with putting the 
information in a special data structure on disk in order to allow:

● fast query processing (given a query can quickly find the documents which contain all or any of 
the query words)

● compressed storage of the original information. After indexing we do not need the original 
collection any more.

Why perform indexing? Compare with the scenario where every time a query comes one needs to open 
all the documents and search for word occurrences in them (a bad idea).

How do we do  indexing? Need to process each document. The basic steps are:
● convert to text; the file may be in a .html, .pdf or .doc format. We need only the text. Later in 

the course we will consider what to do the html tags and what information they provide that is 
useful for retrieval purposes.

● Tokenize: break the text into a stream for words
● Stop word removal: this step is optional. It is mainly for efficiency (= how fast the search 

engine will return results). Web search engines do not use it. Give examples where stop word 
removal will help and where it will hurt the quality of search results.
Example where it hurts: “to be or not to be” from Shakespeare. All the words are removed 
because they are stop words.
Example where it helps: 

● Stemming: remove suffixes based on heuristic rules. Mainly for efficiency . The result is 
reduction in the total number of unique words considered. Stemming may help or may hurt the 
quality of search. Give examples where it helps and where it hurts.

● Where it helps: most of the time when plurals are used, e.g. Schools, courses
● Where it hurts: consider university vs. universe

Stemming is putting words into equivalence classes. Two kinds of errors can happen:
● two words with different stems are reduces to the same stem (university vs. universe; 

useful vs. us)
● two words with the same stem are reduced to different stem

 What remains from the original document after preprocessing is put in the inverted index. Basically, 
the index is list of lists. Each word points to a list which contains the documents where the word 
occurs. The index is stored in a file on disk. The file must allow random access. The information in the 
file is compressed. Note that there are other types of indexes, but the inverted index is the most 
common one.

The term-document matrix: the index is the physical representation while the term-document matrix 
is the logical representation of the indexed data. If there are M unique words and N documents in the 
corpus the term-document matrix is an M  by N matrix where entry (i,j) contains how many times word 
i occurs in document j. This matrix is usually very sparse: 99% of the entries are zero. If you are to 
store that matrix on file you will store the matrix in a sparse format. Not surprisingly that format looks 
exactly like the inverted index. Using this matrix we will do operations on its
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● columns when we want to compare or manipulate documents
● rows when we want to compare and manipulate words.

What is a model? An approximation of reality i.e. by definition not exact. Sometimes even clearly 
wrong.
What is a retrieval model? We want to model relevance; therefore the model needs to answer or 
explain the question “is a given document relevant to a particular query?”.
How do we know if the model is good? The model is used to obtain predictions; in Information 
Retrieval the model predicts if a document is relevant to a query. To find out if a model is good, run the 
model (i.e. compute predictions) on a test set of queries and look at the results.

What retrieval models are there:
● Boolean (the simplest)
● Vector Space (the next simplest)
● Language model (requires basic probability to understand it)
● Okapi (also based on probability, more complicated than the language model; it was the first 

model that worked well and is still difficult to beat).
● KL-distance model: related to the language model, but derived from the perspective of 

Information Theory. 
● Page rank: looks at the link structure of the web. The assumption is that a page is of high quality 

if many pages of high quality point to it. Not related to the concept of relevance. However, 
when used in combination with a text based model (Page rank is linked-based) can improve the 
quality of the search results.

● Many more

What is set retrieval and what is ranked retrieval? 
● Set retrieval: the model returns a set of documents, unranked; only the boolean model is an 

example of this category.
● Ranked Retrieval: the model ranks the documents, such that documents that match the query 

better are on top of the list.

Boolean model: accepts the queries that are in propositional logic, that is queries like
“INFORMATION” AND “RETRIEVAL”,
“INFORMATION” OR “RETRIEVAL”
(NOT “INFORMATION”) AND RETRIEVAL
NOT ( (NOT “INFORMATION”) OR  RETRIEVAL)

Why is the boolean model good: it's simple to understand how it works, there is no uncertainty in the 
results, some people will intuitively distrust something that is not deterministic. 
Why is the boolean model bad: requires a lot of experience and effort for the user to use the system. 
The boolean model is an example of a set retrieval model. However, ranked lists are easier to process 
by humans. Human time is precious, one should concentrate more attention on the documents that are 
likely to be relevant. Those are put on top of the list by the search engine.
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Extended boolean model: queries also contain positional requirements about words, for example
“INFORMATION” NEAR(5) “RETRIEVAL”

Read this query as “the word information has to be at most 5 words away from retrieval” in the 
document.

Vector space model: the idea is that each document is represented as a vector in “word space”. This 
means that we treat the words as the axes of the M-dimensional coordinate system, where M is the 
number of unique words in the collection. The documents are points (vectors) in this coordinate 
system. The assumption is that the angle between two vectors corresponds to the “semantic” similarity 
between two documents. The query is treated as a document in the sense that it also is represented as a 
vector in the same coordinate system. Then as a  measure of the relevance of a document to a query we 
take the cosine between the document vector and the query vector.

Why not use the euclidean distance (i.e .the distance between two points) instead of the cosine of the 
angle between the two vectors? Because we need to account for document length. Let d be a document. 
Let d(n) be a document that consists of n copies of d pasted together. Notice that the euclidean distance 
between d and d(n) will grow with n. However the cosine will stay the same.

What is the idf (inverse document frequency) of a term (word)? Let df(term) be the number of 
documents in which a term occurs; let N be the number of documents in the collection (or corpus). 
Then idf(term) = log( N / df(term)).
What is the idf of a term that appears

● in all the documents: it is idf(term) = log(N / df(term)) = log(N/N) = log(1) = 0
● in most of the documents: it is low. This means that the term has low discriminating power, 

cannot use the term to discriminate well between documents
● in only a few documents: it is high. The term has high discriminating power.

What is the reason for tf-idf normalization? Several reasons:
● For idf: not all words are equal. Compare for example the word “the” with the word “sport”. 

When you hear a word you can associated it with a context, for example you can associate 
“sport” with “baseball”, “basketball” , etc. You cannot meaningfully associate “the” with 
anything. Idf measures the discriminating power of the word. Discriminating means one can 
discriminate between different documents or context on the basis of the word.

● For tf (term frequency): not all documents are of the same length. Let raw-tf(w, d) be the 
number of times the word “w” occurs in document “d”. Then the simplest form of  tf(w, d) can 
be defined as 
tf(w, d) = raw-tf(w,d) / (the length of document d). The length of the documents is the sum of 
the counts of all words that occur in the document, or to put it simply the number of total words 
in the document. If tf(w, d) is high the word “w” is important for the document “d” (for more 
explanation see also why normalize by document length below).

● Notice that tf and idf work in opposite ways. The words that will have high tf(w,d) are the stop 
words, because they appear frequently in any document (and in most documents). But the stop 
words are the ones that will have low idf. On the contrary, most of the words that appear in a 
few documents, generally tend to appear with low counts (in the documents where they do 
appear). Therefore their idf is high and there tf is low. What about words that appear a lot but in 
only a few documents? (see next bullet point)

● A word “w” will be important for a document d, if two things are true
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● the word w has high discriminating power; this means it has high idf, i.e. does not 
appear in many documents.

● the word w appears many times in document d, this means it has high tf.
To find the words that achieve those two goals we multiply the tf and the idf.

● Note that 
● idf is a corpus statistic, because we need to know the number of documents where the 

word appears.
● tf is document statistic, because we need to have only local information about the 

document in which the word appears. 

Why are there so many variants of the formulas for tf-idf (for example 
tf(w, d) = raw-tf(w,d)/(doc_length) vs. tf(w,d) = raw-tf(w, d) / maxv(raw-tf(v, d)), etc.)?
For the following reasons:

● there are many models of how information retrieval should work, each will derive its own tf-idf 
version (you can also read this statement as: no one knows how to do it “correctly”, so every 
one comes with her own scheme)

● sometimes one version of tf-idf works better than another.

What is the reason for document normalization? Because not all documents are equal, some are 
longer some are shorter. What happens if a document is long? The following two things

● longer documents will contain a certain term more than a shorter document on the same topic. 
This results in artificially higher score of the longer document.

● A longer document will contain more distinct words than a short documents, therefore it will 
match more queries. If it matches more queries, then it is not very much on the topic for each of 
these queries, but still it may be ranked higher than a shorter document.

We need to “make documents equal”, therefore we normalize for their length. See how the document 
normalization is implicit in the cosine formula. The cosine is the dot-product between two normalized 
vectors. Document normalization is also present in the tf (term-frequency) formula.

Why is a document long? For the following two reasons:
● all the time the document talks about the same thing, that is the document is verbose
● the document covers many topics, each term of the query matches a small segment. Now you 

can see what happens if the scoring function does not take into account how many words apart 
the words from the query occur. In that case, we can suffer loss of retrieval quality.

What is the relationship between the boolean and the vector space model? 
● If the term-document matrix contains only zeros and ones and if the boolean model query is an 

OR query then a document matches a query in the boolean model if and only if the cosine 
between the query and the document is not 0.

● To achieve efficient implementation of the vector space model, we can run a boolean OR query, 
and then score only the documents in the Vector space model which satisfy the boolean OR-
query.
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What is a scoring function? Each IR model has a scoring function. The scoring function, denoted by
Score(document, query), returns a number that means “how certain is the model that the 

document is relevant to the query”. Typically the scoring function looks like this (please read the 
comments in the pseudo-code as well)

Function Score(document, query)
accumulator = 0;
For each term that appears in the query do

w = weight(term, document) //how important is the term for the document
//the weight is usually 0 if word does not
//occur in the document

accumulator += w //evidence accumulation
EndFor
accumlator /= length(document) //usually the score needs to be normalized

//to account for documents of different length
//however some models may do the 
//normalization differently, normalization
//may already be present in the weight(term, doc)

return accumulator
EndFunction

Note: the above function is not for a particular model, it is a “template” function that has been extracted 
by observing how different models work. Note that is has the following components

● how should each word be weighted. “Important” words for the document should be weighted 
higher.

● Evidence accumulation: each word adds some evidence that the document is relevant
● document normalization: if you don't normalize, long documents will have misleadingly higher 

scores and short documents will have misleadingly lower scores. Note that document length 
may be accounted for in the weight(term, document) already.


