

ISU535 05X2 virgil pavlu



### relevance feedback

#### Observations:

- A Query only approximates an information need
- Users often start with short queries (poor approximations)
- *People* can improve queries after seeing relevant and non-relevant documents
  - by adding and removing terms
  - by reweighting terms
  - by adding structure (AND, OR, NOT, PHRASE, etc)

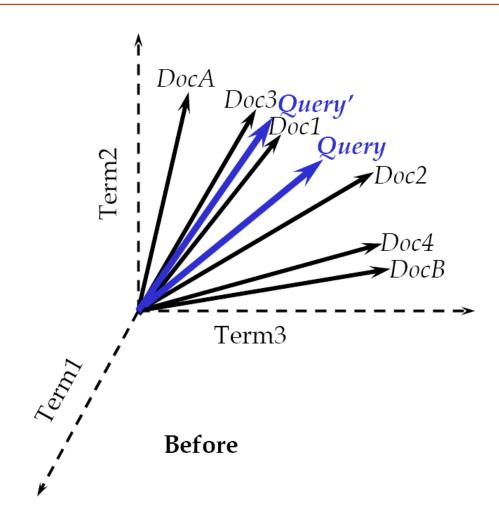
**Question**: Can a better query be created automatically by analyzing relevant and nonrelevant documents?



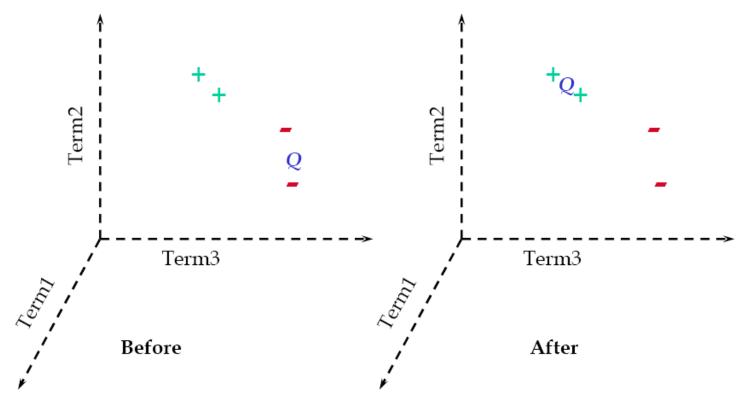
### relevance feedback

- "Real" relevance feedback
  - System returns results
  - User provides some feedback
  - System returns different—better, we hope—results
- "Assumed" relevance feedback
  - System gets results but does not return them
  - Uses returned results to "guess" what was probably meant
  - Modifies query without supervision
  - System returns enhanced—and we hope better—result list
- Occurs in different models
  - Vector space is used most often (we'll focus on it)
  - Language modeling
- Good success with "assumed" relevance (relevance models)
- Less obviously good results for "real" feedback

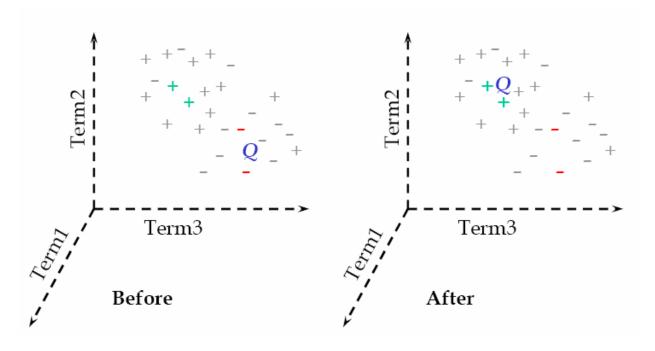












How can relevance feedback save time if a person has to read documents?



### relevance feedback

**Hypothesis**: A better query can be created *automatically* by analyzing relevant and non-relevant documents

- Relevant passages and phrases can also be identified, but this is not common
- Assumes relevant and non-relevant documents are easy for people to identify
- Can be viewed as a form of "query-by-example"
- Common Simplifying Assumptions:
  - Unstructured query (terms and weights, but no operators)
  - Binary relevance judgements (relevant, not relevant)



- Goal: Move new query closer to relevant documents
- **Approach**: New query is a weighted average of original query, and relevant and non-relevant document vectors

$$Q' = Q + \alpha \frac{1}{|R|} \sum_{D_j \in R} D_j - \beta \frac{1}{|NR|} \sum_{D_j \in NR} D_j$$

Often written Q´=αQ+βR-γN

where α and β are constants that represent the relative importance of positive and negative feedback

#### Variations:

- Different values of a and β
- Vector length (number of terms added to the query)
- Which documents are used for training
- all, best, uncertain, etc



$$Q' = Q + \alpha \frac{1}{|R|} \sum_{D_j \in R} D_j - \beta \frac{1}{|NR|} \sum_{D_j \in NR} D_j$$

Original Query: (5, 0, 3, 0, 1)

Document D1, Relevant:

(2, 1, 2, 0, 0)

Document D2, Non-relevant:

(1, 0, 0, 0, 2)

$$a = 0.50, \beta = 0.25$$



### example

#### Original TREC Topic:

<num> Number: 106

<dom> Domain: Law and Government

<title> Topic: U.S. Control of Insider Trading

<desc> Description:

Document will report proposed or enacted changes to U.S. laws and regulations designed to prevent insider trading.

<con> Concept(s):

- 1. insider trading
- 2. securities law, bill, legislation, regulation, rule
- 3. Insider Trading Sanctions Act, Insider Trading and Securities Fraud Enforcement Act
- 4. Securities and Exchange Commission, SEC, Commodity Futures Trading Commission, CFTC, National Association of Securities Dealers, NASD

<fac> Factor(s):

<nat> Nationality: U.S.

### example: query processing (INQUERY)

#### Automatically processed query:

#### #WSUM (1.0

- !Terms from <title> field:
- 2.0 #UW50 (Control of Insider Trading)
- 2.0 #PHRASE (#USA Control) 5.0 #PHRASE (Insider Trading)
- ! Terms from <con> field:
- 2.0 #PHRASE( securities law) 2.0 bill 2.0 legislation 2.0 regulation
- 2.0 rule 2.0 #3(Insider Trading Sanctions Act)
- 2.0 #3(Insider Trading and Securities Fraud Enforcement Act)
- 2.0 #3(Securities and Exchange Commission) 2.0 SEC
- 2.0 #3(Commodity Futures Trading Commission) 2.0 CFTC
- 2.0 #3(National Association of Securities Dealers) 2.0 NASD
- ! Terms from <desc> field:
- 1.0 proposed 1.0 enacted 1.0 changes 1.0 #PHRASE (#USA laws)
- 1.0 regulations 1.0 designed 1.0 prevent
- 2.0 #NOT(#FOREIGNCOUNTRY) )



### example: relevance feedback added

Automatically modified query, top 10 documents judged:

```
#WSUM (1
3.882349 #UW50(control inside trade) 2.208832 #SUM(#usa control)
145.571381 #SUM( inside trade) 22.084291 #SUM( secure law)
22.693285 bill 20.984898 legislate 10.354733 regulate
6.540223 rule 1.529766 #OD3(inside trade sanction act)
3.290401 #OD4(inside trade secure fraud enforcement act)
4.8404 #OD4( secure exchange commission) 43.578438 sec
0.94752 #OD3( commodity future trade commission) 1.074666 cftc
2.864415 #OD4( national associate secure deal) 21.846081 nasd
0.542252 propose 2.45709 enact 0.988893 change 4.354009 #SUM(#usa
law)
0.799089 design 1.727937 prevent 0.346877 #NOT( #foreigncountry)
4.599784 drexel 2.052418 fine 1.845434 subcommittee
1.69074 surveillance 1.597542 markey 1.528179 senate
1.186563\ manipulate\ 1.101982\ pass\ 1.060453\ scandal
0.921561 \ edward)
```



#### Term Selection:

- None (original query terms, only)
- All terms
- Most common terms
- Most highly weighted terms Weighting:
- **Ide** : a=1,  $\beta=1$ , don't normalize by number of judged documents
- **Ide Dec Hi**: a=1,  $\beta=1$ , use only the highest ranked non-relevant document(s), don't normalize by number of judged documents
- **Rocchio**: Choose a and  $\beta$  such that  $a > \beta$  and  $a + \beta = 1$

$$Q' = Q + \alpha \frac{1}{|R|} \sum_{D_j \in R} D_j - \beta \frac{1}{|NR|} \sum_{D_j \in NR} D_j$$

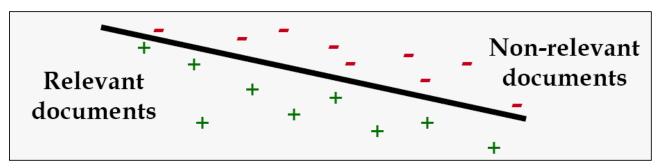


- Ide Dec Hi is effective when there are *a few* judged documents
- Rocchio ( $\alpha$ =0.75,  $\beta$ =0.25) is effective when there are many judged documents
- Expanding by *all* terms is best, but selecting *most* common terms also works well
  - Depends somewhat on the retrieval model
- Coping with negatively weighted terms
  - Vector space does not allow negative weights for cosine similarity
  - Usually drop terms that end up negatively weighted
  - Can create a "not like this" vector consisting of negative terms
- Difficult to balance issues correctly



### relevance feedback: ML

- An unstructured vector query is a linear discriminator
  - e.g.,  $W_1 * t_1 + W_2 * t_2 + ... + W_n * t_n$
- The goal is to learn weights that separate the relevant documents from the non-relevant documents



- If the documents are *linearly separable*, a learning algorithm can be chosen that is guaranteed to converge to an optimal query
- If the documents are not linearly separable, a learning algorithm can be chosen that minimizes the total amount of error



# relevance feedback: ML

- Unstructured queries:
  - Perceptron algorithm (Rocchio)
  - EG (a form of Perceptron algorithm)
  - Regression
  - Neural network algorithms
  - SVM
  - -:::
- Structured queries
  - Decision trees
  - Neural network algorithms
  - Sleeping Experts
  - Ripper
  - -:::



# rocchio and the perceptron

• The Rocchio relevance feedback algorithm is similar to the fixed increment version of the Perceptron rule:

$$\vec{Q}' = \vec{Q} \pm c\vec{D}_i \begin{cases} + \text{ if } D_i \in R \\ - \text{ if } D_i \in \overline{R} \end{cases}$$

- The Perceptron:
  - requires repeated exposure to training data,
  - requires random sampling,
  - works best if R and NR are of similar size, and
  - is optimal if R and NR can be separated by a hyperplane (otherwise it oscillates).



### relevance feedback: adding structure

#### **Basic Process:**

- Generate candidate operators (Boolean, Phrase, proximity, etc)
  - algorithms: exhaustive, greedy/selective
- Add some or all candidates to document representations
- Weight like other terms

#### **Effectiveness:**

- Extremely effective for proximity operators
- Boolean?



### relevance feedback

- Relevance Feedback could also modify document representation
  - document space modification
  - connectionist learning (changing weights in network)
- Assumptions:
  - a person's relevance judgements are consistent
  - modifications for one person are meaningful for another
- Never shown to be effective consistently
- An old idea, periodically resurfaces
  - recommender systems
- Difficult to figure out how searchers should use it



# summary (halfway)

- Relevance feedback can be very effective
- Effectiveness depends on number of judged documents
- Significantly outperforms best human queries, given enough judged documents
- Results can be unpredictable with less than five judged documents
- Not used often in production systems, e.g., Web
  - consistent mediocre performance preferred to inconsistently good/great results
  - Stick with "documents like this one" variant
- An area of very active research (many open questions)

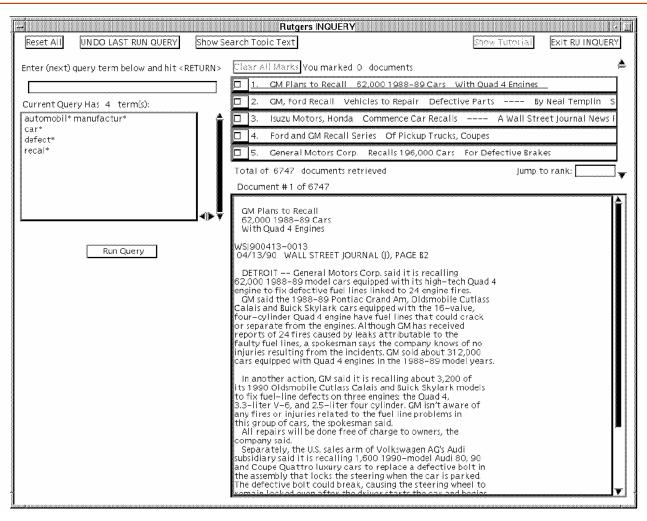


# using relevance feedback

- Relevance feedback is not widely used
- Few studies explore the user side of feedback
  - Don't necessarily answer that question, but are still interesting
- Jürgen Koenemann and Nick Belkin looked at this
  - "A case for interaction: A Study of Interactive Information Retrieval Behavior and Effectiveness", CHI 1996
- User study of 64 users
- Presented with three styles of relevance feedback
  - Opaque, relevance feedback is "magic" behind the scenes
  - Transparent, same as *opaque* but users shown expansion terms
  - Penetrable, user given chance to edit list of terms before re-run

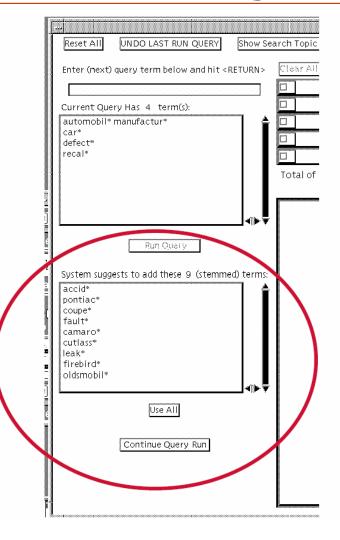


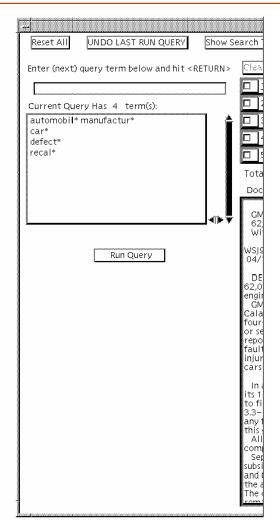
# base system used





# allowing user access





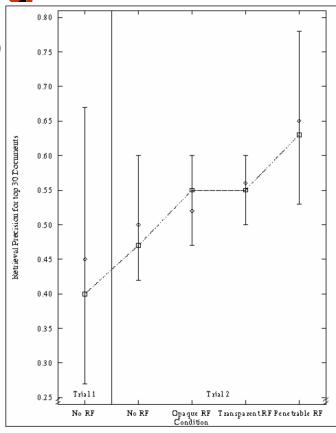


# interface experiment

- Two query construction approaches
  - First without relevance feedback
  - Second with one of three RF approaches (randomly assigned)
- Task is to construct a good long-term query
- Evaluation is based on effectiveness of final query
- No difference between users on first task



### feedback effectiveness

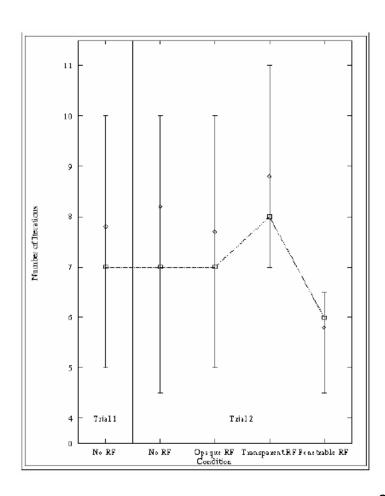


- Precision at 30 documents
- Clear improvements from use of RF
- Opaque and transparent the same (by design)
- Penetrable best
- Only statistically significant difference is between penetrable and base
- Results comparable for precision at 100documents



### feedback: behavior

- Task was to build a good query
- How many attempts do people make?
- For some reason, transparent interface encouraged an extra iteration
- Penetrable interface took one less than "normal"
- Not clear what this means



# was feedback used by searcher?

- Where did words they chose come from?
  - Copied from listsprovided by feedbackAdded automaticallyby system
- Users typed short queries
- Feedback added many terms
- Penetrable system encouraged fewer terms
  - But resulted in more effective queries (faster)

| Mean Number & Sources of Query Terms |                 |      |          |       |          |
|--------------------------------------|-----------------|------|----------|-------|----------|
| Relevance                            | User Controlled |      |          | Added |          |
| Feedback                             | User            | Copy |          | bу    | $\Sigma$ |
| Condition                            | Typed           | from | $\Sigma$ | RF    |          |
|                                      |                 | RF   |          | SYS   |          |
| <b>Topic 162:</b>                    |                 |      |          |       |          |
| None                                 | 6.9             | n/a  | 6.9      | n/a   | 6.9      |
| Opaque                               | 10.9            | n/a  | 10.9     | 35.9  | 46.8     |
| Transparent                          | 3.3             | 9.1  | 12.4     | 42.8  | 55.1     |
| Penetrable                           | 6.3             | 24.4 | 30.6     | n/a   | 30.6     |
| <b>Topic 165:</b>                    |                 |      |          |       |          |
| None                                 | 6.0             | n/a  | 6.0      | n/a   | 6.0      |
| Opaque                               | 3.8             | n/a  | 3.8      | 20.5  | 24.3     |
| Transparent                          | 4.3             | 5.3  | 9.5      | 17.8  | 27.3     |
| Penetrable                           | 3.3             | 9.5  | 12.8     | n/a   | 12.8     |
| 162&165:                             |                 |      |          |       |          |
| None                                 | 6.4             | n/a  | 6.4      | n/a   | 6.4      |
| Opaque                               | 7.3             | n/a  | 7.3      | 28.2  | 35.5     |
| Transparent                          | 3.8             | 7.2  | 10.9     | 30.3  | 41.2     |
| Penetrable                           | 4.8             | 16.9 | 21.7     | n/a   | 21.7     |



# subjective reactions

- Subjects "liked" the penetrable version
- Subjects in opaque condition expressed desire to "see and control" what happened
- Subjects comments that feedback made them "lazy"
  - Task of generating terms changed to task of selecting terms



# relevance feedback: assumed

- True relevance feedback is supervised
  - Feedback is done based on *genuine* user annotations
- What happens if we try to guess what is relevant?
- Assume many top ranked documents are relevant
  - Optionally find a collection of probably non-relevant documents
- Modify query on that assumption
- Re-run that new query and show results to user
- What happens?
- Pseudo-relevance feedback
  - Blind relevance feedback
  - Local feedback

**–** ...



# Local Context Analysis

- Assumed relevance feedback
- Observations
  - Existing techniques improved queries on average
  - But some queries had serious drop in effectiveness
  - Top ranked documents were not always right
  - Often caused by match of a single query word
  - Not every word is useful to add to queries
- Inspired creation of LCA
- Major focus is on getting better terms for expansion
  - Finding terms to consider
  - Selection of terms
  - Weighting of selected terms



# selecting candidate terms

- Run query to retrieve passages
  - Similar to most "assumed" relevance work
  - Passage-retrieval unique to LCA (at the time)
  - Uses 300-word passages
- Select expansion concepts from retrieved set
- Why passages?
  - Minimizes spurious concepts that occur in lengthy documents



# selecting candidate terms

- Parse document collection
- Generate part of speech tagging
- The/AT bill/NN has/HVZ been/BEN reworked/VBN since/CS it/PPS was/BEDZ introduced/VBN ,/, in/IN order/NN to/TO meet/VB some/DTI employer/NN objections/NNS ./. But/CC the/AT measure/NN still/RB is/BEZ opposed/VBN by/IN the/AT construction/NN industry/NN ,/, which/WDT argues/VBZ that/CS it/PPS would/MD impose/VB unionism/NN and/CC higher/JJ costs/NNS on/IN much/AP of/IN the/AT industry/NN 's/\$ work/NN ./.
  - Select only noun phrases
    - Shown to be critical in most retrieval systems
    - Generally particularly useful for expansion
    - Could easily be extended if useful
  - Adjective-noun phrases, verbs, ...
    - Note that tagging is automated, so makes mistakes!



# weighting terms

- Want "concepts" that occur near query words
  - The more query words they occur near, the better
  - Count co-occurrences in 300-word windows of text (passages)
- To avoid coincidental co-occurrence in a large document
- Uses the following ad-hoc function to weight concepts

$$f(c,Q) = \prod_{w_i \in Q} (0.01 + \text{co\_degree}(c,w_i))^{idf(w_i)}$$
 
$$\text{co\_degree}(c,w) = \max \left(\frac{n_{cw} - En(c,w) - 1}{n_c}, 0\right) \text{Importance of word}$$
 
$$En(c,w) = \frac{n_w n_c}{N} \text{Measure co-occurrence}$$
 
$$idf(w) = \min(1.0, \log_{10}(N/n_w)/5)$$

Floor the IDF component

Slow its growth



# using expanded query

- Developed using Inquery
- Incorporate using weighted sum
  - Weight original query and expansion query equally

$$Q_{new}$$
 = #wsum( 1.0 1.0  $Q_{original}$  1.0  $Q_{lca}$ )

$$Q_{lca}$$
 = #wsum( 1.0 1.0  $c_1$  1.0  $c_2$  ... 1.0  $c_{30}$  )

- Variations
  - Lower weight on each subsequent term
    - More important the more terms that are added
  - Weight original query equally with a single expansion concept
    - Only works when query is not very reliable

# example

TREC query 213

- As a result of DNA testing, are more defendants being absolved or convicted of crimes?

#### • Expansion concepts

dna-pattern dna-testing lifecodes dna-test-results dna-test dna-lab dna-evidence dna-profile defense-attorneys-challenging-reliability bureau-expert new-york-city-murder-case lawyer-peter-neufeld procedures-track-record michael-baird dna-laboratory oregon-rape-casemark-storolow laboratory-geletin supermarket-merchandise thomas-caskey procedures-lifecode lifecodes-corp tests-reliability maine-case rape-conviction dna-strand



### summary

- Relevance feedback
  - Real or assumed
- Real relevance feedback
  - Usually improves effectiveness significantly
  - Not always stable with very few documents judged
  - Difficult to incorporate into a usable system
  - "Documents like this one" is a simple instance
- Assumed relevance feedback
  - Also called "pseudo relevance feedback" or "local feedback"
- Or "quasi-relevance feedback" or ...
  - Rocchio-based approaches effective but unstable
  - LCA comparably effective (maybe better) but more stable
  - Relevance models provide formal framework