/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- seginit
 - walkpgdir
 - mappages
 - setupkvm
 - kvmalloc
 - switchkvm
 - switchuvm
 - inituvm
 - loaduvm
 - allocuvm
 - deallocuvm
 - freevm
 - clearpteu
 - copyuvm
 - uva2ka
 - copyout
 
   1 #include "param.h"
   2 #include "types.h"
   3 #include "defs.h"
   4 #include "x86.h"
   5 #include "memlayout.h"
   6 #include "mmu.h"
   7 #include "proc.h"
   8 #include "elf.h"
   9 
  10 extern char data[];  // defined by kernel.ld
  11 pde_t *kpgdir;  // for use in scheduler()
  12 struct segdesc gdt[NSEGS];
  13 
  14 // Set up CPU's kernel segment descriptors.
  15 // Run once on entry on each CPU.
  16 void
  17 seginit(void)
  18 {
  19   struct cpu *c;
  20 
  21   // Map "logical" addresses to virtual addresses using identity map.
  22   // Cannot share a CODE descriptor for both kernel and user
  23   // because it would have to have DPL_USR, but the CPU forbids
  24   // an interrupt from CPL=0 to DPL=3.
  25   c = &cpus[cpunum()];
  26   c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
  27   c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
  28   c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
  29   c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
  30 
  31   // Map cpu, and curproc
  32   c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);
  33 
  34   lgdt(c->gdt, sizeof(c->gdt));
  35   loadgs(SEG_KCPU << 3);
  36   
  37   // Initialize cpu-local storage.
  38   cpu = c;
  39   proc = 0;
  40 }
  41 
  42 // Return the address of the PTE in page table pgdir
  43 // that corresponds to virtual address va.  If alloc!=0,
  44 // create any required page table pages.
  45 static pte_t *
  46 walkpgdir(pde_t *pgdir, const void *va, int alloc)
  47 {
  48   pde_t *pde;
  49   pte_t *pgtab;
  50 
  51   pde = &pgdir[PDX(va)];
  52   if(*pde & PTE_P){
  53     pgtab = (pte_t*)p2v(PTE_ADDR(*pde));
  54   } else {
  55     if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
  56       return 0;
  57     // Make sure all those PTE_P bits are zero.
  58     memset(pgtab, 0, PGSIZE);
  59     // The permissions here are overly generous, but they can
  60     // be further restricted by the permissions in the page table 
  61     // entries, if necessary.
  62     *pde = v2p(pgtab) | PTE_P | PTE_W | PTE_U;
  63   }
  64   return &pgtab[PTX(va)];
  65 }
  66 
  67 // Create PTEs for virtual addresses starting at va that refer to
  68 // physical addresses starting at pa. va and size might not
  69 // be page-aligned.
  70 static int
  71 mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
  72 {
  73   char *a, *last;
  74   pte_t *pte;
  75   
  76   a = (char*)PGROUNDDOWN((uint)va);
  77   last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
  78   for(;;){
  79     if((pte = walkpgdir(pgdir, a, 1)) == 0)
  80       return -1;
  81     if(*pte & PTE_P)
  82       panic("remap");
  83     *pte = pa | perm | PTE_P;
  84     if(a == last)
  85       break;
  86     a += PGSIZE;
  87     pa += PGSIZE;
  88   }
  89   return 0;
  90 }
  91 
  92 // There is one page table per process, plus one that's used when
  93 // a CPU is not running any process (kpgdir). The kernel uses the
  94 // current process's page table during system calls and interrupts;
  95 // page protection bits prevent user code from using the kernel's
  96 // mappings.
  97 // 
  98 // setupkvm() and exec() set up every page table like this:
  99 //
 100 //   0..KERNBASE: user memory (text+data+stack+heap), mapped to
 101 //                phys memory allocated by the kernel
 102 //   KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
 103 //   KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
 104 //                for the kernel's instructions and r/o data
 105 //   data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP, 
 106 //                                  rw data + free physical memory
 107 //   0xfe000000..0: mapped direct (devices such as ioapic)
 108 //
 109 // The kernel allocates physical memory for its heap and for user memory
 110 // between V2P(end) and the end of physical memory (PHYSTOP)
 111 // (directly addressable from end..P2V(PHYSTOP)).
 112 
 113 // This table defines the kernel's mappings, which are present in
 114 // every process's page table.
 115 static struct kmap {
 116   void *virt;
 117   uint phys_start;
 118   uint phys_end;
 119   int perm;
 120 } kmap[] = {
 121  { (void*)KERNBASE, 0,             EXTMEM,    PTE_W}, // I/O space
 122  { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},     // kern text+rodata
 123  { (void*)data,     V2P(data),     PHYSTOP,   PTE_W}, // kern data+memory
 124  { (void*)DEVSPACE, DEVSPACE,      0,         PTE_W}, // more devices
 125 };
 126 
 127 // Set up kernel part of a page table.
 128 pde_t*
 129 setupkvm(void)
 130 {
 131   pde_t *pgdir;
 132   struct kmap *k;
 133 
 134   if((pgdir = (pde_t*)kalloc()) == 0)
 135     return 0;
 136   memset(pgdir, 0, PGSIZE);
 137   if (p2v(PHYSTOP) > (void*)DEVSPACE)
 138     panic("PHYSTOP too high");
 139   for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
 140     if(mappages(pgdir, k->virt, k->phys_end - k->phys_start, 
 141                 (uint)k->phys_start, k->perm) < 0)
 142       return 0;
 143   return pgdir;
 144 }
 145 
 146 // Allocate one page table for the machine for the kernel address
 147 // space for scheduler processes.
 148 void
 149 kvmalloc(void)
 150 {
 151   kpgdir = setupkvm();
 152   switchkvm();
 153 }
 154 
 155 // Switch h/w page table register to the kernel-only page table,
 156 // for when no process is running.
 157 void
 158 switchkvm(void)
 159 {
 160   lcr3(v2p(kpgdir));   // switch to the kernel page table
 161 }
 162 
 163 // Switch TSS and h/w page table to correspond to process p.
 164 void
 165 switchuvm(struct proc *p)
 166 {
 167   pushcli();
 168   cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0);
 169   cpu->gdt[SEG_TSS].s = 0;
 170   cpu->ts.ss0 = SEG_KDATA << 3;
 171   cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE;
 172   ltr(SEG_TSS << 3);
 173   if(p->pgdir == 0)
 174     panic("switchuvm: no pgdir");
 175   lcr3(v2p(p->pgdir));  // switch to new address space
 176   popcli();
 177 }
 178 
 179 // Load the initcode into address 0 of pgdir.
 180 // sz must be less than a page.
 181 void
 182 inituvm(pde_t *pgdir, char *init, uint sz)
 183 {
 184   char *mem;
 185   
 186   if(sz >= PGSIZE)
 187     panic("inituvm: more than a page");
 188   mem = kalloc();
 189   memset(mem, 0, PGSIZE);
 190   mappages(pgdir, 0, PGSIZE, v2p(mem), PTE_W|PTE_U);
 191   memmove(mem, init, sz);
 192 }
 193 
 194 // Load a program segment into pgdir.  addr must be page-aligned
 195 // and the pages from addr to addr+sz must already be mapped.
 196 int
 197 loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
 198 {
 199   uint i, pa, n;
 200   pte_t *pte;
 201 
 202   if((uint) addr % PGSIZE != 0)
 203     panic("loaduvm: addr must be page aligned");
 204   for(i = 0; i < sz; i += PGSIZE){
 205     if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
 206       panic("loaduvm: address should exist");
 207     pa = PTE_ADDR(*pte);
 208     if(sz - i < PGSIZE)
 209       n = sz - i;
 210     else
 211       n = PGSIZE;
 212     if(readi(ip, p2v(pa), offset+i, n) != n)
 213       return -1;
 214   }
 215   return 0;
 216 }
 217 
 218 // Allocate page tables and physical memory to grow process from oldsz to
 219 // newsz, which need not be page aligned.  Returns new size or 0 on error.
 220 int
 221 allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
 222 {
 223   char *mem;
 224   uint a;
 225 
 226   if(newsz >= KERNBASE)
 227     return 0;
 228   if(newsz < oldsz)
 229     return oldsz;
 230 
 231   a = PGROUNDUP(oldsz);
 232   for(; a < newsz; a += PGSIZE){
 233     mem = kalloc();
 234     if(mem == 0){
 235       cprintf("allocuvm out of memory\n");
 236       deallocuvm(pgdir, newsz, oldsz);
 237       return 0;
 238     }
 239     memset(mem, 0, PGSIZE);
 240     mappages(pgdir, (char*)a, PGSIZE, v2p(mem), PTE_W|PTE_U);
 241   }
 242   return newsz;
 243 }
 244 
 245 // Deallocate user pages to bring the process size from oldsz to
 246 // newsz.  oldsz and newsz need not be page-aligned, nor does newsz
 247 // need to be less than oldsz.  oldsz can be larger than the actual
 248 // process size.  Returns the new process size.
 249 int
 250 deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
 251 {
 252   pte_t *pte;
 253   uint a, pa;
 254 
 255   if(newsz >= oldsz)
 256     return oldsz;
 257 
 258   a = PGROUNDUP(newsz);
 259   for(; a  < oldsz; a += PGSIZE){
 260     pte = walkpgdir(pgdir, (char*)a, 0);
 261     if(!pte)
 262       a += (NPTENTRIES - 1) * PGSIZE;
 263     else if((*pte & PTE_P) != 0){
 264       pa = PTE_ADDR(*pte);
 265       if(pa == 0)
 266         panic("kfree");
 267       char *v = p2v(pa);
 268       kfree(v);
 269       *pte = 0;
 270     }
 271   }
 272   return newsz;
 273 }
 274 
 275 // Free a page table and all the physical memory pages
 276 // in the user part.
 277 void
 278 freevm(pde_t *pgdir)
 279 {
 280   uint i;
 281 
 282   if(pgdir == 0)
 283     panic("freevm: no pgdir");
 284   deallocuvm(pgdir, KERNBASE, 0);
 285   for(i = 0; i < NPDENTRIES; i++){
 286     if(pgdir[i] & PTE_P){
 287       char * v = p2v(PTE_ADDR(pgdir[i]));
 288       kfree(v);
 289     }
 290   }
 291   kfree((char*)pgdir);
 292 }
 293 
 294 // Clear PTE_U on a page. Used to create an inaccessible
 295 // page beneath the user stack.
 296 void
 297 clearpteu(pde_t *pgdir, char *uva)
 298 {
 299   pte_t *pte;
 300 
 301   pte = walkpgdir(pgdir, uva, 0);
 302   if(pte == 0)
 303     panic("clearpteu");
 304   *pte &= ~PTE_U;
 305 }
 306 
 307 // Given a parent process's page table, create a copy
 308 // of it for a child.
 309 pde_t*
 310 copyuvm(pde_t *pgdir, uint sz)
 311 {
 312   pde_t *d;
 313   pte_t *pte;
 314   uint pa, i, flags;
 315   char *mem;
 316 
 317   if((d = setupkvm()) == 0)
 318     return 0;
 319   for(i = 0; i < sz; i += PGSIZE){
 320     if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
 321       panic("copyuvm: pte should exist");
 322     if(!(*pte & PTE_P))
 323       panic("copyuvm: page not present");
 324     pa = PTE_ADDR(*pte);
 325     flags = PTE_FLAGS(*pte);
 326     if((mem = kalloc()) == 0)
 327       goto bad;
 328     memmove(mem, (char*)p2v(pa), PGSIZE);
 329     if(mappages(d, (void*)i, PGSIZE, v2p(mem), flags) < 0)
 330       goto bad;
 331   }
 332   return d;
 333 
 334 bad:
 335   freevm(d);
 336   return 0;
 337 }
 338 
 339 //PAGEBREAK!
 340 // Map user virtual address to kernel address.
 341 char*
 342 uva2ka(pde_t *pgdir, char *uva)
 343 {
 344   pte_t *pte;
 345 
 346   pte = walkpgdir(pgdir, uva, 0);
 347   if((*pte & PTE_P) == 0)
 348     return 0;
 349   if((*pte & PTE_U) == 0)
 350     return 0;
 351   return (char*)p2v(PTE_ADDR(*pte));
 352 }
 353 
 354 // Copy len bytes from p to user address va in page table pgdir.
 355 // Most useful when pgdir is not the current page table.
 356 // uva2ka ensures this only works for PTE_U pages.
 357 int
 358 copyout(pde_t *pgdir, uint va, void *p, uint len)
 359 {
 360   char *buf, *pa0;
 361   uint n, va0;
 362 
 363   buf = (char*)p;
 364   while(len > 0){
 365     va0 = (uint)PGROUNDDOWN(va);
 366     pa0 = uva2ka(pgdir, (char*)va0);
 367     if(pa0 == 0)
 368       return -1;
 369     n = PGSIZE - (va - va0);
 370     if(n > len)
 371       n = len;
 372     memmove(pa0 + (va - va0), buf, n);
 373     len -= n;
 374     buf += n;
 375     va = va0 + PGSIZE;
 376   }
 377   return 0;
 378 }
 379 
 380 //PAGEBREAK!
 381 // Blank page.
 382 //PAGEBREAK!
 383 // Blank page.
 384 //PAGEBREAK!
 385 // Blank page.
 386