The Search for Clarity

Mitch Wand
August 24, 2009

@ 5o

Bloomberg

Or,
How | learned to stop worrying and
love the A-calculus

Searching for Clarity

* Most people have a limited tolerance for
complexity

e Essential vs. incidental complexity

e My approach:
— Find something | didn’t understand
— Simplify it until | did understand it
e Find the essential problem
— Explain it as simply as possible
e Find an organizing principle
e Use as little mathematical infrastructure as possible

Outline

* Some examples to aspire to
 Three stories about my early career
 Conclusions & Future Work...

Example: Newton’s Laws

* An abstraction of physical reality

— Mass, velocity, energy
 They are predictive laws
 They page in a whole set of techniques

— Algebra, calculus, etc.

What are Newton’s Laws for
Computation?

e Question raised by Matthias and Olin, 3/07
e Surprised to find: | already knew them!
 Each of these

— Introduces an abstraction of reality

— Can be used to predict behavior of physical
systems (within limits)

— Leads to a set of techniques for use

First Law (Church’s Law):

(Ax.M)N = M|N/z|

Second Law (von Neumann’s Law):

v if I/ =1

otherwise

Third Law (Hoare’s Law):

(PAB){S}P

P{while B do S}(P A —B)

Fourth Law (Turing’s Law):

TMniv(m,n) = TM,,(n)

Another example

Programming B. Weghreit® (CACM, March 1977)

lﬂguugcs .]_.":dltur _
Subgoal Induction

James H. Morris Jr. and Ben Wegbreit
Xerox Palo Alto Research Center

Subgoal induction presents a way of “thinking
recursively”; Le. assuming one’s ability to solve simpler
problems and generating sclutions to more complex
problems.

11

Subgoal Induction

e Goal: prove partial correctness of a recursive
function

 Define an input-output predicate
— e.g., you might have
P(x;2) =22 <z < (2+1)
or whatever.

— This asserts that z is acceptable as a value for F(x).

 For each branch, get a verification condition.

12

Example

(define (F x)
at (p x)
(a x)
(b (F (c x)))))

(Vz)[p(z) = ¢(z; a(z)),
(Va, 2)[=p(x) A plelz); 2) = o(;b(2))]

Getting down to me...

Problem: Give a semantics for actors

e Why was this hard?
— This was 1973-74
— Before Sussman & Steele
— We still didn’t entirely trust metacircular interpreters
— Denotational semantics was just starting
— Operational semantics was unstructured

e Actors were about message-passing

e Message-passing was a complicated process
— Everything was an actor, including messages
— If you receive a message, how do you figure out what’s in it?
— You send it a message, of course!

— Metacircular interpreter didn’t help, since it relied on message-
passing

15

Requirements Creep Ensued

* This rapidly morphed into finding a better general
model for defining programming languages.

* Slogans:

— “every programming language includes a semantic
model of computation.”

— “every (operational) semantics seems to include a
programming language.”

— “if your semantic model is so all-fired great, why not
program in it directly?”

e | called this “programming in the model”

My proposal

e A “frame model” of computation

 Each frame consisted of
— A continuation
— A set of bindings
— An accumulator (for passing values)
— An action

 An action was a primop or a list of actions
— Generic rules for dealing with lists of actions
— Each primop was a function from frames to frames

17

JSBACH: A Semantics-Oriented
Language

Every programming language entails a model of computation--~the
the language designer's idea of how his language works. On the other
hand, each of the popular models of computation includes a program-
ning language--the language in which the “transition function® is
specified. If we had a truly perspicuous theory of computation,
there would be no need for a conventional programming language to
serve as an intermediary between our mental models and the semantic
theory; we would instead program directly in terms of the model.

Our "programming language" would then be the language of the model.
A conventional programming language makes & choice of some constructs
from the model; each such cholce is a point of arbitrariness. Con-
sequently, one way of designing an exceptionally “clean" programming

language 1s to deal in terms of an explicit semantic theory of compu-
tation.

18

Submitted to 2"¢ POPL (1974)

The submitted summaries should be about 1000-2000 words long, should
make clear the significance and originality cf the proposed paper and

should include comparisons with and references to relevant literature.
.-ﬂ-"'_'_-__—-_|

The deadline for submission of summaries iEiHHQUBt 15, 1974, |

Authors will be notified of acceptance or rejectlom by September 30, 1974,

and the accepted papers, typed on special forms, will be due at the
above address by November 15, 1974.

The program committee consists of Alfred V. Aho, Susan L. Graham,
Carl Hewitt, M. Douglas Mcllroy, James H. Morris and John C. Reynolds
{(Chairman). . ' -

Did NOT cite Reynolds “Definitional Interpreters for Higher-Order
Programming Languages” (1972)

19

Rejection....

6/74 submitted to POPL 74

— 7 pages, double-spaced

Rejected...

— But with encouragement from John Reynolds

12/74 submitted longer version to CACM
— Still hadn’t cited Reynolds 72

12/75 Rejected from CACM
— Ref rpt:

“This paper adds nothing significant to the state of the art.”

20

Reynolds 72

= o o L T e S == e

| sutinitional Interpreters for Higher-Order Programming Languages

s 0 Rmyrualels, Syraeuse Universiny

figher-crder programming languages (i.e.,
languages in which procedures or labels
can occur as values) are usually defined
by interpreters which are themselves

l written in a programming language based
on the lambda calculus (i.e., an
applicative language such as pure LISP}.
l Examples include McCarthy's definitien
of LISP, Landin's SECD machine, the
vienna definition of PL/I, Reynolds'

| definitions of GEDANKEN, and r=acent
unpublished work by L., Morris and

l C. Wadsworth. Such definitions can ke
zlassified according to whoethar the
interpreter contains higher-order
funetions, and whether the order of
wplication {i.e., call-by-value versus
rall=by=-name} in the defined language

ﬁﬂr. Ac.;! ,_\Mmi f,wj’ (Zshw, [72), 17 - M.

M AR

INTRODUCTION

An important and frequently used
method of defining a programming language
iz to yive an interprater for the language
which is written in a second, hopefully
better understood language. (We will
call these two languages tha dafinad
and defining languages, respectively.)

In this paper, we will desecribe and
claszsify several varieties of such
interpreters, and show new they may be
derived from one another by informal but
constructive methods. Although our
approach to "constructive classification"
is original, the paper is basically an
attempt to review and systematize
previous wark in tha Ffield. and we have

21

Definitional Interpreters for Higher-
Order Languages

* Introduced a recipe for building an
interpreter:

1. Start with interpreter using recursion, higher-
order functions, whatever.

2. Convert to CPS (“tail form”)

3. Choose first-order representations for the
higher-order functions (“defunctionalize”)

4. (implicit) Convert to a flowchart-register machine
[McCarthy 62]

22

So when did | read Reynolds 727

e Sometime in early 1975 (Still before S&S 75)
e This put the last nail in the coffin for JSBACH

— All the real action seemed to be in the “atomic
actions” of the model

— Reynolds 72 made it clear that the rest was
unimportant, too.

23

December 1975: Lightning Strikes!

M L

(RO F

MASSACHUSETTS INSTITUTE OF TECHNOLOCY
ARTIFICIAL INTELLICENCE LABORATORY

Al Memo No. December 1975
SCHEME
AN INTERPRETER FOR EXTENDED LAMBDA CALCULUS
by
Gerald Jay Sussman and Guy Lewis Steele Jr.
Abstract:

Inspired by ACTORS [Greif and Hewitt] [Smith and Hewitt], we have
implemented an interpreter for a LISP-like language, SCHEME, based on the
lambda calculus [Church], but extended for side effects, multiprocessing, and

process synchronization. The purpose of this implementation is tutorial. We
wish to:

(1) alleviate the confusion caused by Micro-PLANNER, CONNIVER, etc. Dby

]

24

1976: We play with Scheme

e Many tiny Scheme implementations in Lisp

e Studied recursion-removal, etc.

25

coDa
{+ #elink# [Fexpd Henvd Hevid funkd a felinkd1) (DOEVAL x)

(x a)

[;EPAL xn) = (+ #envéd n) (DOEVAL x)
(RETURNTO v c) = [+ #elink# c} (RETUEN W)

(RETUEN v) = (+ 000 v) (eond

if #olink# then (+ Fexpd <1 Felink#>)
{+ Fenvd <2 Folinkd=)
{(+ #Hevid <3 #olink#=)
(+ fFuni# <4 felink#=)
{+ #po# <5 #elinkd>)
{(+ #elink# <6 #Felink#>)

else (error PROCEZS-RAN-OUT #exp# FAIL-ACT))

(DOEVAL x) = (+ Aexp# x) (+ Fpo# '(cond
if (atom fexp#) then (FEFURN [cond
if (or (numberp Fexp#) (primop #exp#)) then Hexpd
iT (assq #exp# Fenvd) then <2 As5g>
else (symeval #exp#))
f (get <1 #exp#> QUICK) then (RETURN (eval GET))
{get <1 fexpf> SLOW) then <CEVAL (eval GET)>
{get <1 #exp#> MOVING) then <NEVAL (eval GET)>
{get <1 Fexpf> MACRO) then <cEr [Hexp#]>
ge <DOEVLIS (econd
if (same <1 (ecar Hexp#)> X) then [[{car Aexp#)] (edr Hexp#)]
else [[] dexp#])=)}

l-l-l:-l-
l—l:

i
i

iy

i

(DOEVLIS & u) = (+ #evid &) (+ #unid u) (+ #pc¥ "(cond
11 #unk# then (CEVAL (car #unk#) '(DOEVLIS (snoc #Hevid DOO0) (edr dHuni#d))
if (atom {car #evi#)) then (RETUEN <{car #evi#)(cdr fevi#)=»)
If (same <1 (car #evi#l>» X) then (NEVAL <3 (car Kevi#)>
{pairitis <2 [car #evi#)> (cdr Fevi#) #envd))
f (same <1 (car #evi#)> B) then (NEVAL <3<2 (car #evif)>>
(pairiis <292 [car #evi#)s>> (cdr #evid) <3 (car #evid#):))
if (zame <1 (car #eviB#)> &) then (RETURNTO =2 fevif> <2 (car fevi#):)
else {(error BAD-FUNCTION-EVARGLIST #exp# PAIL-ACT)))

LIZSE

quote zguiek <2 fexp#:
define zguick (setrl <2 #expds [B <3 dexp#> [1]1)
A zZguick [B Hexp# #envi]
if zslow [<2 Hexpf> '"(DOEVAL (cond if OO0 then <3 fexpd> else <4 fexpd=))]
evaluate =slow [<2 ¥expd> '(poEvaLl OO0]
cateh =Zmoving [<3 fexp#> {(cons [<2 Fexpl> [& ¥elink#]] #envi)]
Labelks Smoving [<3 #fexp#> (ncone (hiabels (mapecar "(3 (d}
[<1 d> [8 <2 d> [1]1]) <2 FHexp¥=)}) dHenvid)]

(hiabels n) = (mape "(A (vc) (change <3<2 ve>> n)) n) n
(EVAL = n} = (+ #eclink# [[J [J [J C1 L1 [1]) (WNEVAL x n)

(repeat WHILE (eval #pe#))

0oo

CODA: A language on a page
(Dan Friedman, early 1976)

26

Continuation-Based Program
Transformation Strategies (1980)

e |dea: analyze the algebra of possible
continuations for a given program

* Find clever representations for this algebra

— Defunctionalization (Reynolds)

27

Example

(define (fact n)
(define (fact-loop n k)
(it (zero? n)
(k 1)
(fact-loop (- n 1) klambda VW) (k (*n v))j)))
(fact-loop n [(Iambda OED)))

k -:= (lambda (v) v) | (Jambda (v) (k (* n v)))

x~
[

(lambda (v) (" m v))

28

Example, cont’d

k -:= (Jlambda (v) (* m v))
(lambda (v) (¢ mv)) == nm

(lambda (v) v) == 1

(lambda (v) (K * nv))) => (* kn)
(k v) => (* k v)

(define (fact n)
(define (fact-loop n k)
(it (zero? n)
k

(fact-loop (- n 1) (* k n))))
(fact-1oop n 1))

29

Where did this come from?

P Sans
I'rFll.ﬂlJ'p V. a4 ﬂ [I"I:'-.I-Hl fn iﬁ"'\L"‘F.HJ.II'I—..
1

9/22/76

(appas’ fm-t;ﬂ:, v.oa))

l_i.[‘h-] |J:l-1l-'__ '.'I'”; +|. ' w_ilp.l_-l'.._

Dan says:

(pairlis v a l) is “really” a transformation

of
* where did this come from? | don’t know (append (real-pairlis v a) I)

e what did this mean? | didn’t know
with a “data structure continuation”

30

But it sounded like fun,
so | set to work

9/23-29 more calculations

10/2/76: The 91-function in iterative form
— “single continuation builder; can replace w/ ctr”
— Notation uses F(x,7), (send v (C1 7)), like eventual paper.

11/27/76: outline of a possible paper, with slogans:
— “Know thy continuation”
— “There’s a fold in your future” @f;j;mffa’s -

— “Information flow patterns: passing ii stillation of
the continuation.” "

12/8/76

31

But getting it out took forever

3/77 appeared as TR

6/77 submitted to JACM

11/77 accepted subject to revisions
1/78 revised TR finished

4/78 resubmitted to JACM

2/79 accepted

Early 1980: actually appeared

32

Quaint Customs

COMPUTING CENTER
TECHNICAL UNIVERSITY

Obrkaed mira 21 pe i LK, (R E
BRNO, CZECHOSLOVAKIA

(&
Dear Sir! € h.')

lnboddbopddnllfmmldndmuml

ol rour per kﬂb waa ey - hesed § U'*%"@rﬂ_

Wik m..imkrtcs__ o Ysomab bW Aty
:cl k‘l_ ar . = Mo el "

v J/ v
JIRI KOPRIVA

e

33

Semantics-Directed Machine
Architecture (1982)

e Problem: Why did compilers work?

e State of the art:
— Start with semantics for source, target languages

— Compiler is transformation from source language to target
language

— Would like compiler to preserve semantics

Source
Language

34

Sometimes this works

e Source language in direct semantics, target
machine uses a stack.

run(complel, () = Ele| :: (

e Easy proofs (induction on source expression)
— [McCarthy & Painter 1967]

e | wrote a compiler this way
— But what about CATCH ?

35

General Case

e But usually more like:

Source Target

Langw WQuage

Source L _?3?_ L Target
Semantics Semantics

36

How to connect source and target
semantics?

e Afunction?

— In which direction?
 Arelation?

— With what properties?
 Congruence Relations

— Milne & Strachey

— Stoy -0 @
— Reynolds
— Hairy inverse-limit constructions

37

A New ldea

e Use continuation semantics for both source and
target semantics.

— Connecting direct & continuation semantics was
hard.

— My source language (Scheme!) required
continuation semantics.

e Choose clever representation of continuation
semantics that would look like machine code

38

i

i

1/28/80

39

P : Exp — Int
E: Fxp — [Int — Int] — Int

Ple]l = Elel(Mv.v)
En] = Ak.k(n)
Eler — ea] = Ak.Eler|(Avi.Elea](Avg.k(vy — v3)))

Bi(a, B)vy ... v = a(Puy ... vg)
const(n) = \k.k(n)

sub = Akvive. k(v — vo)

halt = Av.v

Ple|l = By(Ele], halt)
En] = const(n)
8[61 — 62] = B1 (8[61], 32(8[62], SUb))

Const 3 sub Const 4 sub

But the B’s are associative

Bk(Bp(aa ﬁ)a 7) — Bk+p—1<O‘7 Bk(ﬁa 7))

e Get alinear sequence of const2
“machine instructions”

e “Correct by construction” Const 3

e Could do procedures and
lexical addressing this way,

too
Const 4

sub halt

42

15t Paper: Deriving Target Code as a
Representation of Continuation
Semantics

Appeared as IlU TR 94 (6/80)
8/80 submitted to Sue Graham for TOPLAS
2/81 rejected w/ encouragement

Eventually appeared in TOPLAS 1982, with
material from the 2" paper...

43

2"d Paper: Different Advice on
Structuring Compilers and Proving
Them Correct

e Title taken from a series of papers (L. Morris, POPL
73, Thatcher, Wagner, Wright 1980)

 Did it again with a different language, different proof

e Retold the story in terms of Hoare’s abstraction
function:

— from syntactic algebra (representations) to
semantic algebra (values)

— the “master commuting diagram”

44

The Master Commuting Diagram

BoUrce
gemantics

Bource
meanings

source
programs

answers

—
e T e R S .

atates

target
prOgrams

target
machine

sguree
programs

ANEwWers

Meure 1 Master Commuting Diagram

45

Submitted to POPL 81

Dear Prof. Wand

This is to inform you that "pifferent Advice on Structurin
Compilers and Proving them Correct"” y

has been rejected for presentation at 8th POPL. Only 21 out of
122 submissions were accepted. Many of the rejected papers were
basically publishable, but not appropriate for POPL or not ready
for publication without extensive revisions. Because the program
committee must consider a large number of papers in a short time,
it is not feasible to accept papers conditionally or to explain
the reasons for rejection of individual papers.

Let me thank you again for your interest. I hope you have more
success the next time you decide to submit something for a POPL
meating.
Sincerely,
A— C Goeds

Patricia C. Goldberg

9/21/80

46

Different Advice... (long version)

Long version of POPL submission

PCF-style proof of adequacy of operational semantics for the
machine.

— Easy because only first-order.
Written 9/80 (IU TR 95)

12/80 submitted to Ravi Sethi for The Science of Programming
(later became Science of Computer Programming)

5/81 accepted subject to revision
Time passed...
9/82 withdrawn
— Good ideas had all appeared in revised TR 94, POPL 82
— Some bugs, fixable but techniqgues had become obsolete

47

I know the published version won't be this way, but I found it terri-
bly annoying to have tables and figures at the end of each section. I
mean really annoying! I have the back pages of each section ripped out

(and scattered all over my office). (Slight exaggeration.)

48

3" Paper: Semantics-Directed Machine

Architecture

e 7/81: submitted to POPL 82
— 10 pages— but double-spaced!

e Written in TROFF

49

New ldeas

Connection to reduction
Action of machine simulates reduction of the A-term.
Form of term becomes machine architecture

All you need is syntax!!

— “concrete semantics” (semantics by compositional
translation into some “well-understood metalanguage”)

Reduction is “eventually outermost”, so by general
theorem it will find a normal form if there is one.

— No longer had to worry about adequacy
— Solves the problem of that pesky bottom arrow

50

It’s a stack machine!

code ::= halt | Bk(const(n),) | Bk(sub,

config ::= code vy ... vy

halt v — v

E@constin},ﬁ/ V1 .. TR)—|BY1 .. vin
Brio(sub)B)vy ... vgwlua% By ... vk[(wg — wl)]

51

Accepted!!

After that, things got easier

POPL 82: Semantics-Directed Machine Architecture
POPL 83: Loops in Combinator-Based Compilers

POPL 84: A Types-as-Sets Semantics for Milner-style
Polymorphism

POPL 85: Embedding Type Structure in Semantics
POPL 86: Finding the Source of Type Errors

POPL 87: Macro-by-Example: Deriving Syntactic
Transformations from the Their Specifications

POPL 88 Correctness of Static Data Flow Analysis in
Continuation Semantics

+ LFP 84, 86, 88, 92) © © A pretty good

Conclusions and Future Work

e Some technical themes

— Choosing the formalism to fit the problem
* Not always category theory!
* Not always lattices & cpo’s

— Learning to take advantage of the metalanguage

* |In the 70’s, everybody said they were doing
denotational semantics

e But really they were just doing compositional
translation into A-calculus (the “well-understood
metalanguage”)

e Leave the hairy math to the mathematicians

54

Learning from experience

e Some personal themes
— Learning how to tell a compelling story.

— Learning when to try to tell the story better (or
differently).

— Learning when to give up and do something else.

55

Important topics for the next 5 years

e Macros

— Slogan: Macros should be as familiar a tool in the
programmer’s toolkit as closures.

— Goal: write a macros chapter for EOPL.

56

Important topics for the next 5 years

e Parallel and distributed programming
— Multicore, etc.
— Distributed algorithms

e How to prove properties of the algorithms

e How to implement them (& know that you’ve done it
right)

e How to program using them (& know that you’ve done
it right)

57

Important topics for the next 5 years

e The problem is not in the code
— Our code is remarkably robust
 Programs deadlock, but they rarely crash

— Problem is in the interaction between programs
and external things

e Other programs
 The Real World: hardware, people, physical objects

— The incidental complexity is the real complexity
— How can our expertise help manage this?

58

Acknowledgements

My family

Larry Finkelstein, the administration, and my
colleagues at NU CCIS (and at IU)

National Science Foundation
MIT Press

MITRE

DARPA

Mozilla Corporation
Microsoft Research

59

Acknowledgements

Boleslaw Cieselski
Will Clinger

Bruce Duba
Christopher Dutchyn
Matthias Felleisen
Robby Findler

Dan Friedman
Steven Ganz

David Gladstein
Joshua Guttman
Chris Haynes

David Herman
Gregor Kiczales
Eugene Kohlbecker
Stefan Kolbl
Vasileios Koutavas
Karl Lieberherr
Philippe Meunier
Albert Meyer

Margaret Montenyohl
Patrick O'Keefe
Dino Oliva

Johan Ovlinger

Jens Palsberg

John Ramsdell
Jonathan Rossie
Stuart Shapiro

Olin Shivers

Paul Steckler
Gregory Sullivan
Jerzy Tiuryn

Aaron Turon

Dale Vaillancourt
Dimitris Vardoulakis
Zheng-Yu Wang
Galen Williamson
David Wise

60

(not) The End (I hope!)

	The Search for Clarity
	Or,�How I learned to stop worrying and love the ¸-calculus
	Searching for Clarity
	Outline
	Example: Newton’s Laws
	What are Newton’s Laws for Computation?
	First Law (Church’s Law):
	Second Law (von Neumann’s Law):
	Third Law (Hoare’s Law):
	Fourth Law (Turing’s Law):
	Another example
	Subgoal Induction
	Example
	Getting down to me…
	Problem: Give a semantics for actors
	Requirements Creep Ensued
	My proposal
	JSBACH: A Semantics-Oriented Language
	Submitted to 2nd POPL (1974)
	Rejection….
	Reynolds 72
	Definitional Interpreters for Higher-Order Languages
	So when did I read Reynolds 72?
	December 1975: Lightning Strikes!
	1976: We play with Scheme
	Slide Number 26
	Continuation-Based Program Transformation Strategies (1980)
	Example
	Example, cont’d
	Where did this come from?
	But it sounded like fun,�so I set to work
	But getting it out took forever
	Quaint Customs
	Semantics-Directed Machine Architecture (1982)
	Sometimes this works
	General Case
	How to connect source and target semantics?
	A New Idea
	Slide Number 39
	Slide Number 40
	Slide Number 41
	But the B’s are associative
	1st Paper: Deriving Target Code as a Representation of Continuation Semantics
	2nd Paper: Different Advice on Structuring Compilers and Proving Them Correct
	The Master Commuting Diagram
	Submitted to POPL 81
	Different Advice… (long version)
	Slide Number 48
	3rd Paper: Semantics-Directed Machine Architecture
	New Ideas
	It’s a stack machine!
	Accepted!!
	After that, things got easier
	Conclusions and Future Work
	Learning from experience
	Important topics for the next 5 years
	Important topics for the next 5 years
	Important topics for the next 5 years
	Acknowledgements
	Acknowledgements
	Slide Number 61

