
Design of Class Hierarchies:

An Introduction to OO Program Design

Viera K. Proulx and Kathryn E. Gray

Northeastern University and Univesity of Utah
vkp@ccs.neu.edu and kathyg@cs.utah.edu

Pedagogy

Design Recipe

steps in the design process:

-- pedagogical intervention
-- self-regulatory learning

-- enforces documentation
-- enforces test first approach

Focus on Design

Design class hierarchies first

Design methods:
-- data driven
-- test first

Immutable data first
-- using structural recursion

Design of abstractions

Software: ProfessorJ

Language levels

Interactive environment

Targeted error-messages

Test design is supported

1

Design of Class Hierarchies:

An Introduction to OO Program Design

Viera K. Proulx and Kathryn E. Gray

Northeastern University and University of Utah

vkp@ccs.neu.edu and kathyg@cs.utah.edu

2

Overview

Our Goals, Our Team, Our Work

Curriculum: The Foundation

ProfessorJ Languages

Curriculum: The Broad View

Summary

3

Our Goals

Students should

Learn to design programs

Understand program evaluation

Be introduced to language features as they are needed

... using a class-based language (such as Java)

4

OO Program Design: Focus on Class Hierarchies

The project:

Comprehensive curriculum for program design using OO
language

Lecture notes, assignments, labs available; Book in
prepapration, supported by software (ProfessorJ)

Classroom tested (including software) for four years

Summer workshops 2003 and 2004, 2006?

CCSCNE 2005 tutorial --- SIGCSE 2006 workshop

Piloted in several secondary schools and colleges

The team:

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt

Kathryn E. Gray, Shriram Krishnamurthi, Viera K. Proulx 5

OO Program Design: Focus on Class Hierarchies

The project:

Comprehensive curriculum for program design using OO
language

Lecture notes, assignments, labs available; Book in
prepapration, supported by software (ProfessorJ)

Classroom tested (including software) for four years

Summer workshops 2003 and 2004, 2006?

CCSCNE 2005 tutorial --- SIGCSE 2006 workshop

Piloted in several secondary schools and colleges

A follow up to TeachScheme! curriculum with DrScheme languages
and the book How to Design Programs, MIT Press 2001

6

Our Solution

Design discipline + Languages and environment + Pedagogy

The complexity of programs grows in a systematic way:

The structure of the data the structure of the program

The pedagogy: self-regulatory learning and intervention support

Design Recipes guide the student and help the instructor

The tools for program design and user interactions

ProfessorJ within DrScheme: designed to support design

Learning to design abstractions

Design recipe for abstractions: rules based on examples

7

Overview

Curriculum: The Foundation

The Focus on the Design and Pedagogy

ProfessorJ Languages

Curriculum: The Broad View

Summary

8

Focus on the Design and Pedagogy

Design Recipe: the steps in the design process

Clear set of questions to answer for each step

Outcomes that can be checked for correctness and
completeness

Pedagogical foundation:

• Self-regulatory learning:

Steps in the design process with clear goals, instructions on
how to reach the goals, and a way to assess success.

• Support for pedagogical intervention:

Instructor asks at which step the student is stuck - then follows
with the questions for that step.

9

Focus on the Design and Pedagogy

Problem: Class-based design involves two complex tasks

the design of classes and class hierarchies
the design of methods for these classes

Our solution: Designing classes before designing methods

Design Recipe for classes

analyze the problem

represent the information as data

design classes of data

define examples of instances of classes

interpret the data as information
10

Focus on the Design and Pedagogy

Design recipe for designing classes:

The problem statement

we would like to paint geometric shapes -- circles, squares, and
combo-shape; see if they overlap and see if a point is inside a
shape ...

Data Definition- in (key)words

• A Shape is one of:

Circle: given by a center Point and the radius

Square: given by the NW Point the size

Combo: given by the top Shape and the bottom Shape

11

Focus on the Design and Pedagogy

Design recipe for designing classes:

The problem statement

we would like to paint geometric shapes -- circles, squares, and
combo-shape; see if they overlap and see if a point is inside a
shape ...

Data Definition- in (key)words

• A Shape is one of:

Circle: given by a center Point and the radius

Square: given by the NW Point the size

Combo: given by the top Shape and the bottom Shape

Design Recipe: class, containment, union, self-reference 12

Focus on the Design and Pedagogy

Class diagram for the IShape class hierarchy:

Corresponds exactly to the narrative data definition

Students use the diagrams to represent the data definition

13

Focus on the Design and Pedagogy

// to represent geometric shapes
interface IShape {
}

// to represent a circle
class Circle implements IShape {
 Point center;
 int radius;

 Circle(Point center, int radius){
 this.center = center;
 this.radius = radius;
 }
}

Code can be generated automatically

14

Focus on the Design and Pedagogy

Examples of IShape objects

// Examples of geometric shapes - in the Client class

Point center = new Point(100, 100);
Point nw = new Point(120, 100);

IShape c = new Circle(this.center, 50);
IShape s = new Square(this.nw, 150, 50);

IShape sc = new Combo(this.s, this.c);

Translation of data into information:

s is a square with the nw corner at coordinates (120, 100),
width 150 and height 50

15

Focus on the Design and Pedagogy

Design recipe for methods: method contains-- Part 1

Step 1: Problem analysis and data definition

 a shape is the object that invokes the method

 the user supplies the desired point

Step 2: Purpose statement and the header

// is the given point within this shape
boolean contains(Point p);

Step 3: Examples

this.c.contains(new Point(90, 110)) ---> true
this.s.contains(new Point(90, 110)) ---> false
this.sc.contains(new Point(130, 110)) ---> true 16

Focus on the Design and Pedagogy

Design recipe for methods: method contains-- Part 2

Step 4: Template -- an inventory of available data

// in the class Circle
... this.center ... -- Point
... this.center.distTo(p)... -- int
... this.radius ... -- int
... p ... -- Point
... p.distTo(Point ...) ... -- int

// in the class Combo
... this.top ... -- IShape
... this.bottom ... -- IShape
... this.top.contains(p) ... -- boolean
... this.bottom.contains(p) ... -- boolean
... p ... -- Point 17

Focus on the Design and Pedagogy

Design recipe for methods: method contains-- Part 3

Step 5: Body

// in the class Circle
boolean contains(Point p) {
 return this.center.distTo(p) <= this.radius;
}

// in the class Combo
boolean contains(Point p) {
 return this.top.contains(p)
 || this.bottom.contains(p);
}

Step 6: Tests

turn the examples into tests in the Client class and evaluate
them

18

Focus on the Design and Pedagogy

Design Recipe: the steps in the design process:

• Problem Analysis and Data Definition -- understand

• Purpose & Header -- interface and documentation

• Examples -- show the use in context: design tests

• Template -- make the inventory of all available data

• Body -- only design the code after tests/examples

• Test -- convert the examples from before into tests

Clear set of questions to answer for each step

Outcomes that can be checked for correctness and completeness

Opportunity for pedagogical intervention
19

Focus on the Design and Pedagogy

Design Recipe: the steps in the design process:

• Problem Analysis and Data Definition -- understand

• Purpose & Header -- interface and documentation

• Examples -- show the use in context: design tests

• Template -- make the inventory of all available data

• Body -- only design the code after tests/examples

• Test -- convert the examples from before into tests

Design foundation:

• Required documentation from the beginning

• Test-driven design from the beginning

• Focus on the structure of data and the structure of programs
20

Focus on the Design and Pedagogy

Example of a more complex problem students can solve:

• River with tributaries: pollution, lengths

• Binary trees: search trees, ancestor trees

• Drawing fractal curves: Sierpinski triangles, savannah trees

using our Canvas and graphics library

• Interactive games with timer and key events: Worm, UFO, Pong

using our World library

• Classes that represent Java programs: are the definitions valid

• Sorting lists, constructing sublists: easy tasks in our context

and more...
21

Focus on the Design and Pedagogy

Programming language needs to support of the learner:

Example of a problem:

• Every method produces a value -- not void

• Assignment not needed (not allowed) at the beginning

however, every field has to be initialized

e.g. the method to move a shape image produces a new shape
image:

// produce a shape moved by the given distance
IShape move(int dx, int dy){...

• Testing is made easier

test whether the result value is as expected 22

Overview

Curriculum: The Foundation

ProfessorJ Languages

The Languages and the Environment

Curriculum: The Broad View

Summary

23

The Languages and the Environment: The Goals

• Reduce the syntax to what is necessary

• Allow the student to focus on the key concepts

• Feedback / error messages at user's level of understanding

• Prevent misuse of advanced features

• Support a well documented test design

• Provide tools to understand program evaluation

Add new features when the need becomes compelling

24

The Languages and the Environment

ProfessorJ

• Within the DrScheme environment

• Definitions window

• Interactions window

Exploratory interactions: examples of objects, method
invocations

Test outcomes

• Language levels

• Wizards to eliminate mechanical typing tasks

• Test environment

• Library to support simple graphics and event programming 25

The Languages and the Environment

ProfessorJ

• Within the DrScheme environment

• Definitions window

• Interactions window

• Language levels

Restricted syntax

Enforcement of some conventions

Error messages appropriate for the level.

• Wizards to eliminate mechanical typing tasks

• Test environment

• Library to support simple graphics and event programming
26

The Languages and the Environment

Concepts Taught in Language Levels

• Beginner

Classes & Methods

• Intermediate

Polymorphism & Abstraction

• Advanced

Iterative programming & APIs

• Full

Professional features: inner classes & exceptions
27

The Languages and the Environment

Beginner

• Object-oriented functional programming

classes and interfaces

recursive methods

• Removes

mutation

static

access modifiers -- public, private, protected

loops, arrays, overloading

inner classes & reflection

28

The Languages and the Environment

Intermediate

• Polymorphic Object-oriented programming

inheritance and overriding methods

casts

imperative programs

• Removes

static, access modifiers, loops & arrays

overloading

inner classes & reflection

29

The Languages and the Environment

Advanced

• Iterative programs

loops & arrays

access controls and packages

overloading

statics

• Removes

inner classes & reflection

exceptions

30

The Languages and the Environment

ProfessorJ in DrScheme

31

Overview

Curriculum: The Foundation

ProfessorJ Languages

Curriculum: The Broad View

Abstractions, Mutation, Real Java

Summary

32

Designing and Understanding Abstractions

Abstractions --- integrated throughout the course

motivated by observing repeated code patterns

students are taught to design abstractions

33

Designing and Understanding Abstractions

Abstractions --- integrated throughout the course

motivated by observing repeated code patterns

students are taught to design abstractions

Designing abstractions: Design Recipe for Abstractions

Identify the differences between similar solutions

Replace the differences with parameters and rewrite the solution

Rewrite the original examples and test them again

34

Designing and Understanding Abstractions

Motivating abstractions

Abstracting over similarities:

Classes with similar data abstract classes/interfaces

Lists of different data list of <T> generics

Classes with similar structure and methods ADTs

Comparisons interfaces that represent a function object

Traversal of a container iterator

35

Understanding Mutation

When is mutation needed

What are the dangers of using mutation

Designing tests in the presence of mutation

• The need for mutation:

First used to support the definition of circularly referential data

ArrayList - the need for mutating a structure

GUIs - the need to record the current state - apart from the
current view

Efficiency - mutating sort and other algorithms

36

Understanding the Big Picture

The foundations are there for understanding full Java

• Study of the Java Collections Framework

• Understanding the meaning of Javadocs

• Foundations for reasoning about complexity

• Foundations for understanding the data structure tradeoffs

HashMap, Set, TreeMap, Linked structures

• Motivation for and using the JUnit

37

Overview

Curriculum: The Foundation

ProfessorJ Languages

Curriculum: The Broad View

Summary

Our Experiences and Plans

38

Our Experiences

Instructors in follow-up courses feel students are
much better prepared

Very low attrition rate (<5%)

Students are much more confident in their understanding of program
design

Two very successful summer workshops for secondary school and
university teachers

Workshop planned for summer 2006

A growing number of followers despite the 'work in progress'

Web site:

http://www.ccs.neu.edu/home/vkp/HtDCH.html
39

Our Experiences

A growing number of followers:

Northeastern University, University of Utah

University of Chicago, Worcester Polytechnic Institute

Worcester State College, Colby College

University of Waterloo, University of Washington

Knox College IL, Richard Stockton College, NJ

Weston High School, MA; Spacenkill High School, NY

Viewpoint High School, CA; Owatonna High School, MN

Omaha High School, NB; Oregon High School, WI

Web site:

http://www.ccs.neu.edu/home/vkp/HtDCH.html
40

How to Design Class Hierarchies

ProfessorJ

Web site:

http://www.ccs.neu.edu/home/vkp/HtDCH.html

41

How to Design Class Hierarchies

ProfessorJ

Web site:

http://www.ccs.neu.edu/home/vkp/HtDCH.html

42

