
I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 177–188, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Introductory Computing: The Design Discipline

Viera Kr anová Proulx*

Northeastern University, 360 Huntington Ave.,
Boston, MA 02115, USA
vkp@ccs.neu.edu

Abstract. The goal of this paper is to present in context the key didactical
principles behind the Program by Design curricula, motivate the need for the
supporting software, and describe in detail the How to Design Classes
component for teaching introductory object oriented program design using Java
and Java-like languages. The key innovations are a systematic test-first program
design, and the introduction of programming language concepts by designing
abstractions based on existing programs.

Keywords: Informatics in primary and secondary education, design principles,
software for novice programmers, abstractions.

1 Introduction

What is computing? What is informatics? The answer to this question guides the
design of the curriculum that focuses on the principles, not fads. At the heart is the
computation: a program that consumes data and produces new data according to some
formula. But this is just basic algebra, automated. To extend this notion of
computation, we need to deal with more complex data. No algorithm exists apart from
data. What comes first? We believe that understanding data, how information can be
represented as data, and how data conveys information is at the heart of computing
and deserves a serious place early in the curriculum. Well-structured data reveals
clearly numerous algorithms for extracting new information, and provides the context
for learning the foundations of program design. The key questions: the design of
abstractions, the concerns about efficiency, the multiple ways the same information
can be represented as data, the difficulty of reliable and secure data transmission, the
communications protocols, and many others arise naturally in this context.

The traditional curricula for introductory programming start by designing
algorithms and overwhelming the student with complex syntax and language features,
but providing little guidance on what the program design process should be. Out of
more than 20 Java-based textbooks only two mention testing of students programs,
and even then without the appropriate software support [1], [13]. Other recent
approaches use game-like environments to make the programming more attractive
and accessible [3], but still fail to focus on the design process that guides the program
design. Tinkering, trial and error approach rules.

* Partial support for this project has been provided by the two NSF grants DUE-0618543 and

DUE-0920182.

178 V.K. Proulx

In the first part of this paper we describe the key ideas of the Program by Design
project that introduces systematic program design principles for students ranging from
grades 6-7, all the way to the university level. The various components of the
Program by Design curriculum have been developed over the years by a team of
programming language researchers, software developers, and educators. The author
has had a key role in the design and implementation of some of the libraries, and in
the design and implementation of the most advanced component of this curriculum,
formerly known as ReachJava.

In the second part we focus on the ReachJava component, that presents the design
of programs in object-oriented Java-like languages. We describe the role of
supporting libraries that expose to the novice programmer the essential design
principles while hiding the confusing detail. In the third part we show how this
approach leads naturally to a systematic design of abstractions and provides the
context for understanding more complex programming language features, as well as
the design and the use of standard libraries.

2 How to Design Programs

The foundation of Program by Design (known as TeachScheme!) has been presented
in the textbook How to Design Programs [4, 5] and its German language counterpart
Die Macht der Abstraktion [8]. During the past five years, the curriculum has been
adopted and augmented, with dedicated software support, to target young children,
ages 10-13. The Bootstrap curriculum has been taught to hundreds of children and all
materials are available online [1]. The How to Design Programs curriculum is
appropriate for all students in secondary schools and universities, regardless of their
field of interest. While the context of these curricula is the design of programs, the
ultimate goal is to teach the students fundamental skills for solving complex problems
and organizing the solution in a systematic way.

Functions and Algebra: Bootstrap. Typical first programs students often encounter
involve designing and evaluating a simple algebraic function: compute where will a
cyclist be after the given time elapsed, if he is traveling at the speed of 25 km/h. We
see that the distance is a function of time and can be written as distance = fnc(time).
We can explain this idea through simple tables: at times 0, 1, 2, 3, the cyclist will be
0, 25, 50, 75, km away. But with the right programming environment, we can turn
these functions into controls of an interactive animation: the movement of the cyclist
is represented as a function that for each tick of the clock produces the current
location of the cyclist on the screen. Now, what if the response to the left and right
arrow keys that moves another object horizontally is encoded as another function. We
add the detection of a collision as a third function, and we have finished programming
the model of an interactive game. This is the beginning of the TeachScheme!
curriculum and is the key feature of the Bootstrap curriculum. Children in the
Bootstrap program write down the list of locations where the falling ball will be after
each tick of the clock, then design the functions that model the movement. The basket
catching the ball at the bottom moves in response the keys pressed. The conditional (a
function that produces a boolean value) is used to update the score. The image of a
ball or of a basket is a simple primitive data item in the program. The drawing of the

 Introductory Computing: The Design Discipline 179

images on the canvas (the game board), the invocation of the event handlers (the
functions on-tick and on-key defined by children) and the entire animation is
controlled by the provided library.

This is serious work. Children are true designers, learning basic algebra to
implement their games. After nine lessons they can explain the evaluation of
expressions, the substitution principle, the conditionals, and proudly show their game.

Taking Design Seriously. The didactical principles of the Program by Design
curriculum are based on enabling the learner to master a systematic approach to
problem solving by following a well-structured design process encoded in three
design recipes. The design recipes give the instructor a tool to diagnose the student’s
problems by identifying the step in the design process in which the student encounters
difficulties.

When we teach children to design functions, we give them a blueprint, a roadmap
that shows them the steps in the design process. Once we have identified the data
needed to represent both the inputs, and the expected result, we follow the design
recipe for functions/methods:

• Write down in English the purpose statement for the function/method, describing
what data it will consume, and what values will it produce. Add a contract that
specifies the data types for all inputs and the output.

• Make examples of the use of the function/method with the expected outcomes.
• Make an inventory of all data, data parts, and functions/methods available to

solve the problem.
• Now design the body of the function/method. If the problem is too complex, use

a wish list for tasks to be deferred to helper functions.
• Run tests that evaluate your examples. Add more tests if needed.

The children’s version is adapted to their abilities, but the focus on systematic design
remains. The comment from a child ‘I never knew I could divide a big problem into
smaller ones’ affirms that these design principles transcend computing and
programming. Seasoned programmers recognize that we practice test-first design.

Understanding Data. After the first brief introduction to representing simple
programs as functions (that correspond directly to mathematical functions) the How to
Design Programs curriculum focuses on understanding the complexity of data, the
way how information can be represented as data, and, conversely, how data can be
interpreted as the information it represents.

The first step in designing a program is always the design of data that represents
the problem. The design recipe for data definitions guides the students as follows:

• Can you represent the information by a primitive data type?
• Are there several related pieces of information that describe one item? If yes,

design a composite data type (struct, class).
• Does the composite data type contain another complex piece of data? Define that

data type separately and refer to it. (A Book data item contains an Author data
item.)

180 V.K. Proulx

• Are there several variants of the information that are represented differently, but
are related (e.g. a circle, a rectangle, a triangle --- all are shapes)? If yes, design
a union type. (In Java, define a common interface.)

• Repeat these steps. This may lead to self-reference, mutual reference, and
eventually to a complex collection of classes and interfaces.

• Make examples of data for every data type you design.

Students learn to design complex data: ancestor trees (with person’s mother, father,
their ancestors); data that represents files and directories in a computer system; ice
cream cones with the cone and a list of toppings; a river system with confluences and
tributaries; etc. When designing functions for such complex data, the inventory step
of the design recipe calls for identifying not only the function inputs, but also the
parts of any composite data (struct, class), variants of a union type, as well as all
functions that are already available for either the input data or the parts of the input.
So, if one of the shapes is a combination of the top and the bottom shape, any function
defined for shapes can be used for both the top and the bottom parts.

Simple language, complex data, serious program design is our motto. All of this
can be taught in the context of a very simple language that supports only the
appropriate data definitions (with their constructors, selectors, and predicates that
identify the data type) and on the functional side provides the standard arithmetic,
relational, and logical expressions, and a conditional. If every function produces a
new value, the result, then the entire design process is very straightforward:

• Tests are simple, as they only verify that the result matches the expected value.
• Function composition comes naturally, result of any function application can be

used in further computations.
• The order of computation does not affect the result. (However, a function or a

data item must be defined before it can be used.)

To provide fun and challenge, we provide libraries that handle interactive graphics
back ends of game, with students designing the model: the functions that produce a
new scene in the game in response to a key event, or timer tick. Drawing scenes using
shapes and images is supported through functions that support the composition of
images. Games like pong, snake, space invaders, provide a design playground.

Designing Abstractions --- Advanced Programming. After we have written several
programs (functions/methods) that solve similar problems we begin to see patterns:
the solutions are very similar to each other. Students see that certain functions appear
similar, the way the data is handled follows the same pattern, or that some code needs
to be repeated. To simplify the code and to eliminate repetition, students see the need
for more complex programming language features. Rather than using existing
libraries to illustrate the generalized solutions, our goal is to teach students how the
libraries are built. To achieve this goal, we present a systematic design process
encapsulated in the design recipe for abstractions that helps us eliminate code
repetition and produce a more general solution:

• Mark all places where the similar code segments differ.
• Replace them with parameters and rewrite the solution using them as arguments.

 Introductory Computing: The Design Discipline 181

• Rewrite the original solutions to your problems by invoking the generalized
solution with the appropriate arguments.

• Make sure that the tests for the original solution still pass.

The How to Design Programs curriculum now follows with the introduction of local
variables, functions as function arguments, mutation of data, as well as the discussion
of the efficiency of computation, and additional more advanced topics.

The three design recipes are at the heart of the Program by Design curriculum.
They embody the core questions all programmers face and give the student a guide
through the design process. They correspond to the three cornerstones of our
curriculum: understanding the connection between information and data and the
importance of the design of complex structured data, using the test-first design
process for the design of every function or method, and understanding the process of
abstraction that turns a problem-specific solution into a generalized solution
applicable to a collection of related problems.

3 How to Design Classes

The Program by Design curriculum has as its goal to provide a systematic
introduction to the fundamentals of computing and programming. The ideas
introduced at the beginning apply equally well in a more complex context. The
ReachJava component with the draft of a textbook How to Design Classes [4] extends
the original TeachScheme! curriculum to the context of class based programming
using Java-like languages by introducing most of the essential concepts of object-
oriented program design. It is appropriate for secondary schools and universities.

The goal of this section is to reflect on what we learned during the last nine years
of implementing the ReachJava curriculum and designing the supporting software.
We start by showing how the pedagogical principles of Program by Design imply the
need for novice-appropriate software libraries that support this methodology. We then
show how the ReachJava curriculum teaches students through systematic design of
abstractions to build reusable software and to use standard software libraries.

Libraries for Novice Programmers: FunJava. While many functional languages
(such as Scheme) have a compact and fairly simple syntax (at least at the beginner’s
level), statically typed object-oriented languages such as Java or C# require a complex
syntax for solving even the simplest problems. To eliminate a number of problems
novices face, our curriculum starts with a limited version of Java (FunJava). There is
no assignment statement, all fields are initialized either when defined, or in the only
constructor allowed. A class can implement only one interface, and there are
only two statements: if with a required else clause, and return expression.
This enforces a mutation-free programming style, the original goal of the designers of
object-oriented languages. Every method produces a new value, a new instance of
data. Rather than starting with algorithms, we first practice designing classes and
collections of classes and interfaces that represent different, gradually more complex,
information. Students design classes that contain fields that are instances of another
class, unions of classes, self-referential data, mutually-referential data. The earlier

182 V.K. Proulx

examples of data: ancestor trees, a model of a river system with a number of
confluences, the representation of computer files and directories (that contain other
files and directories), the representation of a route through the cities, a student’s
record with the list of courses she is enrolled in, now define a collection of
interconnected classes and interfaces.

Fig. 1. The examples and a class diagram for a program that models a hanging mobile

Libraries for Novice Programmers: Tester Library. The design recipe for data
definitions guides the design decisions and teaches a systematic approach to
understanding the complexity of data. We use a simple version of class diagrams to
illustrate the relationships between classes and interfaces: the containment and the
inheritance.

Once we have examples of classes and data, we turn to designing methods,
following the same design recipe. Functions become methods, and the object that
invokes the method (this) becomes just an additional argument the method
consumes. Without mutation, the outcome of every method depends only on its
inputs. So the students only need to check that the outcome of a method invocation
produces the desired value.

Fig. 2. Sample method in class Complex for a program that models a hanging mobile

Here we encountered a problem: Java and most object-oriented languages do not
support equality comparison based on the value of data, and so the design and
evaluation of tests in this context becomes a daunting task. We have solved this
problem by designing the tester library [7], [8], [9] that compares any two objects by
the value of their fields, traversing deeply to the primitive components, detecting
circularity of data definitions, and making the test design simple and straightforward.

 Introductory Computing: The Design Discipline 183

When the tests are evaluated, the student may choose to pretty-print all data fields
defined in the Examples class, the class that represents the client to the student
code, and to print either all test results, or only those that have failed.

Fig. 3. The examples of data and tests for a program that models a hanging mobile

Libraries for Novice Programmers: World Game Library. One may ask, what
kind of programs can students write in such a simple environment? Well we can
design binary search trees, programs that represent cells in a spreadsheet that refer to
other cells with formulas that need to be evaluated, build recursively defined lists of
items, thus implementing a stack data type, tennis tournaments, etc. But to support
design explorations and to motivate students, we have also built a world library [7]
that allows students to program the behavior (the model and the display) of a
graphics-based interactive game. Students extend the World class by adding fields
that represents various game objects. They define the methods that represent the
actions in response to the timer or a key press, producing a new instance of a changed
world, and the methods that produce the scene that represents the current state of the
world. The library creates the game canvas in a new frame, installs the necessary
event listeners, and provides event handlers that invoke student-defined methods.

We can accomplish a lot with simple tools. The three libraries: FunJava that
provides a novice-friendly simple language, the tester library, that makes the test
design, method evaluation, and data display easy, and the world library that turns
simple programs into interactive graphics-based games provide the infrastructure
where student’s focus is on the program design, free of idiosyncrasies and
complexities of professional programming languages and libraries.

The great advantage of this approach is that the students learn to program in a truly
object-oriented style from the beginning. They understand the dynamic dispatch of
methods. We insist that every method handles only one task and delegates to helper
method any complex tasks that arise (the chain of responsibility principle). Students
have to reason about which class needs to be responsible for every task (i.e., where
should the methods be defined), and they have to write examples of method
invocation with the expected outcomes (tests) for every method they define.

184 V.K. Proulx

Fig. 4. The snake game (by Matthias Felleisen). The snake moves on each tick, changes the
direction in response to the arrow keys, looks for food, grows with each food eaten, avoiding
the walls or itself.

With this foundation, we are ready to discuss more advanced ideas of program
design and introduce programming language features that enable the design of
reusable libraries. Each new programming language feature is introduced in the
context of solving a problem encountered earlier: the way to eliminate code repetition,
the way to handle problems that cannot be solved using purely functional style, the
way to eliminate the need for excessive saving of intermediate results, etc. The
framework for this stage of the curriculum is the study of designing abstractions.

4 How to Design Libraries

A novice has a hard time learning a number of features of modern object-oriented
languages that have been designed to help a seasoned programmer to work
effectively. It is important to present every language feature in the context of
compelling examples that illustrate the reason for introducing that feature. Once our
students mastered the basics of the program design in the object-oriented style, we
focus on the design of abstractions that leverage different language features to avoid
code repetition and to build reusable code. This provides a context for learning how
libraries are designed and used. The design recipe for abstractions provides a
systematic way to examine where abstraction is possible, to define what needs to be
done, and to verify that the abstraction correctly accomplishes the desired task.

Abstract Classes. In the introductory weeks students have seen several classes
(Circle, Square, Rectangle) that implement the common interface Shape.
Each class included a field that represented the location of the shape in some Canvas,
and it included methods that compute the area of the Shape, it distance to the origin,
and a method isSmallerThan that compared the area of this Shape to the area of
the given Shape. The code repetition in these classes is obvious, and it is easy to
motivate the need for an abstract class that defines all common fields, includes a

 Introductory Computing: The Design Discipline 185

constructor that initializes them, and contains a concrete implementation of the
common methods as well as those that are common to most subclasses.

The other side of this coin is the introduction of our abstract World class that
provides the entire functionality for designing an interactive graphics-based game,
leaving to students the task of implementing the abstract onDraw method, and
overriding the stubs of the onKey and onTick methods. This is their first encounter
with a library. It provides an environment for designing interesting applications while
focusing only on the design of the model.

Function Objects. Java Collections Framework includes several interfaces that
specify functional behavior. The most commonly used ones are the Comparable
interface and the Comparator. The only role the Comparator plays is to provide a
wrapper for a method compare that compares two objects of the same type. In many
functional languages, a function can be passed as an argument to another function
(functions are first class values), but Java designers did not provide for this. Thus the
programmer needs to define a class that implements this interface, design the needed
method, define an instance of this class and pass that as the argument to the methods
like sort or findMin, or findMax. However, rather than introducing these
interfaces, we start with interfaces ISelectBook or ISelectPerson that
implements a predicate that selects the objects with the desired properties and is used
by methods like findBook, containsPerson, etc. The reason is to delay
introducing the type parameters, and to show the students both the definition of the
interface and the design of the classes that implement it. One example we use is to
select all runners in the Boston Marathon that are female under 40 years old, all
masters runners (over 50) etc. It is clear that we do not want to design the same
selectRunners method several times, when the only thing that changes is the
selection criterion.

We do mention that a similar technique is used for defining the action that the
computer performs in response to the GUI button press or when an event handler is
activated by the event it is listening to.

Mutation (State Change). We introduce the assignment statement and the resulting
change of the state of a variable once the students are comfortable with designing
classes, designing methods, and they understand the dynamic dispatch of the methods.
We present problems that either cannot be solved without mutation (or some
additional language construct), or where mutation simplifies the work to be done. One
cannot design the data that represents students enrolled in courses, when the course
data contains the list of currently enrolled students, and the student data contains the
list of courses student is enrolled in, without changing the values of the data fields
after they have been defined. A bank record representing an account needs to be
modified when a deposit or a withdrawal is made, so that every program that has
access to this data sees the change. The variable that holds the user’s response to a
question will only get its value once the user responds.

A survey of typical textbooks and papers describing introductory curricula shows
that only a handful of them pay any attention to systematic design of tests from the
beginning. We attribute this to two problems: the design of tests in the presence of
state change is quite complex, and the design of test for mutation-free programs

186 V.K. Proulx

requires support for extensional equality tests. Yet, designing programs that are not
tested is a very bad habit to learn. Our experience has repeatedly shown us that even
seasoned programmers make trivial mistakes in the simplest program components and
that these are either very hard to find, or go undetected for extended periods of time.

Our introduction to state change comes hand-in-hand with the design of tests: with
the setup of needed data, method invocation, testing of the effects of the method, and
the reset of the data that has been used. The purpose statement for the method changes
to include the word EFFECT where necessary. We defer until later the use of methods
that combine the state change with returning a new value.

This is also the time when we begin to discuss the difference between two objects
that represent the same value and two names for the same object. By now students are
comfortable with the basic program design, the language syntax, and they can appre-
ciate the subtleties of the data representation and aliasing.

Program Integrity and Usability. At this point students are ready to think of
programs that will be used and modified by others. We introduce several techniques a
programmer can use to expose the program behavior while hiding and protecting the
internal details of implementation. We talk about the visibility modifiers, show how
constructors can provide several different ways for the user to instantiate objects and
to verify that the data satisfies the desired constraints (month is one of 12 possible
values, hour does not go beyond 24, etc.), and introduce the exception handling.

Another important topic we begin to discuss is the definition of equality and the
implementation of methods that compare two objects. Are two lists the same if they
refer to the same instance? Or are they the same if their respective elements refer to
the same instances or just represent the same values? The need for detecting
circularity in data also comes into play.

Parametrized Types. Students see that we have been defining similar methods for
data collections of different data types: binary search trees of persons, cities; lists of
books or songs, etc. Even the function objects were targeted for only one type of
objects. Having seen this, the introduction of generics (parametrized types) is a
welcome new abstraction in spite of the complexities of the necessary syntax.

Abstracting over Traversals. All along we also present examples of methods that
represent traversal over the items in the collection of data. We design methods
isEmpty(), Data getFirst(), and Collection getRest() for both lists and
binary search trees. Abstraction over the collection of these three methods introduces
a new interface, Traversal, that represents a functional iterator:

Interface Traversal<T>{
 public boolean isEmpty();
 T getFirst();
 public Traversal<T> getRest();
}

We see that the methods that manipulate the collections of data can be defined outside
of the class definitions of these collections. We have come a full circle: starting from
standalone functions in the functional language, to designing methods that rely on the
dynamic dispatch for selecting the appropriate action, to moving the methods to the

 Introductory Computing: The Design Discipline 187

Algorithms class that deals with an arbitrary data, as long as the data collection
provides the necessary hooks.

Loops, the Java Collections Framework Iterator interface, and the Iterable
interface are introduced at this time.

Abstract Data Types. With this background we introduce the ArrayList, the
HashMap, the Stacks and Queue, and other classes in the Java Collections
Framework. We ask the students to implement the Stack and the Queue interface;
design a mutable linked list, and use them in the context where one or the other can be
used interchangeably. The Depth-First Search and the Breadth-First Search over
graphs differ only in the way we implement the data set that keeps track of the next
set of edges to consider.

When introducing the hash maps, we revisit the issue of equality. We show how to
correctly override both the equals method and the hashCode method. Using the
JUnit test framework, reading and writing the Javadoc style documentation are the
last couple of steps for students to be ready to fully use the standard Java libraries.

Java Collections Framework. With students’ knowledge of the meaning of
interfaces for defining the behavior of data, abstract classes for implementing the
common behavior of a union of similar data types, the use of function objects to
define functions that algorithms can use, the introduction of the Java Collection
Framework is very straightforward. Students understand the design, can reason about
the implementation, and can implement some of the library classes themselves.

We complete the work with several discussions of the resource management
issues. Memory usage, time-complexity of algorithms, the cost of using structural
recursion, all are made visible through an assignment where students evaluate stress
test runs. The classical data structures and algorithms are presented only to illustrate
the design choices: indexed data structures make binary search possible, key-value
associations allow for fast data lookup, linked lists allow localized modification of the
structure, quicksort leverages the divide and conquer strategy, etc. Through simple
programming assignments we show students the different ways how information can
be represented as data: students manipulate images by modifying image pixels, they
process text data computing word frequencies, they use our simple sound library to
generate sound effects and background music for their games.

5 Summary

The Program by Design curriculum evolves. The Bootstrap component is building a
web-based programming environment [10], the second edition of HtDP includes
support for client-server computing over the network [3]. We have piloted a library
that supports the design of applications for mobile devices. The tester library is a
foundation for the development of a comprehensive software testing curriculum.

The curriculum has been used in many settings (after-school programs, summer
camps for children, secondary schools, universities). Teachers of children who
completed the Bootstrap program wonder at their improved math grades. Secondary
school students who started with the Program by Design curriculum do well in the
Advanced Placement in Computer Science (AP) test, even though the AP curriculum

188 V.K. Proulx

follows a more traditional programming curriculum. Our university added a required
course for the graduate Master’s of Science program that is based on the Program by
Design curriculum, to improve advanced student’s program design skills.

Acknowledgments. The Program by Design is a work of the team led by Matthias
Felleisen, with Matthew Flatt, Robby Findler, and Shriram Krishnamurthi its co-
founders [7]. Kathy Gray has contributed to the design and initial implementation of
the ReachJava segment [6, 11]. Kathi Fisler has worked on the further development of
the curriculum. Emmanuel Schanzer is the designer of the Bootstrap component [2],
[14]. Erich Neuwirth inspired the development of the sound library [9].

The two grants by the National Science Foundation (Redesigning Introductory
Computing: The Design Discipline, DUE-0618543 and Integrating Test Design into
Computing Curriculum from the Beginning DUE CCLI 0920182) provided partial
support for the development and dissemination of this project.

References

1. Barnes, D.J., Kölling, M.: Objects First with Java: A Practical Introduction using BlueJ.
Prentice Hall / Pearson Education (2008)

2. Bootstrap Project, http://www.bootstrapworld.org
3. Dann, W.P., Cooper, S., Pausch, R.: Learning to Program with Alice, 3rd edn. Prentice

Hall, Englewood Cliffs (2012)
4. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: How to Design Programs. MIT

Press, Cambridge (2001)
5. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: How to Design Programs, 2nd

edn., http://www.ccs.neu.edu/home/matthias/HtDP2e/index.html
6. Felleisen, M., Findler, R.B., Flatt, M., Gray, K., Krishnamurthi, S., Proulx, V.K.: How to

Design Classes, http://www.ccs.neu.edu/home/matthias/htdc.html
7. Findler, R.B., Flanagan, C., Flatt, M., Krishnamurthi, S., Felleisen, M.: DrScheme: A

pedagogic programming environment for Scheme. In: Hartel, P.H., Kuchen, H. (eds.)
PLILP 1997. LNCS, vol. 1292, pp. 36–388. Springer, Heidelberg (1997)

8. Klaeren, H., Sperber, M.: Die Macht der Abstraktion, B. G. Teubner Verlag, Wiesbaden
(2007)

9. Neuwirth, E.: http://sunsite.univie.ac.at/musicfun/MidiCSD/
10. Proulx, V.K.: ReachJava Libraries, http://www.ccs.neu.edu/javalib
11. Proulx, V.K.: Test-Driven Design for Introductory OO Programming. SIGCSE

Bulletin 41(1), 138–142 (2009)
12. Proulx, V.K., Gray, K.E.: Design of Class Hierarchies: An Introduction to OO Program

Design. SIGCSE Bulletin 38(1), 288–292 (2006)
13. Riley, D.D.: The Object of Data Abstraction and Structures Using Java. Addison Wesley,

Reading (2003)
14. WeScheme, http://www.wescheme.org/

