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Abstract

We report on the experience of teaching introductory secmmdester computer science course on
Fundamentals of Computer Science that uses our currictlamto Design Class Hierarchies 1 and the
ProfessorJprogramming langugages implemented within Bx&€chemeprogramming environment.

This comprehensive curriculum for an introductory coursdocused on principled design of class
based programs in an object-oriented language (Java) witlvedully structured gradual increase in the
complexity of the class structure and the programming laggu

The curriculum inlcudes extensive lecture notes, programgrassignments, closed lab plans, exams,
and a first part of a textbook. The curriculum is supported pbyogramming environmerRrofessorJ13]
with a series of gradually more complex teaching langualgasstupport a novice learner. The pedagogy
focuses on teaching the students problem solving and dskiligithat transcend the study of programming.
The organization of the topics draws its strength from the®iti of programming langugages by focusing
on the structure of data rather than on algorithms, userdatiens, or archane details of the programming
language syntax.

1 HtDCH: An Overview

1.1 Introduction

Typical introductory curricula overwhelm students withiamber of concepts and tricks that must be under-
stood just to write their first program. In an object-orighi@nguage, specifically Java, this means defining a
class, its methods, defining an instance of the class antlimythe correct method. All while learning to use
the programming environment, which uses industrial stifelemguage and compiler with error messages in-
comprehensible to a novice, as well as the environment'sharésm for interaction. Some pedagogical
programming environments (especially BlueJ [4] and DrJayd4]) provide some support for novice-user
interactions. Other approaches have been events-firdt Ble@hentary patterns [5], graphics first [3], abstract
to concrete [16], and test first [9].

Our curriculumHtDCH , addresses this problem through the structure of the pnogyséudents work on,
the programming environmeRtofessordwithin DrSchemeéhat provides support for the novice programmer
through a series of Java-like learning languages, and gfvaypedagogy that focuses on disciplined program
design from the first day. This curriculum is a natural follogw to theTeachSchemg11] curriculum sup-
ported by theDrSchemd12] series of languages and the textbdblow to Design Programs”[10]. The
pedagogy of this (and our) curriculum is based on the usesoD#6IGN RECIPE

The curriculum has been used in our classrooms for the pas ytears resulting in a noticeable improve-
ment of student’s abilities to write programs and to readoouaithem [17]. It has also been successfully
implemented by several high school and college instruetbishave participated in our summer workshops.

1.2 HtDCH: The Structure and the Function

The key premise of object-oriented programming is tharattng objects communicate with each other and
perform tasks in response to method invocation. The emplwen the class hierarchies that support these

1The HtDCH team also includes Matthias Felleisen, MatthesttFRobby Findler, and Shriram Krishnamurthi



interactions, while the methods are typically much simplghis is also the key premise of our curriculum.
Students first focus on understanding the structure of datd,design classes and class hierarchies that
represent different kinds of relationships among them.

Once students can design quite complex class hierarchiasraterstand how to represent information as
instances of the classes they designed, they proceed witheign of methods.

Another original premise of object-oriented programmiag been the desire to write programs that favor
immutability [6]. Indeed, there has been a quest to elinértae assignment statement altogether [15]. To
follow this quest, for the first several weeks our studenty amite programs free of side effects. This is
enforced by the programming environmeRtofessor] which requires that every method produces a value
(not void), and which prohibits the use of the assignment statemethinvd method body. A beneficial
consequence of these restrictions is the fact that it is @asy to design tests for all methods.

1.3 HtDCH: The Pedagogy

The TeachScheme! Project [1] introduced the pedagogy ahieg program design through the use of
DESIGN RECIPES. DESIGN RECIPEis a pedagogical tool that promotes self-regulatory lesyn[18, 19]
and provides the opportunity for pedagogical intervergion

Self-regulatory learning research shows that students ketter when the task is divided into small steps,
and at every step the learner is given clear instructionantb proceed, a goal to accomplish, and a way to
measure whether the goal has been achieved.

The DesIGN RecIPEfor functions in the TeachScheme! curriculum describeb steps:
1. Analyze the problem, identify the available informatiogpresent it as data.
2. Write down a concise purpose statement, a contract and &hfadhe function.
3. Make examples of the function use, with expected outcomes.
4. Write down the template: a list of all data available for yéwmction.
(For example, if an argument is a structure, list all of itsnpmnents.)
5. Design the function body.
6. Convert your examples into test cases and run the tests.

Students proceed in a very structured, disciplined wayighog documentation for each method as well
as practicing test-driven design. When a student encaaiateroblem the instructor can intervene by asking
at which step of the design recipe the student got stuck. myskirther questions about that particular step
in the DESIGN RECIPEguides the student in finding the solution. The intervenisdiocused, effective, and
empowering.

Our curriculum builds on th&eachSchemeturriculum by defining [ESIGN ReECIPEStailored to the
design of classes and class hierarchies as well as methotlefe interacting classes.

1.4 HtDCH: Abstractions

In order to take advantage of the vast libraries of prograragable in nearly every programming language
one has to understand how to design and use abstraction®8%heN RecIPEfor abstractions guides our
students in moving from simple concrete solutions for digeproblems to producing general solutions for a
class of problems. In the process students learn the plasdighind the design of abstractions, the language
support for building abstractions, and the techniquesmfimiémenting the abstractions in their programs.

The specific techniques we present are interfaces, gengnmagion objects, iterators, and combinations
of these. lllustrating these principles in the context efJigbraries motivates mutation and a transition from
recursive style of programming to iterative programmingudents are well prepared for understanding the
principles and the use of the Java Collections Frameworkadiner Java libraries, and transition easily to
working with the full Java language.



2 The Structure of the Curriculum

2.1 Designing Class Hierarchies

Our curriculum first focuses on the design of classes thaesgmt information. There are no methods. The
DESIGN RecIPE for classes describes the questions to ask about the deaitdbrmation that guide the
student in designing the appropriate class structure.

We start with simple classes where all fields are either piimtypes orStrings. The class is represented
both as a UML-like class diagram and as Java code. We do motlinte the visibility modifiers, and the only
constructors students see here are full constructorsnfiilize every field. As a result, once the student
decides on the fields, their types and their names, the relmanf the task of producing the Java code
can be automatedProfessorJprovides a tool that generates the class diagram and thespamding Java
code from the information supplied in a GUI dialog. Howewbe DESIGN RECIPE requires that the class
definition must be followed immediately by defining exampdénstances of this class in tl@ient class.
ProfessorX Interactions window can then display the values of these instances indabdaform.

Book.java - DrScheme o
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252 ‘ GC |1a?.445,z4a Read,‘wme‘ ‘nmrunmng

Next we introduce classes that contain instances of otlasset (e.g. Bookclass with a field of type
Author), and a union of classes that represent variants of a comoren @.9. &Shapehat can be either a
Circle or aRectanglg

The DesIGN RecIPEfor designing simple classes has three steps:

1. Read the problem statement. Identify the fields needed t@sept the given information. Write down
your findings as a class diagram. It will serve as our data idiefis when designing classes.

2. Translate the class diagram into a class definition, addimgrpose statement to each class. The purpose
statement explains to future readers what kind of inforametine class represents and how.

3. Make up examples of information and represent them withams#s of the class. Conversely, make up
instances of the class and interpret them as information.

Similar DESIGN REcIPEfor classes with containment and classes with unions haffests understand
how to choose the right representation for available inftiam. The class diagrams translate directly into



Java syntax. Additionally, the woransists of fields ..or is one of ... are used consistently to describe
either a single class or a union of classes.

The design of self-referential class hierarchies such asrsevely defined lists and trees follows in a
straightforward manner:

An ancestor tree ATree is one of:

- enpty tree (of the type MITree)

- a Node that contains the fields
ancestor (of the type Ancestor)
left (of the type ATree)
right (of the type ATree)

At this early pointin the course students can design quitetex class hierarchies, such as representation
of files and directories, web pages with their componentsaaa again be web pages, student records with
schedules, transcripts, and course information, etcaragds the data is not circularly referential.

Before writing the first method students are comfortabldaitkey part of the Java syntax and have a
large collection of data examples that can be used to invo#ldest the methods they design.

2.2 Designing Methods

The DeEsIGN RecIPE for methods not only guides the student through the desigogss, but also instills
early on the need fatocumenting a prograrand the discipline ofest-driven design

The DesIGN REcIPE for a method in a simple class is almost the same as thel&N RECIPE for
functions inTeachScheme!The contract and header are replaced by the method signatalrthe object
that invoked the method is referred to as an implicit argunmamedthis. Initially, students design only
methods that return a value (naiid). It is easy to design tests for these methods. Studentsgroig a safe
environment, learn good program design skills, and catyaasilerstand the meaning of the values produced
by the methods.

There are additional BsiGN RECIPEs for class hierarchies such as classes with containmeiatngin
or self-referential data. They include an expanded guidamchow to design the template, specifically by
including the methods for which at least the stubs have bieeady defined.

One additional step that applies to the design of all metli®tiee use of a wish list. If a method seems
to be too complex, or it contains a task that is best perforoyeghother class, theE»1GN RECIPEinstructs
students to make a wish list of methods they may need. It ficgrft to write down the purpose statement
and the header for a method in the wish list — the rest of thekwan be delayed till later. Th€hain of
Responsibilitydesign pattern is practiced early on.

Students design methods to traverse binary trees, to ststdf objects, to analyze polution in a river
system, to produce lists of only those objects that satisfiyesconstraint, and many others. We also provide
a pedagogical library for the design of interactive graplsach as an animated game, where the program
processes key events and responds to timer ticks. The neefbodrawing images produdeue and are
the only methods that generate side-effects. The eventsamdied by the methodmKey(String keand
onTick) which produce a new scene in the game world.

2.3 Designing Abstractions

At this point students realize that the methods they writdoak similar. They also observe similarities
between some class hierarchies, especially those thasemrlists of instances of various classes. These
observations lead naturally to designing abstractionse DiasIGN ReCIPE for abstractions over methods
asks the student to compare two methods, identify the diffegs, represent the difference as an additional
parameter — and when done, run the tests for the originalodstbn the new abstracted method. Abstracting
over classes, i.e. creating a common super class for cltmgese similar, follows a similar ESIGNRECIPE

By this time students have seen a number of lists of diffeodiects, such as list dooks, Persors,
Shaps, WeatherRecorsl The similarity between the structure of these classebvmus. Introducing the



abstraction that replaces a list of specific objects witlsiadi Any (or a list of Objec) is just a natural thing
to do. With Java 1.5 this leads to using generics.

The next abstraction is over thmok methods needed for algorithms such as sorting. When the clas
implements the&Comparablanterface, the sorting algorithm becomes the templateqgdatte Template and
Hook design pattern. If a class implements an interface thaesgmts a predicate to select objects within
a class, students can design methods that find all items dtisfysthe predicate (&lter), methods that
determine whether all items satisfy the predicategiadMap, etc.

When it becomes clear thaBmokclass cannot implement ti@mparatorinterface in two different ways
(by title, by year), students readily embrace the functibject abstraction through a class that implements
the desireccomparemethod. The sort method does not change, except for howakas/thehookthat is
now supplied as a function object argument.

Abstracting the traversal of a list (or of other structurgspugh a functional iterator introduces more
complex interfaces. (Note: The use of a functional iteratdr avoids mutation.) We then add an external
implementation using thBecoratordesign pattern. Exceptions are now needed to handle thatdo
invokecurrent) or nex{) on an empty iterator.

Having defined an iterator and function objects that provideks for algorithms, we can define a class
that represents a collection of algorithms suchilees, andMap orMap, sort, map etc. It is possible to cover
all these concepts without introducing mutation. The fasus the design: the needed language features are
added as they become necessary.

3 ProfessorJ: Interactions and Language Levels

3.1 Interactions Window

The ProfessorJinteractions window allows the user to instantiate an object in any of theses defined in
the Definitions window. It also allows the student to invoke methods on tis¢ainces that have been defined
in the Interactions window.

This provides support for experimentation and quick veatfan of student’s understanding of the ex-
pected program behavior. So, for example, students defiDéeat class that contains instances of other
classes in their program. Tl@ient class also contains tests for the methods defined in stisdanatgram’s
classes. The student can then instantiateXfent class in thdnteractions window, to display the instances
and run the tests. We show below a sample user’s intera@gurests for the program shown in section 2.1:

Wel cone to Dr Schene, version 299. 105pl- cvs9nmay2005.
Language: ProfessorJ: Beginner.
> Cient ¢ = new Cient();

> c
Client(
htdp = Book(
title = "How to Design Prograns”,
year = 2001),
gof = Book(
title = "Design Patterns",
year = 1995))
> c. htdp
Book(
title = "How to Design Prograns",
year = 2001)
> (new Book("Effective Java", 2001)). before2000()
fal se

>

3.2 Beginner Language

When designing classes and methods, students work in a uppogive environmentProfessorJat the
Beginnerevel does not allow methods that return void, does not aftavtation or local variables, does not
allow overloading, and does not allow (or require) accesdifiess or static members. Students can create



fields that are initialized either in the constructor or aitldeclaration site, but these values cannot change.
Finally, every field or method access within the class définimust be qualified withthis, which helps
students distinguish between method arguments and thentdject.

While the structure of the class hierarchies they work watiméarly on par with the full language, the
programs are restricted to the safety of immutable worlth withimum of ambiguity or syntax overhead.

3.3 Intermediate Language

The Intermediatelanguage ofProfessorJprovides support for the abstractions described in theipusv
section. Interfaces are added to complete the class higrarfrastructure. The abstraction over listafy
kindis currently supported througfastand theinstanceofoperator.

There are still no visibility modifiers, astaticfields or methods. Though we use mathematical functions
such adMath.sqr(x), even in theBegginerevel, we postpone the explanation of this syntax till later

The Intermediatdanguage adds mutation. The assignment statement can nasedewithin method
bodies and methods may have return typl. Though mutation is not needed for the abstractions desitrib
in the previous section it is added to support circularlgreftial data.

3.4 Advanced and Beyond

Currently, theAdvancedanguage level is undergoing testing, and so at this poinstudents transition to
a commercial Java compiler and IDE. By now the students hawappropriate context for the discussion of
visibility modifiers, the need for classes to be respondiim¢he intergrity of its data, as well as the need for
separating the API from the implementation. After havingkea with class hierarchies with more than a
dozen classes and interfaces students can confidentlyatexdgd work with an IDE project.

4 Facing the Dragons: The Transition toFull Java

To transition to full Java language students need to uraledstutation, iterative (as opposed to recursion
based) loops, and the useatéticfields and methods. Our goal is also to guide students to beefiective
users of existing libraries.

The first step in this transition introduces mutation. Thdivadion for the mutation is presented in two
different contexts. The first one is the need to define cirbuleferential data. If a book can have several
authors and so it has a field that represents a list of authiodsat the same time, each author object contains a
field that represents the books written by this author, wengér can define constructors that would initialize
both books and authors. The list of books written by an authest be intialized to an empty list, and as
each new book is defined, the list is modified to give the autih@credit for the newly published book. The
effects of adding a book to author’s list of books can stilEasily tested.

The second motivation for mutation comes from using a diaecess data structure (eithevector, or
the ArrayList, or theArray). We started withArrayList because it is similar to the lists we have used until
now. We define an iterator fakrrayList that implements our interface for an immutable functioteddtor.
This allows us to define all of our earlier algorithms withautdifications.

We then present the direct access methodéfmyListand to transform the recursively defined methods
to iteration using eitherwhileloop or afor loop. The DEsIGN RecIPEfor this transformation is a simplified
version of CPS transformation.

Students are ready to learn abdata Collections Frameworklt is easy to explain the need f@ol-
lection interface and thé\bstract Collectionimplementation of most of the methods. Students read the
documentation with confident understanding of the dedonipif the class hierarchies.

The introduction of Java mutatiritgrator interface and théerator() method in theCollectioninterface
provides the context for introducing inner classes anitsiatds and methods. We also design an adapter that
implements out functional iterator using the methods mtegliby the Javéterator interface — a beautiful
and useful illustration of th&dapterdesign pattern.



To introduce other classes in tlava Collections Framewonke discuss the algorithm complexity. We
present problems that highlight the need for specialized siauctures such as hash tables, sets, trees, and
algorithms such a heap used for representing priority gaienrethe union/find algorithm. Our algorithm
framework that allows us to select independently the spesifiting algorithm with its data representation,
the source and the size of the data, and@oenparatorused to sort the data, provides the infrastructure
for stress tests of sorting algorithms. Students expeei@mcconcrete examples the differences between
the algorithms, not only based on the structure of the algari but also the structure of the data and the
limitation of the language (such as the lack of support fibrégursion in Java).

5 Conclusion

5.1 Our Experiences

The curriculum has been tested in the classroom for threm yi@ancrementally more complete and compre-
hensive state. During the first year we introduced the keigdddeas and some abstractions, using the full
Java language with commercial IDE (Metrowerks). In the sdcgear we first useBrofessorJand a draft

of the textbook covering the first four weeks of the courset@uabstractions). This year we complemented
the textbook with online lecture notes. Over the three yearbave experimented with different structure of
student’s test suites. Every year the course has been tegit tay two or more instructors, only one of them

(Viera Proulx) from the HtDCH group.

The instructors in all sections of the subsequent coursbg{®Oriented Design and Computer Organi-
zation and Programming) uniformly comment on better prapan of students who completed this curricu-
lum. The most telling comment came from a student was a gpstinthe newsgroup in response to some
complaints about the wording of an exam question:

Now that is completely unfair. [reply to an earlier unhapmsiing] | transfered into Northeastern at the
beginning of this past year. | went to a community collegedgear, took 3 differnt programming classes
there as well as an AP Computer Science class in Highschoml INan honestly say that in this ONE

semester, | have learned more from Clement’s class thaf @y @revious classes combined. | wish that |
had no programming experiance before coming here becaonseald habits are hard to change.

One question on one test shouldn’t cause you to completekydown at an amazing course.

We presented the curriculum in one-week intensive summekshops during the summers 2003 and
2004. The participants were uniformly excited and sevefahe instructors implemented the curriculum
during this academic year - using the part of the textboak|ebture notes, and the support from our team.

5.2 Summary

We presented a curriculum that provides a systematic intitbah to the design of class based programs in
an object-oriented language. The key features of our auwnic are:
- Solid pedagogical foundation based on the use B$IBN RECIPES
- Supportive programming environment with gradually mormptex languages
- Test-driven design
- Required documentation
- Topic progression founded in the structure of the data
* Data definitions: classes, containment, unions, selireefe
* Methods: for classes, containment, unions, self-referenc
* Abstractions: interface®bject function objects, traversals, ADT
* Mutation: circularly referential data, iteration, direxicess data
* Trade-offs and Tricks: complexity — effective structureslalgorithms
The curriculum consists of a draft of a textbook, lectureespassignments with solutions, lab materi-
als, and a library for graphics and event programming. Itheen successfuly tested in the classrooms at
Northeastern University and several other colleges andl $sgools.
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