
Instructional Frameworks: Toolkits and Abstractions
In Introductory Computer Science

Cynthia Brown, Harriet Fell, Viera Proulx, Richard Rasala
College of Computer Science, Northeastern University, Boston MA 02115

1. Introduction
Computer science education has been changing over the

past few years. The Denning Report [4] and the ACM-
IEEE Curriculum 91 [6] helped trigger a number of new
initiatives aimed at improving computer science education,
especially at the introductory level. One proposal is the use
of closed laboratories to improve programming instruction.
A second idea is to add breadth to the introductory
curriculum. A third suggestion is to introduce more formal
instruction in theoretical computer science.

These proposals have merit but their implementation is
problematic. Often the projects suggested for closed
laboratories are too simple and uninteresting. The breadth
component is frequently poorly integrated with the
programming component. The theoretical material is often
presented before students have sufficient practical and
scientific experience to follow what is presented and
understand its significance. Furthermore, software
engineering is preached rather than practiced since neither
demonstration programs nor student projects are large
enough for genuine software engineering methods to be
illustrated.

At Northeastern, we have developed a teaching paradigm
which integrates a number of ideas in current science
curriculum reform with some approaches that are unique to
our institution. Our teaching emphasizes visualization and
interaction both in animated demonstrations that we
provide and in laboratories and assignments that we ask
students to complete. We believe that software design and
development is an incremental process so we provide
students with substantial bodies of code to read, expand,
and modify. In effect, our model is an apprentice based
approach in which students make meaningful contributions
to interesting software products but are not required to
program every detail. Theoretical concepts are taught in
the context of practical algorithm and data structure design
problems. Software engineering is emphasized throughout
as the combination of theoretical ideas, design techniques
such as abstraction and the use of tools, and technical
knowledge such as programming languages and system
expertise.

Partial support for this work was provided by NSF grants USE-9152211
and USE-9155929.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SIGCSE’97.
Copyright 1997 ACM 1-58113-499-1/97/0006…$5.00.

In recent papers [2,3], we described the use of
visualization in our curriculum and the experimental
approach to problem solving we expect of our students. In
this article, we discuss the software infrastructure which
makes this approach possible. We present selected
examples of basic toolkits and more sophisticated
abstractions which allow students to create high quality
projects with robust code. We also explain how these
modules can be used to illustrate important theoretical and
software design principles.

2. Basic Toolkits for Freshman
Programming

A fundamental strategy of software engineering is the
use of separately defined and compiled software toolkits.
In the introductory computer science curriculum at
Northeastern, toolkits are an essential component of the
instructional framework. THINK PASCAL on the
Macintosh makes the use of toolkits very easy since the
process of compiling and linking the separate files in a
project is entirely automated. In this article, we will
discuss only three of several toolkits: SimpleWindows,
StringTools, and IOTools. These toolkits are the ones most
frequently used by the students.

SimpleWindows

Figure 1: Typical Placement of the Text and Drawing Windows
Using the SimpleWindows Toolkit

The SimpleWindows toolkit is used in the first few
weeks of class in the freshman computer science courses.
SimpleWindows permits the student to specify the position
and size of the text and drawing windows in such a way
that the windows utilize screen space efficiently. Since

75% of the Macintosh computers in our open laboratory are
small screen Macintosh SE’s, utilization of screen real
estate is especially important. In Figure 1, the tiling
obtained by the pair of calls smalltext and smalldraw is
shown. SimpleWindows provides three other tiling pairs
which share space in various ways. Some tiling pairs leave
significant vacant space so that debugging windows can be
open and visible as the program is executing. Each
window is put into place by calling the appropriate
procedure in SimpleWindows. Thus, if the student wishes
to reduce the window sizes during debugging, she simply
needs to replace the calls smalltext and smalldraw with
the calls minitext and minidraw.

The use of SimpleWindows early in the freshman course
emphasizes to students the importance of software toolkits
which are encapsulated in separate files. SimpleWindows
also provides a significant example of the use of procedures
without parameters.

StringTools
THINK PASCAL comes with a good collection of

routines for string manipulation. The goal of the
StringTools package is to provide a few additional highly
useful tools. The first set of tools test if a character is a
letter, is uppercase, is lowercase, or is a digit and handle
conversion of characters between uppercase and lowercase.
We will not discuss these further.

The next set of tools concern string standardization.
These tools deal with a major annoyance in student
programs which involve strings. To explain the difficulty,
consider a program with a data file which contains a list of
cities such as Boston, New York, Los Angeles, …
together with associated data. A typical problem might ask
the student to read in the file and then interactively type the
name of a city to retrieve the data associated with that city.
Invariably, many students will type new york instead of
New York and be unable to match the name of the city in
the data base properly. The string standardization tools
address this difficulty.

StringTools provides three utilities upcasestring,
locasestring, and standardize which will put a string
into a standard form either all uppercase, all lowercase, or
mixed case with leading capital letters. For example,
standardize('nEW yoRk') returns New York. Students
can use these tools in one of two ways. One way is to
homogenize input as it comes in so that all strings can be
guaranteed to have a desired standard form. The other way
is to leave input alone but make comparisons of the form:
if standardize(s) = standardize(t) then … .

The last set of tools in StringTools provides string
splitting. In classical PASCAL, if a line of text contains a
mixture of data items, one must read the line character by
character to parse the line into the separate items. This is
very tedious to program. A much better way is to read the
entire line into a string and then split off appropriate
substrings corresponding to the various items. StringTools
provides two tools to split a string, one which looks for a
particular character to define the break point and the other

which looks for a character belonging to set of separator
characters.

StringTools is a frankly utilitarian package which sends
an important software engineering message to students. A
programming language may be awkward to use in the form
provided by its developer. By building relatively simple
tools, the ease of use of the language can be significantly
increased. This message is reinforced by the IOTools
package.

IOTools
Examination of current introductory computer science

textbooks shows that a substantial fraction of the source
code presented as examples does not focus on the issue
being taught at the moment but on sequences of prompts,
readln’s, and writeln’s. This explicit in-line code for
input-output is boring and distracts students from the real
issues. Moreover, such code teaches very poor software
engineering habits. There is no conceptual organization
applied to the input-output code and, furthermore, robust
error checking is impossible since an invalid input to a
numeric variable will crash the program before the read
call ever returns.

The IOTools package provides a well-engineered set of
input routines. The features include:

• robust input for strings of fixed or arbitrary length
• robust input for other data types, especially, numeric
• built-in prompt strings and optional default values
• utilities to force numeric values within range
• input from internal strings as well as the keyboard

There are two functions for string input:
function request_string (prompt, default:
string): string;

function limited_string (prompt, default:
string; limit: integer): string;

The function request_string is the central input
routine called by all other input routines. This function
displays the prompt string if it is non-empty, displays the
default reply string within brackets if it is non-empty,
and then reads the user input line. After reading, the line is
squashed to remove leading and trailing blanks. If the
squashed line is non-empty then it is returned as the
function value otherwise the default string is squashed
and returned. The function request_string traps
numerous errors, politely signals these with the message IO
Error, and then permits the user to re-enter the line of text.
There is only one fault that this function cannot trap. If the
user presses the Enter key then this is interpreted as end-of-
file on the input stream and there is no clean way to
recover. The idea that an interactive device can ever signal
end-of-file is an obsolete holdover from the days when
batch programs were run without modification on video
terminals.
Limited_string is similar to request_string except

that it guarantees by truncation that its return value will
have length at most the limit parameter. This function is
necessary since a program will crash if a line is read which
is longer than the string provided to receive it.

For each of the other basic types, IOTools provides a pair
of input routines designed somewhat differently. The
routines for type integer are typical:

function read_integer(prompt: string):
integer;

function request_integer(prompt: string;
default: integer): integer;

The read_integer routine insists on a non-empty reply
and will reinitiate the read if the user hits Return on an
empty line. In contrast, request_integer will return the
default in that case. Both routines add to the standard
error checking by catching numeric errors in the input line
and permitting the user to re-enter the input if needed.

There are several utility routines which request single
character responses from a user. These routines
automatically convert the response to uppercase so that it is
easy to feed the result to an if or case statement. In
addition, there is an interesting function called confirm:

function confirm(prompt: string; default:
boolean): boolean

Function confirm displays its prompt and expects Y or N
as the response (where Y = Yes corresponds to True and N
= No to False). The function is useful for asking questions
whose answer may control decisions and loop termination.

From this brief description of IOTools, it is clear that
input-output programming is both more robust and more
compact when these tools are used. In contrast, although
many textbooks give lip service to robust input-output,
none really do much about it. The reason is that it is out of
the question to carry out a high level of error checking if
such checks have to be programmed manually for every
single IO operation. It is only by encapsulating the error
checks in an organized and complete toolkit that the
programmer is empowered to access and use them on a
regular basis. This fact is a vital software engineering
lesson for the freshman computer science student.

3. Sophisticated Abstractions in the
Freshman Curriculum

Every scientist knows that abstraction is essential for
organized, efficient thinking. To a naive freshman,
however, it may appear that abstraction is an unnecessary
complication which hides the concrete issues behind a dark
veil. To show a freshman that abstraction has substantial
positive benefits, examples of abstraction must be
presented and utilized which provide compelling evidence
that abstraction is not merely useful but that it is in fact the
only way to deal with complexity in computer science,
mathematics, and the other sciences. In particular, the
concept of levels of abstraction must be taught so that the
student learns that the concrete issues are not hidden
forever but simply organized into various layers which can
be handled more effectively one by one.

The current computer science textbooks for freshmen
praise abstraction highly but the examples given of
abstraction are bland and uninspiring. The student is left
with the feeling that abstraction accomplishes little except
to make the programming process longer. We believe that
the student must experience sophisticated instances of
abstraction which demonstrate that an abstract approach
to thinking and designing is vital. In this section, we will

describe several abstractions we introduce at Northeastern
and explain what principles each helps to elucidate.

Loops, Decisions, and the Swimming Fish Lab
The Swimming Fish laboratory exercise is designed to

require students to program a loop with decisions in which
the progress of the loop cannot be predicted prior to
runtime. The situation of the exercise is a large underwater
maze-like cave in which a large fish searches for food
consisting of a school of small fish { see Figure 2 }.

Figure 2: Typical Initial State of the Swimming Fish Laboratory
The large fish is initially positioned at the left side of the

cave and the school of small fish at the right. The cave is
randomly generated but is designed so that the large fish
can find the food using only moves up or down or to the
right. The large fish never needs to backtrack to the left.

The Swimming Fish laboratory is introduced to the
students about seven weeks into the first course before
array data structures have been discussed. The students are
able to solve the exercise because the critical tools are
presented as abstractions. The solution is based on a shell
program which the students must complete, on four of the
basic tools modules, and on a file which contains the
picture resources for the large fish and the school of fish.
The four key abstractions which the students use to
program the search of the large fish for the food are:

type directions = (up, down, right);
function freetomove (d: directions):
boolean;

procedure movefish (d: directions);
function foodfound: boolean;

The type directions abstracts the three directions in
which the large fish may need to move. Function
freetomove tests whether movement in a particular
direction is possible, that is, is there open water rather than
cave walls in that direction. Procedure movefish will
move the large fish in the desired direction. Finally,
function foundfood tests whether the large fish has landed
on the cell containing the school of small fish.

The students must program their solution to the exercise
entirely in terms of these abstractions. They are not
permitted to peek at the underlying array data structure for
the cave. After some thought, they realize that foundfood

can be used to control the termination of a while loop and
that freetomove is the critical tool needed for deciding
where to move the fish next. Of course, they must plan the
order in which various directions are tested and maintain
state information to prevent an indefinite oscillation of the
fish up and down.

In the Swimming Fish laboratory handout, we are open
with the students that the use of abstraction is a key lesson
of the assignment. In a section entitled “Educational Goals
and Additional Comments”, we explain to the students:

“An interesting aspect of this exercise is that you
obtain a global solution (food is found) simply using
local information (what directions are open to the fish
at the current position). In computing, it is pleasing
when you can find an efficient global solution using
only local information.

The fact that local information is sufficient for the
solution makes it easy to set up the abstractions
freetomove, foundfood, and movefish which help to
hide the internal data structures and thereby permit a
clean program design.”

The shell program hides a great deal of information in
addition to the abstractions directly used in solving the
problem. The cave must be randomly initialized in such a
way that there is always a path from the large fish to the
food and such that backtracking is not required. Also, the
cave cells, the fish, and the food must be drawn. All of
these nuggets of code form a rich domain for exploration
by the better students but the design of the laboratory
permits the weaker students to simply work on the main
problem without distractions.

Recursion, Fractals, and the Turtle
Abstraction

Fractal curves are one of the most beautiful illustrations
of recursive definitions and we therefore use fractals to
help explain recursion. Students see live demonstrations of
the Koch snowflake, the Hilbert curve, and variations of the
dragon curves. The homework assignment asks the
students to program a tree fractal and a Mandelbrot
snowflake as shown in Figure 3.

To permit all of the fractals to be treated in a similar
manner, we introduce a LOGO-style turtle abstraction to
assist in tracing out these curves [1]. The design issues of
the turtle abstraction offer a great opportunity to discussFigure 3: Typical Results of the Recursive Fractals Assignment

with freshman the concept of an abstract data type. The
idea behind the turtle abstraction is geometrically simple
yet the implementation of the data type and its operations
requires some sophistication.

The first issue is: How should the turtle store its
numerical data? Since the underlying coordinates of the
computer screen are integers, it is tempting to use integers
to store the current state of the turtle. This is a major
mistake when drawing complex fractals. After drawing
hundreds of small line segments using only integer data, the
accumulated round off error can make the computed
position of the turtle quite different than what its true
position should be. Therefore, the proper decision is to
store turtle data as reals.

The next question is: How should angles be measured?
Degrees are used in the real world but mathematicians and
programming languages tend to be partial to radians.
Which measure is better? For fractal problems, degree
measure is superior since the angles which commonly
occur are easily expressed: 90˚, 60˚, 45˚, 30˚. Radian
measure is really most useful in calculus situations because
the formulas for derivatives of trigonometric functions
work out elegantly in radian measure. Radians can be a
nuisance however in computer graphics.

The next question is: What are the appropriate turtle
operations? The LOGO turtle can move forward in its
current direction by its current step size and, by lifting the
pen, can jump forward as well. The turtle can also change
its step size and its current direction. This leads to six basic
operations:

procedure forward (var tt: turtle);
procedure jumpforward (var tt: turtle);
procedure changestep (var tt: turtle;
factor: real);

procedure right (var tt: turtle);
procedure left (var tt: turtle);
procedure rotate (var tt: turtle;
degrees: real);

The remaining operations to round out the turtle abstract
data type are initializations which set the initial turtle
position, step size, direction, and default turning angle. It is
also convenient to have a utility procedure getsincos
which returns the sine and cosine of an angle given in
degrees.

There is a subtle implementation issue in the turtle
abstract data type which illuminates critical questions about
recursion and the use of var versus non-var parameters in
PASCAL. In using a recursive procedure tree to compute
the tree fractal, you would like the tree procedure to forget
what it has done when drawing a sub-tree and restore the
prior state of the turtle when it returns to each node. This
suggests non-var semantics for the recursive procedure:

procedure tree(tt: turtle; …)
In contrast, in using a recursive procedure mandelbrot to

draw the Mandelbrot snowflake, you would like the
mandelbrot procedure to retain the turtle state since each
link of the snowflake attaches to the previous link. This
suggests var semantics for the recursive procedure:

procedure mandelbrot(var tt: turtle; …)
The subtle implementation issue is that a naive approach

to programming procedure forward can cause the tree
procedure to fail even with the proper non-var turtle
parameter. Why is this so?

In Apple Macintosh graphics, the current location of the
drawing pen is maintained as a system parameter by the
QuickDraw toolbox. If the implementation of procedure
forward relies on this fact then the turtle will always draw
from the last position visited independent of the semantics
used in the procedure calls. For the abstraction to work
properly, the turtle must always ensure that it is drawing
from the correct starting point. This is a general principle.
An abstract data type must ensure its implicit preconditions
and not rely on system parameters.

The preceding discussion shows that the introduction of
the abstract turtle data type permits a wide-ranging
exploration of recursion, round off error, procedure call
semantics, and the proper way to implement abstract data
types in general. Students obtain a better handle on each of
these topics through understanding their interconnections.

The Game of Life and the Fat Bits Abstraction
The Game of Life is a simulation of cellular life invented

by John Conway in the late 1960s and introduced to the
world in Martin Gardner’s Mathematical Games column in
the Scientific American. See Gardner [5] for an updated
account of Life research. Implementing the Game of Life
is an fascinating assignment for students which exercises
both algorithmic concepts and 2-dimensional array data
structures. In order for this assignment to be effective,
however, three conditions must be met:

• the life simulation must be animated on the computer
screen in real time;

• the student must be able to create life forms
interactively;

• the student must be able to save interesting life
forms on a file and then read them back at a later
time for further examination.

We have seen textbooks which suggest that the Game of
Life can be programmed with the output streamed in
teletype mode to a text window but such a method makes
exploration and understanding of the Game of Life almost
impossible. The output must be graphical and the student
must be able to interact with it.

At Northeastern, we have created a graphical shell
program which permits the student to program the
algorithmic portions of the Game of Life and then receive
the interactive support almost for free. The Game of Life
program is controlled entirely with the mouse using action
buttons, check boxes, and a suite of radio buttons. In
Figure 4, we show a typical screen from the Game of Life.
A particular life form with a period 3 oscillation has been
entered as an illustration. New life forms can be created by
interactively editing the individual cells using a “fatbits”
method modeled after MacPaint.

In the version of the Game of Life given to the students,
the “Start” button activates a stub procedure which is
empty and does nothing. Also, the “Create Random Data”
button is missing and must be created and made active.
The student is expected to make the “Start” button operate
by implementing the transformations specified by Conway
in the rules for the Game of Life. The student is expected
to create the new button by exploring the existing code and
then imitating what has been done. We believe that
imitation is a very effective form of learning both for
toddlers learning to speak and for college students learning
to program.

Although the Game of Life assignment has many aspects
which deserve discussion, we want to focus on the fatbits
abstract data type which is provided to the students and
which forms one of the most sophisticated examples they
will encounter in the freshman year. The data structure for
the fatbits abstraction is:

fatbits = record
data: packed array[0..63,0..63] of 0..1;
rows: integer;
cols: integer;
cellsize: integer;
blocksize: integer;
drawgrid: boolean;
bounds: rect;

end;
The fatbits type includes a data array with the bitmap

information and a sequence of other parameters which help
make it easy to work with the data type. This design
illustrates a general principle: Include all relevant data of
an abstract data type in a single encompassing data
structure.

The most interesting operation in the fatbits
abstraction is the procedure fatbits_edit which handles
interactive editing of a fatbits structure. The students are
surprised at how easily this procedure can be encoded. A
careful examination of the code shows them that the
simplicity results from using a well designed set of
auxiliary routines and from taking good advantage of the
main event loop. Thus, fatbits_edit illustrates how a
complex task can be made easy by an appropriate division
of labor.

All of the essential information about a particular life
form is contained in the fatbits data structure. Therefore,
to save such data to a file in PASCAL, it suffices to create a
binary file of record type fatbits to which the entire
fatbits data structure may be sent with one write call.
This technique is quite general. As long as the state of a
program can be encapsulated in a single static data
structure, this state can be saved to a binary file which will
contain exactly that one data item. To our knowledge, no
elementary textbook discusses this method.

The Game of Life program introduces upon some fairly
advanced programming and software engineering
techniques. The material is manageable for the students
because what they have to work on themselves is carefully
confined to particular aspects of the whole program. They
are therefore like apprentices in a workshop who get to
observe an entire project but who are expected to actively
work on only appropriate components of the project.

File Abstractions
The PASCAL concept of file is too restricted. PASCAL

offers two kinds of files: text and binary. Text files mimic
the line-by-line input-output of a keyboard and a screen and
provide the same facilities with the same limitations as in
interactive text IO. Binary files offer a more direct bit-to-
bit method of data storage: what is in memory may be sent
“as is” onto the corresponding locations on disk.
Unfortunately, when Niklaus Wirth designed PASCAL [7],
he viewed sequences as the paradigm for file data and so
decreed that a binary file must be a sequence of data items
of the same type. Although one can sometimes use such
binary files to advantage, as in the fatbits example above,
in general the restriction to items of a single type cripples
the use of PASCAL binary files.

A binary file should be a free format object to which one
can send any data of any size at any time. The program
creating the file should be responsible for knowing how the
data was sent to the file and should add extra information to
the file when necessary to clarify how much data of a
particular type has been sent and how it is arranged.

Is it possible to demonstrate this more general concept of
file to students learning PASCAL? The answer is yes and
the secret is abstraction! Why should the built-in concepts
of file be taken as binding? To create a new notion of file,
we need only create a file abstraction which is implemented
on top of the lower level file tools provided directly by the
Macintosh operating system. This abstraction is presented
and used as a genuine “black box” since we do not
encourage freshmen to get into the tangled lore of the File
Manager chapters within Inside Macintosh.

The file tools are actually built on two abstractions,
fileinfo for files and folderinfo for folders. Each uses
the absolutely minimal amount of information needed to
interface with the Macintosh File Manager. The file tools
package then provides the following kinds of tools:

• file selection via standard dialog boxes
• file access tools: create, open, close
• file input-output: readfile, writefile
• file traversal tools: file size and current position
• file information tools: names, paths, parents
• an error message tool

In the file access tools, a delete-file tool is intentionally
omitted since the potential for student error is great. We

Figure 4: Sample Screen from the Game of Life

will discuss in detail only the input-output tools. The
interfaces are:

procedure readfile (var info: fileinfo;
address: ptr; count: longint);

procedure writefile (var info: fileinfo;
address: ptr; count: longint);

Here address is a pointer or memory address and count
is the number of bytes to read or write. Typically, address
is replaced by @variable where @ is the “address of”
operator built into THINK PASCAL and count is replaced
by sizeof(variable) where sizeof is a built-in compile-
time function. The definitions of readfile and writefile
therefore guarantee that any data of any size may be read or
written.

The fundamental message of the file tools package is that
a programmer need not be limited by the deficiencies of the
built-in tools. Abstraction can be the key to the
development of tools more suited to the task at hand and
the way to hide enormous amounts of technical detail.

4. Conclusions
In this article, we have described software tools and

abstractions of much greater interest and depth than those
normally introduced in the freshman curriculum. We have
indicated how these tools can teach students genuine
software engineering principles and enable them to build
interesting and creative products. We believe that the use
of sophisticated tools together with a radical change in the
kind of software that students are asked to create helps
make the freshman curriculum substantially more exciting
and intellectually rewarding. Our curriculum integrates
theory, design, and technique and it provides a model that
other colleges and universities may desire to emulate.

Bibliography
[1] H. Abelson & A. diSessa, Turtle Geometry, MIT

Press, Cambridge, MA, 1980.
[2] C. Brown, H. Fell, V. Proulx, & R. Rasala,

Programming by Experimentation and Example,
in Computer Assisted Learning (ICCAL 1992), I.
Tomak (ed.), Springer-Verlag, Berlin, 1992, pp.
136-147.

[3] C. Brown, H. Fell, V. Proulx, & R. Rasala, Using
Visual Feedback and Model Programs in
Introductory Computer Science, J. Comp. Higher
Ed., 4(1), Fall 1992, pp. 3-26.

[4] P. Denning, D. Comer, D. Gries, M. Mulder, A.
Tucker, A. J. Turner, & P. Young, Computing as a
Discipline, Comm. ACM, 32(1), January 1989, pp.
9-23.

[5] M. Gardner, Wheels, Life, and Other
Mathematical Amusements, W. H. Freeman, New
York, 1983, Chapters 20-22.

[6] A. Tucker, et. al. (ed.), Computing Curricula
1991 , Report of the ACM/IEEE-CS Joint

Curriculum Task Force, ACM Press, New York,
1991.

[7] N. Wirth, Algorithms + Data Structures =
Programs, Prentice-Hall, Englewood Cliffs, NJ,
1976.

