Hardness amplification proofs require majority

Emanuele Viola

Columbia University Work also done at Harvard and IAS

Joint work with

Ronen Shaltiel

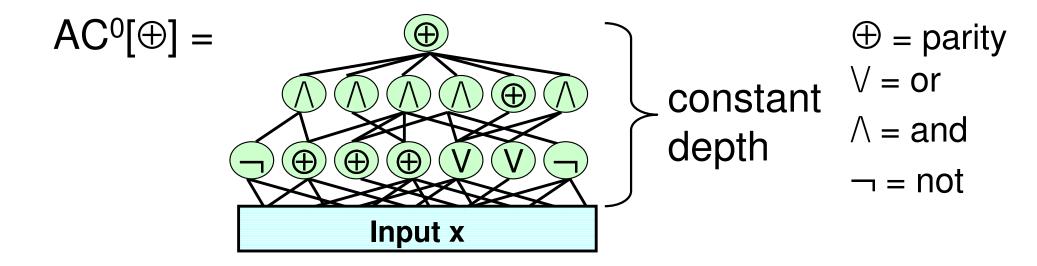
University of Haifa

May 2008

Circuit lower bounds

- Success with restricted circuits
 [Furst Saxe Sipser, Ajtai, Yao, Hastad, Razborov, Smolensky,...]
- Theorem[Razborov '87] Majority ∉ AC⁰[⊕]

Majority(x) = 1 $\Leftrightarrow \sum x_i > |x|/2$



Natural proofs barrier

- Little progress for general circuit models
- Theorem[Razborov Rudich] + [Naor Reingold]: Standard techniques cannot prove lower bounds for circuit classes that can compute Majority
- "We have lower bounds for AC⁰[⊕]
 because Majority ∉ AC⁰[⊕] "

Average-case hardness

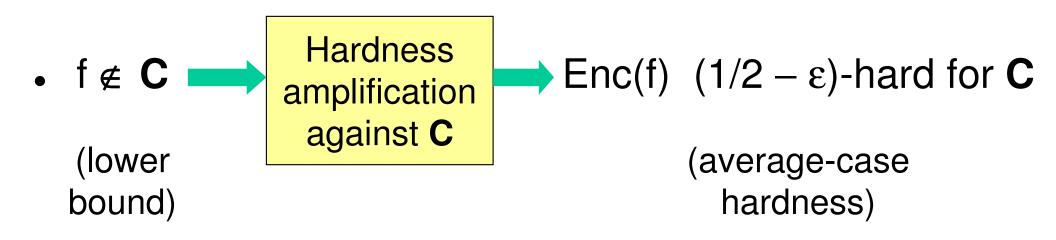
• Definition: $f : \{0,1\}^n \rightarrow \{0,1\} (1/2 - \epsilon)$ -hard for class **C** : for every $M \in \mathbf{C}$: $Pr_x[f(x) \neq M(x)] \ge 1/2 - \epsilon$

• E.g. C = general circuits of size n^{log n}, AC⁰[\oplus], ...

 Strong average-case hardness: 1/2 – ε = 1/2 – 1/n^{ω(1)} Need for cryptography pseudorandom generators [Nisan Wigderson,...] lower bounds [Hajnal Maass Pudlak Szegedy Turan,...]

Hardness amplification

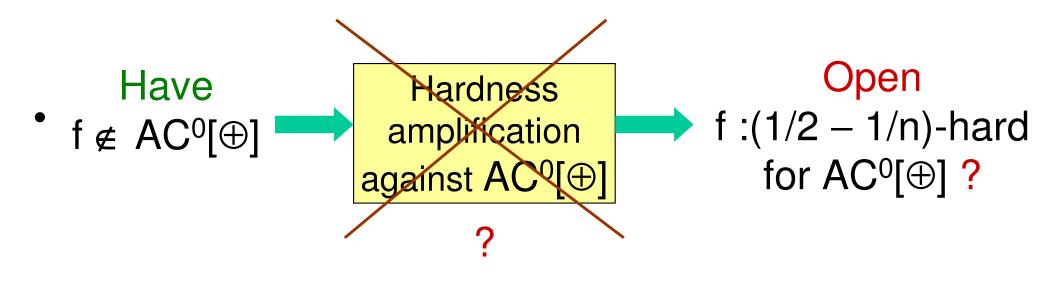
[Y,GL,L,BF,BFL,BFNW,I,GNW,FL,IW,CPS,STV,TV,SU,T,O,V,HVV,GK,IJK,...]



- Usually black-box, i.e. code-theoretic
 Enc(f) = Encoding of (truth-table of) f
 Proof of correctness = decoding algorithm in C
- Results hold when **C** = general circuits

The problem we study

 Known hardness amplifications fail against any class C for which have lower bounds



 Conjecture[V. '04]: Black-box hardness amplification against class C ⇒ Majority ∈ C

Our results

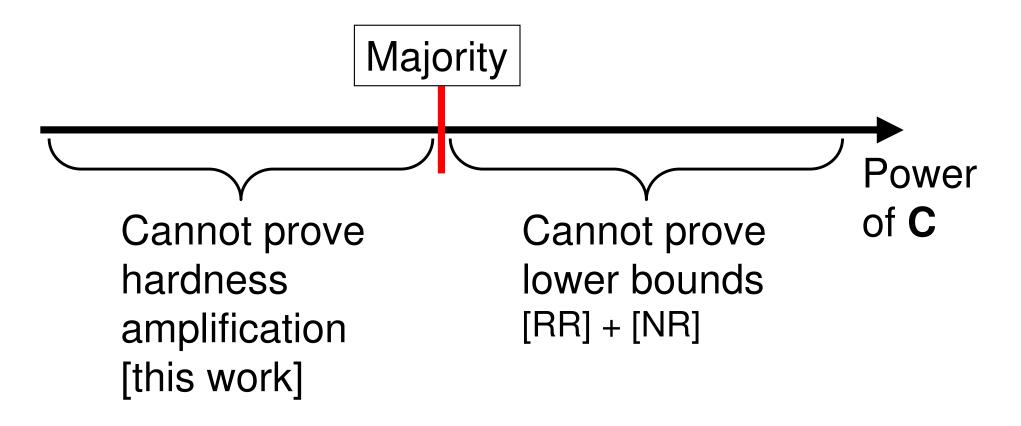
- Theorem[This work] Black-box (non-adaptive)
 (1/2 ε)-hardness amplification against class C
 - \Rightarrow C computes majority on $1/\epsilon$ bits.

• Tight

[Impagliazzo, Goldwasser Gutfreund Healy Kaufman Rothblum]

Our results + [Razborov Rudich] + [Naor Reingold]

"Lose-lose" reach of standard techniques:



"You can only amplify the hardness you don't know"

Other consequences of our results

- Boolean vs. non-Boolean hardness amplification Enc(f)(x) ∈ {0,1} requires majority Enc(f)(x) ∈ {0,1}^t does not [Impagliazzo Jaiswal Kabanets Wigderson]
- Loss in circuit size: Lower bound for size s $\Rightarrow (1/2 - \varepsilon)$ -hard for size s· ε^2/n

Tight [Impagliazzo, Klivans Servedio]

 Decoding is more difficult than encoding Encoding: Parity (⊕) Decoding: Majority

Outline

• Overview and our results

• Formal statement of our results

Black-box hardness amplification

$$f = 0 1 0 1 0 1 0 1 0 \dots 1$$

arbitrary
Enc(f) = 0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0 \dots 0
h = 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 \dots 0
(1/2 - \epsilon errors) queries (non-adaptive)
D^h(x) = f(x)

- In short: $\forall f \forall h \approx Enc(f) \Rightarrow \exists D \in \mathbf{C} : D^{h} = f$
- Rationale: $f \notin \mathbf{C} \Rightarrow Enc(f) (1/2 \epsilon)$ -hard for \mathbf{C}

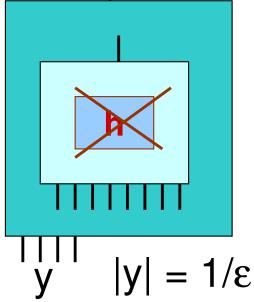
Our results

• Theorem

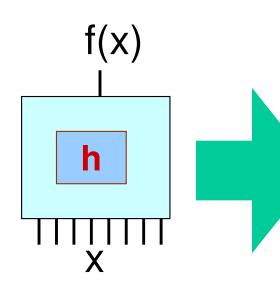
Black-box non-adaptive $(1/2 - \varepsilon)$ -hardness amplification against **C**

 $\exists M \in \mathbf{C} \text{ computes} \\ \text{majority on } 1/\epsilon \text{ bits} \\ \end{cases}$

majority(y)



 $\forall f, h \approx Enc(f)$ $\exists D \in \mathbf{C} : D^{h} = f$



Proof idea

• $(1/2 - \varepsilon)$ hardness amplification against **C** $\Rightarrow \exists D \in \mathbf{C}$: tells Noise rate 1/2 from $1/2 - \varepsilon$

$$h = noise 1/2 \qquad \implies D^h \neq f$$

 $h = Enc(f) \oplus noise 1/2 - \epsilon \implies D^{h} = f$

 \Rightarrow compute majority Ack: Madhu Sudan

- Problem: D depends on h
- This work: Technique to fix D independent of h

Conclusion

 This work: Black-box (non-adaptive) hardness amplification against C ⇒ Majority ∈ C

 Reach of standard techniques [This work] + [Razborov Rudich] + [Naor Reingold]
 "Can amplify hardness ⇔ cannot prove lower bound"

Open problems
 Adaptivity?
 (Already can handle special cases)
 1/3-pseudorandom construction ⇒ majority?