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• Success with restricted circuits

[Furst Saxe Sipser, Ajtai, Yao, Hastad, Razborov, Smolensky,…]

• Theorem[Razborov ’87] Majority ∉∉∉∉ AC0[⊕]

Majority(x) = 1 ⇔ ∑ xi > |x|/2

AC0[⊕] = ⊕ = parity
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Circuit lower bounds
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• Little progress for general circuit models

• Theorem[Razborov Rudich] + [Naor Reingold]:

Standard techniques cannot prove lower bounds for

circuit classes that can compute Majority

• “ We have lower bounds for AC0[⊕]

because      Majority ∉∉∉∉ AC0[⊕] ”

Natural proofs barrier



• Definition: f : {0,1}n → {0,1} (1/2 − ε)-hard for class C :

for every M ∈ C  :  Prx[f(x) ≠ M(x)] ≥ 1/2 − ε

• E.g. C = general circuits of size nlog n, AC0[⊕], …

• Strong average-case hardness: 1/2 – ε = 1/2 – 1/nω(1)

Need for cryptography

pseudorandom generators    [Nisan Wigderson,…]

lower bounds [Hajnal Maass Pudlak Szegedy Turan,…]

Average-case hardness



•

• Usually black-box, i.e. code-theoretic

Enc(f) = Encoding of (truth-table of) f

Proof of correctness = decoding algorithm in C

• Results hold when C = general circuits

Hardness amplification
[Y,GL,L,BF,BFL,BFNW,I,GNW,FL,IW,CPS,STV,TV,SU,T,O,V,HVV,GK,IJK,…]

Hardness
amplification

against C

f ∉∉∉∉ C

(lower
bound)

Enc(f)  (1/2 − ε)-hard for C

(average-case
hardness)



• Known hardness amplifications fail

against any class C for which have lower bounds

•

• Conjecture[V. ‘04]: Black-box hardness amplification

against class C ⇒⇒⇒⇒ Majority ∈∈∈∈ C

The problem we study

Hardness

amplification

against AC0[⊕]

Have

f ∉∉∉∉ AC0[⊕]

Open

f :(1/2 − 1/n)-hard

for AC0[⊕] ?

?



Our results

• Theorem[This work] Black-box (non-adaptive)

(1/2 − ε)-hardness amplification against class C

⇒⇒⇒⇒ C computes majority on 1/ε bits.

• Tight

[Impagliazzo, Goldwasser Gutfreund Healy Kaufman Rothblum]



Our results + [Razborov Rudich] + [Naor Reingold]

Majority

Power

of CCannot prove

lower bounds
[RR] + [NR]

Cannot prove

hardness 

amplification

[this work]

“You can only amplify the hardness you don’t know”

“Lose-lose” reach of standard techniques:



• Boolean vs. non-Boolean hardness amplification

Enc(f)(x) ∈ {0,1} requires majority

Enc(f)(x) ∈ {0,1}t does not [Impagliazzo Jaiswal 
Kabanets Wigderson]

• Loss in circuit size: Lower bound for size s

⇒ (1/2 − ε)-hard for size s⋅ε2/n

Tight [Impagliazzo, Klivans Servedio]

• Decoding is more difficult than encoding

Encoding: Parity (⊕)
Decoding: Majority

Other consequences of our results



Outline

• Overview and our results

• Formal statement of our results



Black-box hardness amplification

• In short: ∀ ∀ ∀ ∀ f ∀∀∀∀ h ≈ Enc(f) ⇒ ∃ ∃ ∃ ∃ D ∈∈∈∈ C : Dh = f

• Rationale: f ∉∉∉∉ C ⇒ Enc(f) (1/2 − ε)-hard for C

0 1 0 1 0 1 0 1 0 L 1

0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0   L 0

0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0   L 0

queries (non-adaptive)

arbitrary

f =

Enc(f) =

h = 

(1/2 – ε errors)

Dh(x) = f(x)



Our results

• Theorem

h

x

f(x)

∀ ∀ ∀ ∀ f, h ≈ Enc(f)

∃ ∃ ∃ ∃ D ∈ C : Dh = f
h

y

majority(y)

|y| = 1/ε

Black-box non-adaptive 

(1/2 − ε)-hardness 
amplification against C

∃ M ∈∈∈∈ C computes 

majority on 1/ε bits



Proof idea

• (1/2 − ε) hardness amplification against C 

⇒ ∃ D ∈∈∈∈ C : tells Noise rate 1/2 from 1/2 – ε

h = noise 1/2 ⇒ Dh ≠ f

h = Enc(f) ⊕ noise 1/2 – ε ⇒ Dh = f

⇒ compute majority Ack: Madhu Sudan 

• Problem: D depends on h

• This work: Technique to fix D independent of h



• This work: Black-box (non-adaptive)

hardness amplification against C ⇒ Majority ∈∈∈∈ C

• Reach of standard techniques
[This work] + [Razborov Rudich] + [Naor Reingold]

“Can amplify hardness ⇔ cannot prove lower bound”

• Open problems

Adaptivity? (Already can handle special cases)

1/3-pseudorandom construction ⇒ majority?

Conclusion


