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• Major goal of computational complexity theory

• Success with constant-depth circuits (1980’s)

[Furst Saxe Sipser, Ajtai, Yao, Hastad, Razborov, Smolensky,…]

• Theorem[Razborov ’87] Majority not in AC0[⊕]

Majority(x1,…,xn) := 1 ⇔ ∑ xi > n/2

AC0[⊕] =

⊕ = parity
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Circuit lower bounds
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• Lack of progress for general circuit models

• Theorem[Razborov Rudich] + [Naor Reingold]:

Standard techniques cannot prove lower 
bounds for circuits that can compute Majority

• We have lower bounds for AC0[⊕]

because Majority not in AC0[⊕]

Natural proofs barrier



• Particularly important kind of lower bound

• Def.: f : {0,1}n → {0,1} δ-hard for class C if

every C ∈ C  :  Prx[f(x) ≠ C(x)] ≥ δ            (δ ∈ [0,1/2])

• E.g. C = general circuits of size nlog n, AC0[⊕],…

• Strong average-case hardness: δ = 1/2 – 1/nω(1)

Need for cryptography, pseudorandom generators

[Nisan Wigderson,…]

Average-case hardness



•

• Major line of research (1982 – present)
[Y,GL,L,BF,BFL,BFNW,I,GNW,FL,IW,IW,CPS,STV,TV,SU,T,O,V,T,
HVV,SU,GK,IJK,IJKW,…]

• Yao XOR lemma: Enc(f)(x1,…,xt) := f(x1) ⊕L⊕ f(xt)

δ-hard ⇒ (1/2 – 1/nω(1))-hard (t = poly(n/δ)) 

against C = general circuits

Hardness amplification

Hardness
amplification

against C

δ-hard   f
for C

Enc(f)   (1/2-ε)-hard
for C



• Known hardness amplifications fail

against any class C for which have lower bounds

• Have f ∈ AC0[⊕]. Open f : (1/2-1/n)-hard for AC0[⊕] ?

• Motivation: pseudorandom generators [Nisan Wigderson,…]

lower bounds [Hajnal Maass Pudlak Szegedy Turan,…], per se

• Conj.[V ‘04]: Black-box hardness amplification

against class C requires Majority ∈ C

The problem we study



Our results

• Theorem[This work] Black-box

hardness amplification against class C
requires Majority ∈ C

• No black-box hardness amplification against 

AC0[⊕] because Majority not in AC0[⊕] 

• Black-box amplification to (1/2-ε)-hard requires 

C to compute majority on 1/ε bits – tight



Our results + [Razborov Rudich] + [Naor Reingold]

Majority

Power

of CCannot prove

lower bounds
[RR] + [NR]

Cannot prove

hardness 

amplification

[this work]

“You can only amplify the hardness you don’t know”

“Lose-lose” reach of standard techniques:
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• Proof



Black-box hardness amplification

• Def. Black-box δ→(1/2-ε) hardness amplific. against C

For every f, h : Pry[Enc(f)(y) ≠ h(y)] < 1/2-ε

there is oracle circuit C ∈ C : Prx[f(x) ≠ Ch(x)] < δ

• Rationale: f δ-hard ⇒ Enc(f) (1/2-ε)-hard

(f δ-hard for C if ∀ C ∈ C : Prx[f(x) ≠ C(x)] ≥ δ)

• Captures most techniques.

Note: Enc is arbitrary. Caveat: C non-adaptive

Encf : {0,1}k→{0,1} Enc(f) : {0,1}n→{0,1}



The local list-decoding view
[Sudan Trevisan Vadhan ’99]

f = 

Enc(f) =

h = 

(1/2–ε errors)

Ch(x) = f(x)      (for 1-δ x’s)

0 1 0 1 0 1 0 1 0 1 0 L 1

0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0   L 0

0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0   L 0

q queries



Our results

• Theorem[this work]: Black-box

δ → (1/2-ε) hardness amplification against C ⇒

(1)    C ∈ C computes majority on 1/ε bits

(2)    C ∈ C makes q ≥ log(1/δ)/ε2 oracle queries

• Both tight

(1) [Impagliazzo, Goldwasser Gutfreund Healy Kaufman Rothblum]

(2) [Impagliazzo, Klivans Servedio]
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• Lack of hardness vs. randomness tradeoffs
[Nisan Wigderson] for constant-depth circuits

• Lack of strongly average-case lower bound
for AC0[⊕], perceptrons (Maj-AC0),…

despite known lower bounds

• Loss in circuit size: δ-hard for size s

⇒ (1/2-ε)-hard for size s·ε2 / log(1/δ)

Our results somewhat explain



Direct product vs. Yao’s XOR

• Yao XOR lemma:

Enc(f)(x1,…,xt) := f(x1) ⊕⊕⊕⊕L ⊕⊕⊕⊕ f(xt) ∈ {0,1}

• Direct product lemma (non-Boolean)

Enc(f)(x1,…,xt) := f(x1) ◦◦◦◦L ◦◦◦◦ f(xt) ∈ {0,1}t

• Direct product ⇔ Yao XOR [Goldreich Levin]

• Yao XOR requires majority [this work]

direct product does not [folklore, Impagliazzo Jaiswal 
Kabanets Wigderson]
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Proof

• Recall Theorem: Black-box

δ → (1/2-ε) hardness amplification against C ⇒

(1)    C ∈ C computes majority on 1/ε bits

(2)    C ∈ C makes q ≥ log(1/δ)/ε2 oracle queries

• We show hypot.⇒ C ∈ C : tells Noise 1/2 from 1/2 – ε

(D) | Pr[C(N1/2,…,N1/2)=1] - Pr[C(N1/2-ε,…,N1/2-ε)=1] | >0.1

• (1) ⇐⇐⇐⇐ (D) [Sudan]

(2) ⇐⇐⇐⇐ (D) + tigthness of Chernoff bound

q q



Warm-up: uniform reduction

• Want: non-uniform reductions (∀∀∀∀ f,h ∃∃∃∃ C)

For every f ,h : Pry[Enc(f)(y) ≠ h(y)] < 1/2-ε

there is circuit C ∈ C : Prx[f(x) ≠ Ch(x)] < δ

• Warm-up: uniform reductions (∃∃∃∃ C ∀∀∀∀ f,h )

There is circuit C ∈ C : 

For every f, h : Pry[Enc(f)(y) ≠ h(y)] < 1/2-ε

Prx[f(x) ≠ Ch(x)] < δ



Proof in uniform case

• Let F : {0,1}k → {0,1}, X ∈ {0,1}k be random

Consider C(X) with oracle access to Enc(F)(y) ⊕ H(y)

H(y) ~ N1/2 ⇒ CEnc(F) ⊕ H(X) = CH(X) ≠ F(X) w.h.p.

C has no information about F

H(y) ~ N1/2-ε ⇒ CEnc(F) ⊕ H(X) = F(X) w.h.p. 

Enc(F) ⊕ H is (1/2-ε)-close to Enc(F)

• To tell z ~ Noise 1/2 from z ~ Noise 1/2 – ε, |z| = q

Run C(X); answer i-th query yi with Enc(F)(yi) ⊕ zi

Q.e.d.



Proof outline in non-uniform case

• Non-uniform: C depends on F and H (∀ f,h ∃ C)

• New proof technique

1) Fix C to C’ that works for many f,h

Condition F’ := F | C’, H’ := H | C’

2) Information-theoretic lemma
Enc(F’)⊕H’ (y1,…,yq) ≈ Enc(F)⊕H (y1,…,yq)

If all yi ∈ good set G ⊆ {0,1}n

Can argue as for uniform case if all yi ∈ G

3) Deal with queries yi not in G



Fixing C

• Choose F : {0,1}k → {0,1} uniform, H (x) ~ N1/2-ε

• Enc(F)⊕H is (1/2-ε)-close to Enc(F). We have (∀f,h∃C)

With probability 1 over F,H there is C ∈ C :

PrX[CEnc(F)⊕H(X) ≠ F(X)] < δ

• ⇒ there is C’ ∈ C : with probability 1/|C| over F,H

PrX[C’ Enc(F)⊕H (X) ≠ F(X)] < δ

• Note: C = all circuits of size poly(k), 1/|C| = 2-poly(k)



The information-theoretic lemma
• Lemma

Let V1,…,Vt i.i.d., V1’,…,Vt’ := V1,…,Vt | E

E noticeable ⇒ there is large good set G ⊆ [t] : 

for every i1,…,iq ∈ G : (V’i1
,…,V’iq

) ≈ (Vi1
,…,Viq

) 

• Proof:  E noticeable ⇒ H(V1’,…,Vt’) large

⇒ H(V’i |V’1,…,V’i -1) large for many i (∈ G)

Closeness[(Vi1
,…,Viq

),(V’i1
,…,V’iq

)] ≥ H(V’i1
,…,V’iq

)

≥ H(V’iq
| V’1,…,V’iq -1

) + … + H(V’i1
| V’1 ,…,V’i1-1) large  

Q.e.d.

• Similar to [Edmonds Rudich Impagliazzo Sgall, Raz]



Applying the lemma

• Vx = H(x) ~ Noise 1/2-ε

• E := { H : PrX[C’ Enc(F)⊕H(X) ≠ F(X)] < δ },  Pr[E]≥ 1/|C|

H’ = H | E =

C’ Enc(F’) ⊕ H’ (x) ≈ C’ Enc(F) ⊕ H (x)

• All queries in G ⇒ proof for uniform case goes thru

0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0   L 0

Gq queries



Handling bad queries

• Problem: C(x) may query bad y ∈ {0,1}n not in G

• Idea: Fix bad query. Queries either in G or fixed ⇒

proof for uniform case goes thru

• Delicate argument:

Fixing bad query H(y) creates new bad queries

Instead fix heavy queries: asked by C(x) for many x’s 

OK because new bad queries are light, affect few x’s



• Theorem[This work] Black-box hardness 
amplification against class C requires Majority ∈ C

• Reach of standard techniques in circuit complexity
[This work] + [Razborov Rudich], [Naor Reingold]

“Can amplify hardness ⇔ cannot prove lower bound”

• New proof technique to handle non-uniform reductions

• Open problems

Adaptivity? (Cover [Sudan Trevisan Vadhan], [Goldreich Levin])

1/3-pseudorandom from 1/3-hard requires majority?

Conclusion


