Hardness amplification proofs require majority

Emanuele Viola

Columbia University Work done at Harvard, IAS, and Columbia

Joint work with

Ronen Shaltiel

University of Haifa

January 2008

Circuit lower bounds

- Major goal of computational complexity theory
- Success with constant-depth circuits (1980's)
 [Furst Saxe Sipser, Ajtai, Yao, Hastad, Razborov, Smolensky,...]
- Theorem[Razborov '87] Majority not in $AC^{0}[\oplus]$ Majority $(x_1,...,x_n) := 1 \Leftrightarrow \sum x_i > n/2$

 $\oplus = parity$

 $\vee = or$

 $\wedge = and$

Natural proofs barrier

- Lack of progress for general circuit models
- Theorem[Razborov Rudich] + [Naor Reingold]: Standard techniques cannot prove lower bounds for circuits that can compute Majority
- We have lower bounds for AC⁰[⊕]
 because Majority not in AC⁰[⊕]

Average-case hardness

• Particularly important kind of lower bound

• E.g. C = general circuits of size $n^{\log n}$, $AC^{0}[\oplus],...$

Strong average-case hardness: δ = 1/2 – 1/n^{ω(1)}
 Need for cryptography, pseudorandom generators
 [Nisan Wigderson,...]

- Major line of research (1982 present) [Y,GL,L,BF,BFL,BFNW,I,GNW,FL,IW,IW,CPS,STV,TV,SU,T,O,V,T, HVV,SU,GK,IJK,IJKW,...]
- Yao XOR lemma: $Enc(f)(x_1,...,x_t) := f(x_1) \oplus \cdots \oplus f(x_t)$ δ -hard $\Rightarrow (1/2 - 1/n^{\omega(1)})$ -hard $(t = poly(n/\delta))$ against $\mathbf{C} = general circuits$

The problem we study

 Known hardness amplifications fail against any class C for which have lower bounds

• Have $f \notin AC^{0}[\oplus]$. Open f : (1/2-1/n)-hard for $AC^{0}[\oplus]$?

• Motivation: pseudorandom generators [Nisan Wigderson,...] lower bounds [Hajnal Maass Pudlak Szegedy Turan,...], per se

 Conj.[V '04]: Black-box hardness amplification against class C requires Majority ∈ C

Our results

 Theorem[This work] Black-box hardness amplification against class C requires Majority ∈ C

 No black-box hardness amplification against AC⁰[⊕] because Majority not in AC⁰[⊕]

Black-box amplification to (1/2-ε)-hard requires
 C to compute majority on 1/ε bits – tight

Our results + [Razborov Rudich] + [Naor Reingold]

"Lose-lose" reach of standard techniques:

"You can only amplify the hardness you don't know"

Outline

Overview

- Formal statement of our results
- Significance of our results
- Proof

Black-box hardness amplification

• Def. Black-box $\delta \rightarrow (1/2-\epsilon)$ hardness amplific. against C f : {0,1}^k \rightarrow {0,1} \longrightarrow Enc(f) : {0,1}ⁿ \rightarrow {0,1}

For every f, h : $Pr_{y}[Enc(f)(y) \neq h(y)] < 1/2-\epsilon$ there is oracle circuit $C \in \mathbf{C}$: $Pr_{x}[f(x) \neq C^{h}(x)] < \delta$

- Rationale: $f \delta$ -hard $\Rightarrow Enc(f) (1/2-\epsilon)$ -hard ($f \delta$ -hard for **C** if $\forall C \in \mathbf{C} : Pr_x[f(x) \neq C(x)] \ge \delta$)
- Captures most techniques.
 Note: Enc is arbitrary. Caveat: C non-adaptive

Our results

- Theorem[this work]: Black-box $\delta \to (1/2 \epsilon)$ hardness amplification against ${f C} \Rightarrow$
 - (1) $C \in C$ computes majority on $1/\epsilon$ bits
 - (2) $C \in C$ makes $q \ge log(1/\delta)/\epsilon^2$ oracle queries

• Both tight

(1) [Impagliazzo, Goldwasser Gutfreund Healy Kaufman Rothblum]

(2) [Impagliazzo, Klivans Servedio]

Outline

Overview

- Formal statement of our results
- Significance of our results
- Proof

Our results somewhat explain

- Lack of hardness vs. randomness tradeoffs [Nisan Wigderson] for constant-depth circuits
- Lack of strongly average-case lower bound for AC⁰[⊕], perceptrons (Maj-AC⁰),... despite known lower bounds
- Loss in circuit size: δ -hard for size s $\Rightarrow (1/2-\epsilon)$ -hard for size s· $\epsilon^2/\log(1/\delta)$

Direct product vs. Yao's XOR

- Yao XOR lemma: $Enc(f)(x_1,...,x_t) := f(x_1) \oplus \cdots \oplus f(x_t) \in \{0,1\}$
- Direct product lemma (non-Boolean) $Enc(f)(x_1, \dots, x_t) \mathrel{\mathop:}= f(x_1) \mathrel{\circ} \cdots \mathrel{\circ} f(x_t) \in \{0, 1\}^t$
- Yao XOR requires majority [this work] direct product does not [folklore, Impagliazzo Jaiswal Kabanets Wigderson]

Outline

Overview

- Formal statement of our results
- Significance of our results
- Proof

Proof

- Recall Theorem: Black-box $\delta \to (1/2-\epsilon)$ hardness amplification against ${f C} \Rightarrow$
 - (1) $C \in C$ computes majority on $1/\epsilon$ bits
 - (2) $C \in C$ makes $q \ge log(1/\delta)/\epsilon^2$ oracle queries
- We show hypot. $\Rightarrow C \in \textbf{C}$: tells Noise 1/2 from 1/2 – ϵ

(D) $|\Pr[C(N_{1/2},...,N_{1/2})=1] - \Pr[C(N_{1/2-\epsilon},...,N_{1/2-\epsilon})=1]| > 0.1$

- (1) ⇐ (D) [Sudan]
 - (2) \Leftarrow (D) + tigthness of Chernoff bound

Warm-up: uniform reduction

• Want: non-uniform reductions (\forall f,h \exists C)

For every f ,h : $Pr_{y}[Enc(f)(y) \neq h(y)] < 1/2-\epsilon$ there is circuit $C \in \mathbf{C}$: $Pr_{x}[f(x) \neq C^{h}(x)] < \delta$

• Warm-up: uniform reductions ($\exists C \forall f,h$) There is circuit $C \in C$:

For every f, h : $Pr_{y}[Enc(f)(y) \neq h(y)] < 1/2-\epsilon$ $Pr_{x}[f(x) \neq C^{h}(x)] < \delta$

Proof in uniform case

- Let $F:\{0,1\}^k \to \{0,1\}, X \in \{0,1\}^k$ be random Consider C(X) with oracle access to $Enc(F)(y) \oplus H(y)$

$$\begin{split} H(y) \sim N_{1/2} \Rightarrow C^{Enc(F) \oplus H}(X) = C^{H}(X) \neq F(X) \text{ w.h.p.} \\ C \text{ has no information about } F \end{split}$$

- $\begin{array}{l} \mathsf{H}(\mathsf{y}) \sim \mathsf{N}_{1/2 \text{-} \epsilon} \Rightarrow \mathsf{C}^{\mathsf{Enc}(\mathsf{F}) \oplus \mathsf{H}}(\mathsf{X}) = \mathsf{F}(\mathsf{X}) \text{ w.h.p.} \\ \\ \mathsf{Enc}(\mathsf{F}) \oplus \mathsf{H} \text{ is } (1/2 \text{-} \epsilon) \text{-close to } \mathsf{Enc}(\mathsf{F}) \end{array}$
- To tell $z \sim Noise 1/2$ from $z \sim Noise 1/2 \epsilon$, |z| = qRun C(X); answer i-th query y_i with Enc(F)(y_i) $\oplus z_i$

Proof outline in non-uniform case

- Non-uniform: C depends on F and H (\forall f,h \exists C)
- New proof technique
- 1) Fix C to C' that works for many f,h Condition F' := F | C', H' := H | C'
- 2) Information-theoretic lemma $Enc(F')\oplus H'(y_1,...,y_q) \approx Enc(F)\oplus H(y_1,...,y_q)$ If all $y_i \in \text{good set } G \subseteq \{0,1\}^n$ Can argue as for uniform case if all $y_i \in G$
- 3) Deal with queries y_i not in G

Fixing C

- Choose $F:\{0,1\}^k \rightarrow \{0,1\}$ uniform, H (x) ~ $N_{1/2\text{-}\epsilon}$
- Enc(F)⊕H is (1/2-ε)-close to Enc(F). We have (∀f,h∃C)
 With probability 1 over F,H there is C ∈ C :

$$\mathsf{Pr}_{\mathsf{X}}\big[\mathsf{C}^{\mathsf{Enc}(\mathsf{F})\oplus\mathsf{H}}(\mathsf{X})\neq\mathsf{F}(\mathsf{X})\big]<\delta$$

• \Rightarrow there is C' \in C : with probability 1/|C| over F,H

$$\mathsf{Pr}_{\mathsf{X}}\!\!\left[\mathsf{C}^{'\,\mathsf{Enc}(\mathsf{F})\oplus\mathsf{H}}\left(\mathsf{X}\right)\neq\mathsf{F}(\mathsf{X})\right]<\delta$$

• Note: $\mathbf{C} = \text{all circuits of size poly}(k), 1/|\mathbf{C}| = 2^{-\text{poly}(k)}$

The information-theoretic lemma

Lemma
Let
$$V_1, ..., V_t$$
 i.i.d., $V_1', ..., V_t' := V_1, ..., V_t \mid E$
E noticeable \Rightarrow there is large good set $G \subseteq [t]$:
for every $i_1, ..., i_q \in G : (V'_{i_1}, ..., V'_{i_q}) \approx (V_{i_1}, ..., V_{i_q})$

• Proof: E noticeable \Rightarrow H(V₁',...,V_t') large \Rightarrow H(V'_i |V'₁,...,V'_{i-1}) large for many i (\in G)

$$\begin{split} & Closeness[(V_{i_{1}}, \ldots, V_{i_{q}}), (V'_{i_{1}}, \ldots, V'_{i_{q}})] \geq H(V'_{i_{1}}, \ldots, V'_{i_{q}}) \\ & \geq H(V'_{i_{q}} \mid V'_{1}, \ldots, V'_{i_{q}-1}) + \ldots + H(V'_{i_{1}} \mid V'_{1}, \ldots, V'_{i_{1}-1}) \text{ large} \\ & \quad \text{Q.e.d.} \end{split}$$

• Similar to [Edmonds Rudich Impagliazzo Sgall, Raz]

Applying the lemma

- $V_x = H(x) \sim Noise 1/2-\epsilon$
- $E := \{ H : Pr_X[C' Enc(F) \oplus H(X) \neq F(X)] < \delta \}, Pr[E] \ge 1/|C|$

• All queries in $G \Rightarrow$ proof for uniform case goes thru

Handling bad queries

- Problem: C(x) may query bad $y \in \{0,1\}^n$ not in G
- Idea: Fix bad query. Queries either in G or fixed ⇒ proof for uniform case goes thru
- Delicate argument:

Fixing bad query H(y) creates new bad queries

Instead fix heavy queries: asked by C(x) for many x's

OK because new bad queries are light, affect few x's

Conclusion

- Theorem[This work] Black-box hardness amplification against class C requires Majority ∈ C
- Reach of standard techniques in circuit complexity [This work] + [Razborov Rudich], [Naor Reingold]
 "Can amplify hardness \(\Low \construct cannot \construct prove lower bound")
- New proof technique to handle non-uniform reductions

• Open problems

Adaptivity? (Cover [Sudan Trevisan Vadhan], [Goldreich Levin]) 1/3-pseudorandom from 1/3-hard requires majority?