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Circuit lower bounds

» Major goal of computational complexity theory

» Success with constant-depth circuits (1980’s)
[Furst Saxe Sipser, Ajtai, Yao, Hastad, Razborov, Smolensky,...]

- Theorem[Razborov '87] Majority not in ACO[3]
Majority(x,,...,X,) =1 < 2 X >n/2

AC[] = NNCe
s Y

N\ = and




Natural proofs barrier

» Lack of progress for general circuit models

» Theorem[Razborov Rudich] + [Naor Reingold]:

Standard techniques cannot prove lower
bounds for circuits that can compute Majority

» We have lower bounds for AC[@)]
because Majority not in ACO[@)]



Average-case hardness

Particularly important kind of lower bound

Def.: f:{0,1}" — {0,1} o6-hard for class C if
every C € C : PrJf(x) # C(x)] > o (0 € [0,1/2])

E.g. C = general circuits of size nlcan ACO[a],...

Strong average-case hardness: 6 = 1/2 — 1/n®(1)
Need for cryptography, pseudorandom generators
[Nisan Wigderson,...]



Hardness amplification

* O-hard f mm) a:]g[gigzﬁzn m=) Enc(f) (1/2-¢)-hard
fOI’ C against C fOr C

« Major line of research (1982 — present)
[Y,GL,L,BF,BFL,BFNW,|,GNW,FL,IW,IW,CPS,STV,TV,SU,T,O,V,T,
HVV,SU,GK, IJK, IJKW,...]

* Yao XOR lemma: Enc(f)(x4,...,X,) = f(Xy) &---& (X))
o-hard = (1/2 — 1/n®))-hard (t = poly(n/d))

against C = general circuits



The problem we study

Known hardness amplifications fail
against any class C for which have lower bounds

Have f & AC[@]. Open f : (1/2-1/n)-hard for ACo[@] ?

Motivation: pseudorandom generators [Nisan Wigderson,...]
lower bounds [Hajnal Maass Pudlak Szegedy Turan,...], P€l S€

Conj|.[V ‘04]: Black-box hardness amplification
against class C requires Majority € C



Our results

* Theorem|This work] Black-box

hardness amplification against class C
requires Majority € C

* No black-box hardness amplification against
AC%[®] because Majority not in AC[@]

» Black-box amplification to (1/2-€)-hard requires
C to compute majority on 1/¢ bits — tight



Our results + [Razborov Rudich] + [Naor Reingold]

“Lose-lose” reach of standard techniques:

Majority
N N jl\ ~N = Power
Cannot prove Cannot prove of C
hardness lower bounds
amplification [RR] + [NR]

[this work]

“You can only amplify the hardness you don’t know”
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Black-box hardness amplification

« Def. Black-box 6—(1/2-¢) hardness amplific. against C
f:{0,1}~{0,1}mmd Enc mmsp Enc(f) :{0,1}"—{0,1}

For every 1, h : Pr.[Enc(f)(y) # h(y)] < 1/2-¢
there is oracle circuit C € C : Pr[f(x) # C"(x)] < &

« Rationale: f o-hard = Enc(f) (1/2-¢)-hard
(f o-hard for Cif Vv C € C : Pr [f(x) # C(X)] > o)

« Captures most techniques.
Note: Enc is arbitrary. Caveat: C non-adaptive



The local list-decoding view
[Sudan Trevisan Vadhan '99]

f=101010101010 -~ 1

!

Enc(f) =[01110100101100010110 ---




Our results

» Theorem[this work]: Black-box
0 — (1/2-¢) hardness amplification against C =

(1) C e C computes majority on 1/¢ bits
(2) C € C makes g > log(1/d)/e? oracle queries

* Both tight

(1) [Impagliazzo, Goldwasser Gutfreund Healy Kaufman Rothblum]

(2) [Impagliazzo, Klivans Servedio]
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Our results somewhat explain

- Lack of hardness vs. randomness tradeoffs
[Nisan Wigderson] for constant-depth circuits

» Lack of strongly average-case lower bound
for ACO[@], perceptrons (Maj-AC?),...

despite known lower bounds

* Loss in circuit size: o-hard for size s
= (1/2-¢)-hard for size s-€2/log(1/0)



Direct product vs. Yao's XOR

Yao XOR lemma:
Enc(f)(Xy,...,%) = f(x{) @ - @ f(x,) € {0,1}

Direct product lemma (non-Boolean)
Enc(f)(X4,...,X) =1f(X{) o -+ o f(x;) € {0,1}!

Direct product < Yao XOR [Goldreich Levin]

Yao XOR requires majority [this work]

direct product does not [folklore, Impagliazzo Jaiswal
Kabanets Wigderson]
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Proof

» Recall Theorem: Black-box
0 — (1/2-¢) hardness amplification against C =

(1) C e C computes majority on 1/¢ bits
(2) C € C makes g > log(1/d)/e? oracle queries

« We show hypot.= C € C : tells Noise 1/2 from 1/2 — ¢

D) | PrC(N:5.....N10)=1] - PHC(Ny p,....Ny 0. )=1] [ 0.1
\ v J ~
g g
* (1) « (D) [Sudan]

(2) < (D) + tigthness of Chernoff bound




Warm-up: uniform reduction
« Want: non-uniform reductions (V f,h 3 C)

For every t,h : Pr,[Enc(f)(y) # h(y)] < 1/2-¢
there is circuit C € C : Pr [f(x) # C"(x)] < o

« Warm-up: uniform reductions (3 C V f,h )
Thereis circuit C € C :

For every t, h 1 Pr.[Enc(f)(y) # h(y)] < 1/2-¢
Pr.[f(x) # C"(x)] < &

X



Proof in uniform case

e LetF :{0,1}x — {0,1}, X € {0,1} be random
Consider C(X) with oracle access to Enc(F)(y) © H(y)

H(y) ~ N, = CEF) ©H(X) = CH(X) # F(X) w.h.p.
C has no information about F

H(y) ~ Nyjpp = GNP #H(X) = F(X) w.h.p.
Enc(F) & H is (1/2-€)-close to Enc(F)

» Totell z ~ Noise 1/2 from z ~ Noise 1/2 — ¢, |z| = Q
Run C(X); answer i-th query y; with Enc(F)(y;,) & z
Q.e.d.



Proof outline in non-uniform case
* Non-uniform: C depends on F and H (V f,h 4 C)

* New proof technique

1) Fix C to C’ that works for many f,h
Condition F :=F |C,H =H | C’

2) Information-theoretic lemma
Enc(F)@H’ (y4,...,¥g) =~ Enc(F)®H (y4,...,Y¥,)
If all y, € good set G C {0,1}"
Can argue as for uniform caseifally, € G

3) Deal with queries y, not in G



Fixing C
Choose F : {0,1}x — {0,1} uniform, H (x) ~ N, ...

Enc(F)®H is (1/2-¢)-close to Enc(F). We have (Vf,h3C)
With probability 1 over F,H there is C € C :

Pr,[CEncPeH(X) # F(X)] < &

— there is G’ € C : with probability 1/|C| over F,H

Pry[C’ Enc(PeH (X) # F(X)] < &

Note: C = all circuits of size poly(k), 1/|C| = 2-Ply{)



The information-theoretic lemma

 [Lemma
Let V,,...,V,Li.d,, V... )V =V, ..V, | E

E noticeable = there is large good set G C [t] :

for every iy,...,ip € G : (V’i1,...,V’iq) ~ (Vi1,...,Viq)

. Proof E noticeable :> H(V,,...,V)) large
HV. V'y,...,V ) Iarge for many i (€ G)

CIoseness[(Vi1,...,Viq),(V’i1,...,V’iq)] > H(V, V)
> H(V VeV ) # e+ HOVL TV V) Targe

g
Q.e.d.

« Similar to [Edmonds Rudich Impagliazzo Sgall, Raz]



Applying the lemma
+ V, = H(x) ~ Noise 1/2-¢

« E:={H:PrJC Enc(eH(X) £ F(X)] <&}, PrlE]> 1//C]

H=H| E = 1110100101100010

g queries

C’ Enc(F) @& H (X) ~ C’ Enc(F) & H (X)

 All queries in G = proof for uniform case goes thru



Handling bad queries
* Problem: C(x) may query bady € {0,1}" notin G

 |dea: Fix bad query. Queries either in G or fixed =
proof for uniform case goes thru

« Delicate argument:
Fixing bad query H(y) creates new bad queries
Instead fix heavy queries: asked by C(x) for many x’s

OK because new bad queries are light, affect few x’s



Conclusion

Theorem[This work] Black-box hardness
amplification against class C requires Majority € C

Reach of standard techniques in circuit complexity
[This work] + [Razborov Rudich], [Naor Reingold]

“Can amplify hardness < cannot prove lower bound”

New proof technigue to handle non-uniform reductions

Open problems
Adaptivity? (Cover [Sudan Trevisan Vadhan], [Goldreich Levin])
1/3-pseudorandom from 1/3-hard requires majority?



