Extractors for circuit sources

Emanuele Viola

Northeastern University

April 22 2011

Randomness

Celebrating

Randomness useful in computation, crucial in crypto

 Sources of randomness in nature (various statistics, quantum effects, human brain, ...) appear to exhibit correlations, biases

 Want: turn such weak source into good source of randomness : close to uniform

Randomness extractors

- Extractor : $\{0,1\}^n \rightarrow \{0,1\}^m$ for sources (distributions) S
 - $\forall D \in S$, Extractor(D) ϵ -close to uniform
- Determinisitic (no seed) [Von Neumann '51, Santha Vazirani ...]

 Randomized (seed) [Nisan Zuckerman '93, Trevisan, ..., Guruswami Umans Vadhan]

• Recent interest in deterministic (also for cryptography) [Trevisan Vadhan '00, Dodis, ...]

Deterministic extractors for:

- Independent-blocks source: [Chor Goldreich 88, Barak Bourgain Impagliazzo Kindler Rao Raz Shaltiel Sudakov Wigderson ...]
- **Bit-fixing source**: some bits uniform & indep., others fixed [Chor Friedman Goldreich Hastad Rudich Smolensky '85, Cohen Wigderson, Kamp Zuckerman, ...]
- Small-space: output of one-way, space-bounded algorithm [Blum '86, Vazirani, Koenig Maurer, Kamp Rao Vadhan Zuckerman]
- Affine: uniform over affine space [BKSSW, Bourgain, Rao, Ben-Sasson Kopparty, ...]
- This work: first extractor for circuit sources: local, NC⁰, AC⁰

Outline of talk

• Extractors and the complexity of distributions

• Extractors for local sources

• Extractors for bounded-depth circuits (AC⁰)

• Other results

Trevisan Vadhan [2000]

Sources D with min-entropy k : Pr[D = a] < 2^{-k} ∀ a, sampled (or generated) by small circuit
 C: {0,1}^{*} → {0,1}ⁿ given random bits.

- Extractor ⇒ Circuit lower bound (even 1 bit from k=n-1)
- Extractor \Leftarrow Time $(2^{O(n)}) \not \leq \Sigma_5$ -circuits of size $2^{o(n)}$

This work

- Extractor ⇔ Circuit lower bound for sampling (1 bit from k=n-1) [V 2010]
- Balanced f : $\{0,1\}^n \rightarrow \{0,1\}$ extractor \Leftrightarrow small circuits cannot sample f⁻¹(0) given random bits

I.e., \forall small circuit C: $\{0,1\}^* \rightarrow \{0,1\}^n$ output distribution C(X) not uniform over $\{y : f(y) = 0\}$

The complexity of distributions

Study of sampling lower bounds advocated in [V 2010]

Surprising power of "restricted" models E.g.: AC⁰ samples (Y, Majority(Y)) with error 2⁻ⁿ

• First sampling lower bounds in [V, Lovett V]

E.g.: NC⁰ cannot sample (Y, Majority(Y)) with error o(1) ↓

extract 1 bit error < 1 from n-bit entropy $k = n-1 NC^0$ source

Outline of talk

• Extractors and the complexity of distributions

• Extractors for local sources

• Extractors for bounded-depth circuits (AC⁰)

• Other results

Extractors for local functions

- $f: \{0,1\}^* \rightarrow \{0,1\}^n$ d-local : each output bit depends on d input bits
- Theorem From d-local n-bit source with min-entropy k: Let T := k poly(k/nd) Extract T bits, error exp(-T)
- E.g. extract T=k^C bits from entropy k=n^{1-C} locality d=n^C
- Note: any entropy-k source is k-local: always need k>d

Extractors for local functions

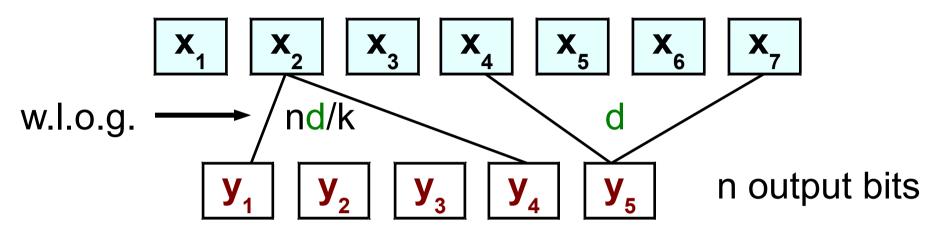
- Theorem From d-local n-bit source with min-entropy k: Let T := k poly(k/nd) Extract T bits, error exp(-T)
- d = O(1) ⇒ extract from NC⁰ sources
 [Independently obtained by De & Watson]
- Theorem later used for AC⁰
- Various values of poly(k/nd)

High-level proof

- Theorem d-local n-bit min-entropy k source (T:=k poly(k/nd))
 Is convex combination of bit-block source
 block-size = dn/k, entropy T, error exp(-T)
- Bit-block source with entropy T: (0, 1, X_1 , 1- X_5 , X_3 , X_3 , 1- X_2 , 0, X_7 , 1- X_8 , 1, X_1) $X_1, X_2, ..., X_T \in \{0, 1\}$
 - $0 < occurrences of X_i < block-size = dn/k$
- Special case of low-weight affine sources
 Use extractor by Rao '09

Proof

d-local n-bit source min-entropy k: convex combo bit-block



- Output entropy > k $\Rightarrow \exists y_i$ with variance > k/n
- Isoperimetry $\Rightarrow \exists \mathbf{x}_i$ with influence > k/nd
- Set uniformly N(N(x_j)) \ {x_j} (N(v) = neighbors of v) with prob. > k/nd, N(x_j) non-constant block of size nd/k
- Repeat k / |N(N(x_i))| = k k/nd² times, expect k k²/n²d³ blocks

Outline of talk

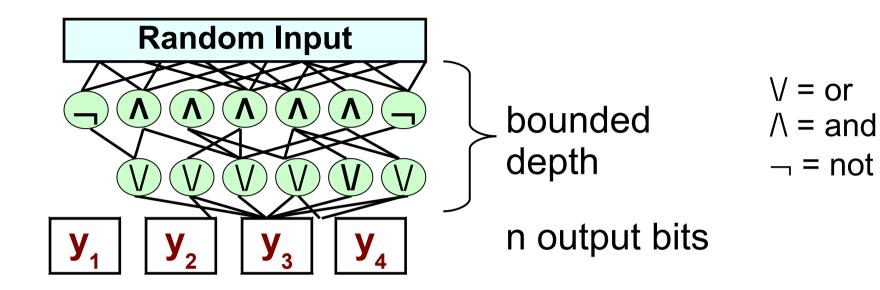
• Extractors and the complexity of distributions

• Extractors for local sources

• Extractors for bounded-depth circuits (AC⁰)

• Other results

Bounded-depth circuits (AC⁰)



• Theorem From AC⁰ n-bit source with min-entropy k: Extract k poly(k / $n^{1.001}$) bits, error $1/n^{\omega(1)}$

High-level proof

• Apply random restriction [Furst Saxe Sipser, Ajtai, Yao, Hastad]

 Switching lemma: Circuit collapses to d=n^ɛ-local apply previous extractor for local sources

• **Problem**: fix 1-o(1) input variables, entropy?

The effect of restrictions on entropy

• Theorem f : $\{0,1\}^* \rightarrow \{0,1\}^n$ f(X) min-entropy k

Let R be random restriction with Pr[*] = pWith high probability, f |_R (X) has min-entropy pk

- Parameters: $\mathbf{k} = poly(n), p = 1/\sqrt{\mathbf{k}}$
- After restriction both circuit collapsed

and min-entropy $p\mathbf{k} = \sqrt{\mathbf{k}}$ still poly(n)

Proof idea

- Theorem f : $\{0,1\}^* \rightarrow \{0,1\}^n$ f(X) min-entropy k Let R be random restriction with Pr[*] = p With high probability, f|_R(X) has min-entropy pk
- Proof: Builds on [Lovett V]
- Isoperimetric inequality for noise: ∀ A ⊆ {0,1}^L of density α random m, m' obtained flipping bits w/ probability p :

$$\alpha^2 \leq \Pr[both \ m \in A and \ m' \in A] \leq \alpha^{1/(1-p)}$$

• Bound collision probability $\Pr[f|_R(X) = f|_R(Y)]$ Qed

Outline of talk

• Extractors and the complexity of distributions

• Extractors for local sources

• Extractors for bounded-depth circuits (AC⁰)

• Other results

The complexity of distributions

- Theorem Explicit b : $\{0,1\}^n \rightarrow \{0,1\}$: Small AC⁰ circuits cannot generate (Y, b(Y))
- Proof: b := first bit of AC⁰ extractor
 Suppose C generates (Y, b(Y))
 - Apply restriction.
 - Fix uniformly additional < log n bits that determine b(Y) (path in small-depth decision tree)

b(Y) fixed but Y has lots of entropy. Contradiction.

Simple extractor for NC⁰

- Previous theorems use Rao's affine extractor (In some settings can use others, e.g. [Bourgain])
- Somewhat complicated
- Want: simple extractors

 $(\Rightarrow$ sampling lower bound for simple functions)

• Theorem Hamming weight extracts $\omega(1)$ bits with error o(1) from NC⁰ sources of entropy n - \sqrt{n}

Tool for extractor proof

• Central limit theorem:

$$x_1, x_2, ..., x_n$$
 independent $\Rightarrow \sum x_i \approx normal$

• Bounded-independence central limit theorem [Diakonikolas Gopalan Jaiswal Servedio V.] $x_1, x_2, ..., x_n$ k-wise independent $\Rightarrow \sum x_i \approx$ normal

$\forall t \mid \Pr[\sum_{i} x_{i} < t] - \Pr[normal < t] \mid < 1/\sqrt{k}$

Simple extractor for NC⁰

• Theorem Hamming weight extracts $\omega(1)$ bits with error o(1) from NC⁰ sources of entropy n - \sqrt{n}

• Proof:

n-√n output bits are almost 100-wise independ. [Shaltiel V]

Jeo

 $NC^0 \Rightarrow$ exactly 100-wise independent

Bounded-independence central limit theorem [Diakonikolas Gopalan Jaiswal Servedio V.]

Summary

• First extractors for circuit sources: NC^0 , local, AC^0

Techniques:

local = convex comb. of bit-block, use Rao's affine extractor for AC^0 also bound entropy loss in restrictions

- Extractor ⇔ Circuit lower bound for sampling (1 bit from k=n-1)
 [V 2010]
- Corollary: Explicit b : $\{0,1\}^n \rightarrow \{0,1\}$: Small AC⁰ circuits cannot generate (Y, b(Y))

Open problems

- Min-entropy k 2-local source f : $\{0,1\}^* \rightarrow \{0,1\}^n$
- Current extractor applies when $k > n^{2/3}$
- Given better affine extractor, when $k > n^{1/2}$
- Challenge: extract from $k < n^{1/2}$

Open problems

- Note \exists 2-local f : $\{0,1\}^{2n} \rightarrow \{0,1\}^{n}$ Distance(f(X), W_{n/4} = uniform w/ weight n/4) = 1 - $\Theta(1)/\sqrt{n}$
- Challenge: Distance 1 $2^{-\Omega(n)}$ input length = H(1/4)n+o(n)

- Recall: AC⁰ can generate (Y, majority(Y)), error 2-|Y|
 Challenge: error 0?
 - Related [Lovett V.] Any bijection

 $\{0,1\}^n = \bigwedge \rightarrow \bigwedge = \{x \in \{0,1\}^{n+1} : \sum x_i \ge n/2 \}$ has large expected hamming distortion? (n even)

- $\Sigma\Pi\sqrt{\alpha\beta\epsilon\gamma\delta}$
- **≠≈**ΤΑΘω
- ∈ ∉
- •
- ullet
- ≠≈TAΘ
- •
- Recall: edit style changes ALL settings.
- Click on "line" for just the one you highlight