Mixing in groups

2021 11

Emanuele Viola

NEU

Based on joint works with Timothy Gowers

Outline

- Quasirandom groups, mixing
- Applications of quasirandom groups
- Interleaved groups products
- Mixing in non-quasirandom groups

- Setup: Group G. All results asymptotic in |G|
 2 independent, high-entropy distributions X, Y over G think X, Y uniform on 0.1 |G| elements
- Goal: XY (= X*Y = convolution) nearly uniform over G: $|XY U|_1 \le \epsilon$ (Statistical distance, aka total variation)

- Setup: Group G. All results asymptotic in |G|
 2 independent, high-entropy distributions X, Y over G think X, Y uniform on 0.1 |G| elements
- Goal: XY (= X*Y = convolution) nearly uniform over G: $|XY U|_1 \le \epsilon$ (Statistical distance, aka total variation)

Obstacles

$$H \subseteq G, H \neq G$$
 dense subgroup

- Setup: Group G. All results asymptotic in |G|
 2 independent, high-entropy distributions X, Y over G think X, Y uniform on 0.1 |G| elements
- Goal: XY (= X*Y = convolution) nearly uniform over G: $|XY U|_1 \le \epsilon$ (Statistical distance, aka total variation)

Obstacles

$$H \subseteq G, H \neq G$$
 dense subgroup

G =
$$Z_p$$
 (integers mod p) No. X=Y={1, 2, ..., 0.1p}.
X+Y \subseteq {1, 2, ..., 0.2 p}

• What about other groups?

Definition/Theorem [Gowers, Babai Nikolov Pyber]: G is d-quasi-random if every non-trivial irrep has dim $\geq d$ \Rightarrow for every independent X, Y: $|XY - U|_1 \leq |G| |X|_2 |Y|_2 / \sqrt{d}$

Notation: $|X|_2^2 = \sum_{g \in G} \Pr[X = g]^2 = \text{collision probability}$ X uniform on 0.1 |G| elements, $|X|_2^2 \le O(1/|G|)$

$$\Rightarrow |XY - U|_1 \le O\left(\frac{1}{\sqrt{d}}\right)$$

G	d
Abelian	1
Non-abelian, simple	0.5 √ log G
SL(2,q)	G ^{1/3}

Non-abelian Fourier analysis

$$f:G\to\mathbb{C}$$

Fourier inversion: $f(x) = \sum_{\rho} d_{\rho} \ tr(\hat{f}_{\rho} \ \rho(x)^T)$, ρ ranges over irreducible representations d_{ρ} dimension of ρ

Fourier coefficient: $\hat{f}_{\rho} = \mathbb{E}_{x} f(x) \overline{\rho(x)}$

Convolution: $\widehat{f * g_{\rho}} = |G| \, \widehat{f_{\rho}} \, \widehat{g}_{\rho}$

Parseval:
$$\mathbb{E}f(x)\overline{g(x)} = \sum_{\rho} d_{\rho} \ tr(\hat{f}_{\rho} \ \hat{g}_{\rho}^{*})$$

$$\mathbb{E}f(x)\overline{f(x)} = |G|^{-1} \ |f|_{2}^{2} = \sum_{\rho} d_{\rho} \ |\hat{f}_{\rho}|_{HS}^{2}$$

$$|M|_{HS}^{2} = \sum_{i,j} M_{i,j}^{2} \qquad |AB|_{HS} \le |A|_{HS} \ |B|_{HS}$$

Definition/Theorem [Gowers, Babai Nikolov Pyber]:

G is d-quasi-random if every non-trivial irrep has dim $\geq d$

 \Rightarrow for every independent X, Y: $|XY - U|_1 \le |G| |X|_2 |Y|_2 / \sqrt{d}$

Proof

$$\begin{split} &|X*Y-U|^2_{\ 1} \leq |G| \ |X*Y-U| \Big|^2_{\ 2} \\ &= |G| \ (\ |X*Y|^2_2 - \frac{1}{|G|^2} \) \\ &= |G|^2 \ \sum_{\rho \neq 1} d_\rho \ |\widehat{(X*Y)}_\rho \ |^2_{HS} \qquad \text{(Parseval)} \\ &= |G|^4 \ \sum_{\rho \neq 1} d_\rho \ |\widehat{X}_\rho \ \widehat{Y}_\rho \ |^2_{HS} \\ &\leq |G|^4 \ \sum_{\rho \neq 1} d_\rho \ |\widehat{X}_\rho \ |^2_{HS} \ |\widehat{Y}_\rho \ |^2_{HS} \\ &\leq |G|^3 \ \frac{|X|^2_2}{d} \ \sum_{\rho \neq 1} d_\rho \ |\widehat{Y}_\rho \ |^2_{HS} \qquad \text{(Parseval)} \\ &\leq |G|^2 \ \frac{|X|^2_2}{d} \ |Y|^2_2 \qquad \text{(Parseval)} \end{split}$$

Outline

- Quasirandom groups, mixing
- Applications of quasirandom groups
- Interleaved groups products
- Mixing in non-quasirandom groups

Applications of quasirandom groups

Theorem: L_{∞} mixing in 3 steps: $\left| \Pr[XYZ = 1] - \frac{1}{|G|} \right| \leq \frac{\epsilon}{|G|}$, X,Y,Z independent, high-entropy

⇒ groups w/out large product-free sets; asked [Babai Sos 85]

Proof:
$$\sum_{h} \Pr[XY = h] \Pr[Z = h^{-1}] - 1/|G| =$$

$$\sum_{h} \Pr[XY = h] (\Pr[Z = h^{-1}] - 1/|G|) =$$

$$\leq |XY|_{2} |Z - U|_{2}$$

$$\leq \frac{1}{\sqrt{|G|d}} \frac{1}{\sqrt{|G|}}$$

Applications of quasirandom groups

• Theorem [Mixing of three-term progressions g, gh, gh^2]

For any
$$H \subseteq G: \Pr_{g,h \in G} [g \in H, gh \in H, gh^2 \in H] = \left(\frac{|H|}{|G|}\right)^3 \pm \epsilon$$

- Tao: SL(2,q), complicated
- Peluse: Simple groups, complicated
- Just out: Bhangale, Harsha, Roy:

Any quasi-random group

What I call a "norm-al" proof:

Just use norms, Cauchy-Schwarz, triangle inequality, etc.

Applications of quasirandom groups

• Theorem: [Corners] Any dense $H \subseteq G^2$ contains corner { (x,y), (xz,y), (x,zy) }

• Ajtai-Szemeredi G = \mathbb{Z}

- Austin: Any quasirandom group exponential loss in parameters
- Polynomial loss ⇒ breakthrough in communication complexity

Outline

- Quasirandom groups, mixing
- Applications of quasirandom groups
- Interleaved groups products
- Mixing in non-quasirandom groups

What if there are dependencies?

A, A' dependent, (A, A') uniform over $\geq 0.1 |G|^2$ elements

Y independent, uniform over ≥ 0.1 |G| elements of G

Is A•Y•A' nearly uniform? (∀g |Pr[A•Y•A'=g]-1/|G| | ≤ ε/|G|)

What if there are dependencies?

A, A' dependent, (A, A') uniform over $\geq 0.1 |G|^2$ elements

Y independent, uniform over ≥ 0.1 |G| elements of G

Is A•Y•A' nearly uniform? (∀g |Pr[A•Y•A'=g]-1/|G| | ≤ ε/|G|)

No: Y uniform over 0.5 |G| elements
A uniform over G
A' uniform over G - Support(Y)⁻¹ A⁻¹

(A, A') uniform over 0.5 |G|² element

$$A \cdot Y \cdot A' \neq 1_G$$

Interleaved mix:[Gowers V.] G = SL(2, q)

(A, A'), (B, B') uniform over ≥ 0.1 |G|² elements of G²

(A, A') independent from (B, B')

 $\forall g, | Pr[A \cdot B \cdot A' \cdot B' = g] - 1/|G| | \le 1/|G|^{1+\Omega(1)}$

• \Rightarrow A•B•A'•B' is 1/poly(|G|)-close to uniform in statistical dist.

Interleaved mix:[Gowers V.] G = SL(2, q)

(A, A'), (B, B') uniform over ≥ 0.1 |G|² elements of G²

(A, A') independent from (B, B')

 $\forall g, | Pr[A \cdot B \cdot A' \cdot B' = g] - 1/|G| | \le 1/|G|^{1+\Omega(1)}$

- \Rightarrow A•B•A'•B' is 1/poly(|G|)-close to uniform in statistical dist.
- \Rightarrow X Y Z result [G,BNP] for G=SL(2,q)
- Also non-trivial bounds for any non-abelian simple group

Longer mix: [Gowers V.] G = SL(2, q)

 $A=(A_1,...,A_t)$, $B=(B_1,...,B_t)$ uniform over $\geq 0.1 |G|^t$ elements

A independent from B

$$\forall g, | Pr[\prod_{i \le t} A_i \cdot B_i = g] - 1/|G| | \le 1/|G|^{1 + \Omega(t)}$$

• $\Rightarrow \prod_{i \le t} A_i$ • B_i is $1/|G|^{\Omega(t)}$ close to uniform in statistical dist.

Generalizes previous result, t = 2

Application of interleaved mixing: Boosting pairwise uniformity

```
• Lemma Let G = SL(2,q), s > 100^m.

Let D_1, D_2, ..., D_s be independent distributions on G^m.

In every D_i, every two coordinates uniform over G^2
\Rightarrow
D = D_1 D_2 \bullet \bullet D_s \text{ close to uniform over } G^m :
For any g \in G^m, |Pr[D = g] - 1/|G|^m | \le \epsilon / |G|^m
```

Open problem: s = poly(m) suffices?

Proof of interleaved mixing

Interleaved mix: G = SL(2, q)

(A, A'), (B, B') uniform over $\geq 0.1 |G|^2$ elements of G^2

(A, A') independent from (B, B')

$$\forall g, | Pr[A \cdot B \cdot A' \cdot B' = g] - 1/|G| | \le 1/|G|^{1+\Omega(1)}$$

- C(g) = U⁻¹gU = uniform over conjugacy class of g ∈ G
- Lemma, specific to G = SL(2,q): With prob. $1-1/|G|^{\Omega(1)}$ over $a, b \in G$, $|C(a)C(b)-U|_1 \le 1/|G|^{\Omega(1)}$
- Claim, for any G: Main lemma ⇒ interleaved mixing

```
Claim: W.h.p. over a,b \in G, |C(a)C(b) - U| \le 1/|G|^{\Omega(1)} \Rightarrow |Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| | \le 1/|G|^{1+\Omega(1)} if (A, A'), (B, B') i.i.d, uniform over S \subseteq G^2. |S| = \alpha |G|^2
```

Proof: $| Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| |$

```
Claim: W.h.p. over a,b ∈ G, |C(a)C(b) - U| \le 1/|G|^{\Omega(1)}

⇒ |Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| | \le 1/|G|^{1+\Omega(1)}

if (A, A'), (B, B') i.i.d, uniform over S ⊆ G<sup>2</sup> . |S| = \alpha |G|^2
```

```
Proof: |\Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G||
= |E_{u,v,u',v': uvu'v'=1} S(u,u') S(v,v') - \alpha^2 |1/(\alpha^2 |G|) Bayes
```

```
Claim: W.h.p. over a,b ∈ G, |C(a)C(b) - U| \le 1/|G|^{\Omega(1)}

⇒ |Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| | \le 1/|G|^{1+\Omega(1)}

if (A, A'), (B, B') i.i.d, uniform over S \subseteq G^2. |S| = \alpha |G|^2

Proof: |Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| |

= |E_{u,v,u',v':uvu'v'=1} S(u,u') S(v,v') - \alpha^2 | 1/(\alpha^2 |G|) Bayes

E_{v,v'} [E_{u,u':uvu'v'=1} (S(u,u') - \alpha)] \cdot S(v,v')
```

```
Claim: W.h.p. over a,b \in G, |C(a)C(b) - U| \le 1/|G|^{\Omega(1)}

\Rightarrow |Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| | \le 1/|G|^{1+\Omega(1)}

if (A, A'), (B, B') i.i.d, uniform over S \subseteq G^2. |S| = \alpha |G|^2

Proof: |Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| |

= [E_{u,v,u',v': uvu'v'=1} S(u,u') S(v,v') - \alpha^2] 1/(\alpha^2 |G|) Bayes

E_{v,v'} [E_{u,u': uvu'v'=1} (S(u,u') - \alpha)] \cdot S(v,v')
```

$$\leq \sqrt{\left[E_{v,v'} E^2_{u,u': uvu'v'=1} S(u,u') - \alpha^2\right]} \sqrt{\alpha}$$
 Cauchy-Schwarz

```
Claim: W.h.p. over a,b \in G, |C(a)C(b) - U| \leq 1/|G|^{\Omega(1)}
⇒ |\Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| | \le 1/|G|^{1+\Omega(1)}
    if (A, A'), (B, B') i.i.d, uniform over S \subseteq G^2. |S| = \alpha |G|^2
Proof: | Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| |
         = \underbrace{E_{u,v,u',v': uvu'v'=1} S(u,u') S(v,v') - \alpha^2}_{1/(\alpha^2 |G|)} 1/(\alpha^2 |G|)
                                                                                          Bayes
            E_{vv'} [ E_{uu'+uvu'v'=1} (S(u,u') - \alpha )] • S(v,v')
   \leq \sqrt{\left[E_{v,v'} E^2_{u,u': uvu'v'=1} S(u,u')\right]} - \alpha^2 \sqrt{\alpha} Cauchy-Schwarz
       E_{v, u, u', x, x' : uvu' = xvx'} S(u, u') S(x, x')
```

```
Claim: W.h.p. over a,b \in G, |C(a)C(b) - U| \le 1/|G|^{\Omega(1)}
⇒ |\Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| | \le 1/|G|^{1+\Omega(1)}
   if (A, A'), (B, B') i.i.d, uniform over S \subseteq G^2. |S| = \alpha |G|^2
Proof: | Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| |
        = \left[ E_{u,v,u',v': uvu'v'=1} S(u,u') S(v,v') - \alpha^2 \right] 1/(\alpha^2 |G|)
                                                                                    Bayes
           E_{v,v'} [ E_{u,u':uvu'v'=1} (S(u,u') - \alpha )] • S(v,v')
   \leq \sqrt{\left[E_{v,v'} E^2_{u,u': uvu'v'=1} S(u,u')\right]} - \alpha^2 \sqrt{\alpha} Cauchy-Schwarz
      E_{v. u.u'. x. x' : uvu' = xvx'} S(u,u') S(x,x')
                                                                x' = v^{-1}x^{-1}uvu'
   = E S(u,u') S(ux, u' C(x)).
```

```
Claim: W.h.p. over a,b \in G, |C(a)C(b) - U| \leq 1/|G|^{\Omega(1)}
⇒ |\Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| | \le 1/|G|^{1+\Omega(1)}
   if (A, A'), (B, B') i.i.d, uniform over S \subseteq G^2. |S| = \alpha |G|^2
Proof: | Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| |
        = \underbrace{E_{u,v,u',v': uvu'v'=1} S(u,u') S(v,v') - \alpha^2}_{1/(\alpha^2 |G|)} 1/(\alpha^2 |G|)
                                                                                      Bayes
           E_{v,v'} [ E_{u,u':uvu'v'=1} (S(u,u') - \alpha )] • S(v,v')
   \leq \sqrt{\left[E_{v,v'} E^2_{u,u': uvu'v'=1} S(u,u')\right]} - \alpha^2 \sqrt{\alpha} Cauchy-Schwarz
      E_{v. u.u'. x. x' : uvu' = xvx'} S(u,u') S(x,x')
                                                                 x' = v^{-1}x^{-1}uvu'
   = E S(u,u') S(ux, u' C(x)).
 (u,u') \rightarrow (ux, u' C(x)) hits like (u,u') \rightarrow (u x y, u' C(x) C(y))
```

• Lemma: G = SL(2, q)

With prob. $1-1/|G|^{\Omega(1)}$ over a, b \in G, $|C(a)C(b)-U|_1 \le 1/|G|^{\Omega(1)}$

- Large literature on products of conjugacy classes.
- Actually for all other results need a stronger condition (For a ∈ G, the distribution C(ab⁻¹)C(b) for uniform b is close to uniform in 2-norm)
- The proof we show gives the stronger condition

• Lemma: G = SL(2, q)

With prob. $1-1/|G|^{\Omega(1)}$ over a, b \in G, $|C(a)C(b)-U|_1 \le 1/|G|^{\Omega(1)}$

Observation: for every a, b: C(a)C(b) = C(C(a)C(b)).

Proof: $U^{-1}aU V^{-1}bV = W^{-1} U^{-1} a U W W^{-1} V^{-1} b V W$

Suffices to show C(a) C(b) hits every class with right prob.

SL(2,q)= group of 2 x 2 matrices over F_a with determinant 1

All but O(1) classes have size = $q^2 + \Theta(q)$

Uniform element ⇒ uniform class

Almost 1-1 correspondence between classes and

Trace
$$\begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \end{vmatrix} = a_1 + a_4 \in F_q$$
, invariant under conjugation
• Show: a, b typical \Rightarrow |Trace C(a)C(b) - U_q |₁ \leq 1/q ^{$\Omega(1)$}

• Show: a, b typical \Rightarrow |Trace C(a)C(b) - U_q |₁ \leq 1/q^{$\Omega(1)$}

Proof

Trace C(a)C(b) = Trace a C(b)

$$= Trace \begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \end{vmatrix}$$

u_1	u_2
u_{3}	$u_{_4}$

$$\begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$$

$$\begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix}$$

= polynomial in u_1 , u_2 , u_3 , u_4 subject to $u_1 u_4 - u_2 u_3 = 1$

Conclude with elementary algebraic geometry.

Another open	problem in	n interleaved	mixing

Recap: For every group

(1) Interleaved mixing | Pr[A•B•A'•B' = 1] - 1/|G| | small

(2) "Hitting" of random walk $(u,u') \rightarrow (ux, u' C(x))$ in G^2

(1) W.h.p. over a,b \in G, $|C(a)C(b) - U| \le 1/|G|^{\Omega(1)}$

Can prove: (3) true for every non-abelian simple group (3) false for quasi-random group $G = H^m$

Question: Do (1), (2) hold for every quasi-random group? What about $G = H^m$?

Outline

- Quasirandom groups, mixing
- Applications of quasirandom groups
- Interleaved groups products
- Mixing in non-quasirandom groups

Types of groups

- Not mixing (e.g., abelian)
 ∃ X, Y independent, high-entropy, distributions over group:
 XY far from uniform
- Quasirandom groups (e.g. SL(2,q))
 XX, Y as above:
 XY close to uniform
- Next: Somewhat random groups ∀ X, Y as above: XY gets "closer" to uniform

Definition: G mixes via distribution F: G → G if

∀ x, F(x) ≠ x often
∀ independent, high-entropy distributions X, Y:
|XY - F(XY)|₁ ≤ ε "invariant under F"

- Sufficient for application to communication complexity
- Abelian/Almost abelian groups don't mix (not obvious)
- G quasirandom ⇒ can take F random function
- Next: mixing in various groups "in-between"

- Definition: G mixes via distribution $F: G \to G$ if
 - (1) $\forall x$, $F(x) \neq x$ often
 - (2) \forall independent, high-entropy distributions X, Y: $|XY F(XY)|_1 \le \epsilon$ "invariant under F"
- Example 1:

Affine group: Matrices

	a_1	a_2	0)//
	0	1	OV

over \mathbb{F}_q with $a_1 \neq 0$

Can take F(
$$\begin{pmatrix} x_1 & x_2 \\ 0 & 1 \end{pmatrix}$$
) := $\begin{pmatrix} x_1 & U \\ 0 & 1 \end{pmatrix}$, U uniform

Strongest possible: can't change x_1

- Definition: G mixes via distribution $F: G \rightarrow G$ if
 - (1) $\forall x$, $F(x) \neq x$ often
 - (2) \forall independent, high-entropy distributions X, Y: $|XY F(XY)|_1 \le \epsilon$ "invariant under F"
- Example 2:

Finite lamplighter group $\mathbb{Z}_2 \wr \mathbb{Z}_n$

Elements: $(x1, x2, ..., xn; s), x_i \in \mathbb{Z}_2$, $s \in \mathbb{Z}_n$

Operation: shift (x1, x2, ..., xn) by s then sum coordinates

For
$$n$$
 prime, take $F(x1, x2, ..., xn; s) \coloneqq (y1, y2, ..., yn; s)$ for uniform $(y1, y2, ..., yn) : \sum_i y_i = \sum_i x_i \mod 2$

Strongest possible: Can't change $\sum_i x_i \mod 2$ or s

- Definition: G mixes via distribution F: G → G if

 (1) ∀ x, F(x) ≠ x often
 (2) ∀ independent, high-entropy distributions X, Y:
 |XY F(XY)|₁ ≤ ε "invariant under F"
- Example 3:

```
G = H^n, H not abelian (can think |H| = O(1))
```

$$F(h1, h2, ..., hn) \coloneqq (h1, h2, ..., C(h_I), ..., hn)$$

uniform coordinate I , uniform conjugate $C(h_I)$ of h_I

If H has no 1-dimensional representation, can set h_I to U

Open problem: error $\geq 1/n$ (choice of I)

Definition: G mixes via distribution F: G → G if

 (1) ∀ x, F(x) ≠ x often
 (2) ∀ independent, high-entropy distributions X, Y:

 $|XY - F(XY)|_1 \le \epsilon$ "invariant under F"

• Open problem: Characterize groups that mix

Definition: G mixes via distribution F: G → G if

∀ x, F(x) ≠ x often
∀ independent, high-entropy distributions X, Y:
|XY - F(XY)|₁ ≤ ε "invariant under F"

- Open problem: Characterize groups that mix
- Question/conjecture
 G mixes ⇔ has some irrep of large dimension ?
- Proof (⇒)
 All irreps have dim O(1) ⇔ abelian subgroup of index O(1)
 ⇒ does not mix
 Does converse hold?

Proof of mixing via F

Lemma: Can approximate XY by coefficients with small sum of dimensions

Norm-al proof (Parseval, Cauchy-Schwarz, ...):

$$f(g) := \mathbb{P}[XY = g] = \sum_{\rho} d_{\rho} \operatorname{tr}(\hat{f}_{\rho} \ \rho(g)^{T})$$

$$R := \{\rho: |\hat{X}_{\rho}|_{HS} \ge \theta/|G|\}$$
, "heavy" coefficients

TrunKation
$$K(x) := \sum_{\rho \in \mathbb{R}} d_{\rho} \operatorname{tr}(\hat{f}_{\rho} \ \rho(x)^{T})$$

$$|f - K|_1 \le O(\theta)$$
 if Y high entropy

$$\sum_{\rho \in \mathbb{R}} d_{\rho} \le O\left(\frac{1}{\theta^2}\right)$$
 if X high entropy

QED

Kernel method

Theorem:

If $h \in G$ is in kernel of every irrep of dim $\leq d$ Then mix via F(g) := hg, error $d^{-\Omega(1)}$

Proof:

Approximate XY by K with coeffs of dim $\leq d$

$$|XY - F(XY)|_1 \le$$
 $|XY - K_{XY}|$ Small by lemma
 $+|F(XY) - K_{hXY}|$ Small by lemma
 $+|K_{XY} - K_{hXY}|$ Zero because
 $\rho(hg) = \rho(h)\rho(g) = \rho(g)$

Applying kernel method

• Affine group: Matrices $\begin{vmatrix} a_1 & a_2 \\ 0 & 1 \end{vmatrix}$ over \mathbb{F}_q with $a_1 \neq 0$

- $\geqslant q-1$ irreps of dim 1: $\chi(a_1)$
- \geqslant 1 irrep of dim q-1
- \Rightarrow for rep ρ of dim $< q 1 : \rho(\frac{1}{0}, \frac{h}{1}) = 1$

Lamplighter group:

Representations related to orbits of vectors $\in \mathbb{Z}_2^n$ Show vectors with period t are in space of dim t

Product groups $G = H^n$

- Cannot use kernel method. Instead:
- Irrep ρ of H^n = tensor of irreps of H, dimensions multiply

Product groups $G = H^n$

- Cannot use kernel method. Instead:
- Irrep ρ of H^n = tensor of irreps of H, dimensions multiply
- $\Rightarrow \rho = \rho' \cdot \prod \rho_i$ where ρ_i have dimension 1, ρ' depends on $\leq \log d_{\rho}$ coordinates
- Approximation $\Rightarrow d_{\rho}$ small $\Rightarrow \rho'$ depends on few coords
- Mix via $F(h1, h2, ..., hn) \coloneqq (h1, h2, ..., C(h_I), ..., hn)$ $\mathbb{P}[\rho' \text{ depends on } I] \text{ small; } \rho_i(C(g)) = \rho_i(g)$

Outline

- Quasirandom groups, mixing
- Applications of quasirandom groups
- Interleaved groups products
- Mixing in non-quasirandom groups