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® Setup: Group G. All results asymptotic in |G|

2 independent, high-entropy distributions X, Y over G
think X, Y uniform on 0.1 |G| elements

® Goal: XY (= X*Y = convolution) nearly uniform over G:
| XY — U|; < € (Statistical distance, aka total variation)
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® Setup: Group G. All results asymptotic in |G|

2 independent, high-entropy distributions X, Y over G
think X, Y uniform on 0.1 |G| elements

® Goal: XY (= X*Y = convolution) nearly uniform over G:
| XY — U|; < € (Statistical distance, aka total variation)

Obstacles

HESG H#G No. X=Y=XY=H
dense subgroup

G = Zp (integers mod p) No. X=Y={1, 2, ..., 0.1p}.
X+Y c{1, 2, ..., 0.2 p}

® \What about other groups”?



Definition/Theorem [Gowers, Babai Nikolov Pyber]:
G is d-quasi-random if every non-trivial irrep has dim > d

= for every independent X, Y: | XY — U | < |G| |X|, |Y],/V d

Notation: [X|5 = 2.gec PrlX = g]? = collision probability
X uniform on 0.1 |G| elements, |X|5 < 0(1//G/)

1
> XY - Ul <0|—
| 1 (ﬁ)

Abelian

Non-abelian, simple 0.5V log |G|

SL(2,q) GI'?




Non-abelian Fourier analysis
f:G—>C

Fourier inversion: f(x) =X, d, tr(f, p(x)T),
p ranges over irreducible representations
d, dimension of p

Fourier coefficient: f, = E, f(x)p(x)

Convolution: f * g, = |G| fp 9y

Parseval: Ef(x)g(x) =X,d, tr(fp 9,
EfCOFG) = 1617 IF 3= Y dy | fol",
P

| M |2H5 — Zi,jMiz,j | AB |ys < |Alus |Blus



Definition/Theorem [Gowers, Babai Nikolov Pyber]:
G Is d-quasi-random if every non-trivial irrep has dim > d

= for every independent X, Y: | XY —U |, < |G| |X|,|Y|,/V d

Proof

2
X *Y —U|21SIG||X*Y—U‘
2
1

= 1G] (1X= Y13 - 5
= [Gl* Xpe1dy [(X*Y), |7 (Parseval)
_ 114 C U |2
= 1G Z:/ovtldp Xp Yp' HS
4 2 2
=1G szildp Xpl HS |Yp| HS
| X| o
< |G|3 72 2pz1dp |Yy |2HS (Parseval)
2
< |G|? &IYI% (Parseval)



Outline

Quasirandom groups, mixing
Applications of quasirandom groups
Interleaved groups products

Mixing in hon-quasirandom groups



Applications of quasirandom groups

Theorem: L., mixing in 3 steps: |Pr[XYZ = 1] — ﬁ < %

X,Y,Z independent, high-entropy

= groups w/out large product-free sets; asked [Babai Sos 85]
Proof: Y, Pr[XY = h]Pr|Z = h71]| — 1/]G]| =
Z Pr[XY = h] (Pr|Z = h71]| = 1/|G]) =
h

<Xyl [Z -Ul;
1 1
<

~ JIGld /G




Applications of quasirandom groups

* Theorem [Mixing of three-term progressions g, gh, gh®]

3
ForanyH € G: Pr [gEH,ghEH,thEH]=(@) + €

gheg |G|

* Tao: SL(2,q), complicated
* Peluse: Simple groups, complicated

* Just out: Bhangale, Harsha, Roy:
Any quasi-random group
What | call a “norm-al” proof:
Just use norms, Cauchy-Schwarz, triangle inequality, etc.



Applications of quasirandom groups

e Theorem: [Corners]
Any dense H € G* contains corner { (x,y), (xz,y), (x,zy) }
e Ajtai-Szemeredi G =7 ||

* Austin: Any quasirandom group
exponential loss in parameters

 Polynomial loss = breakthrough in communication complexity
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e What if there are dependencies?
A, A' dependent, (A, A") uniform over = 0.1 |G|? elements

Y independent, uniform over 2 0.1 |G| elements of G

o IsA-Y*A' nearly uniform? (vg |Pr[A«Y-A'=g]-1/|G]| | < €/|G|)



e What if there are dependencies?
A, A' dependent, (A, A") uniform over = 0.1 |G|? elements

Y independent, uniform over 2 0.1 |G| elements of G

o IsA-Y*A' nearly uniform? (vg |Pr[A«Y-A'=g]-1/|G]| | < €/|G|)
No: Y uniform over 0.5 |G| elements
A uniform over G
A' uniform over G - Support(Y) ' A"

(A, A') uniform over 0.5 |G|? element

AeY A #1,



Interleaved mix:[Gowers V.] G = SL(2, q)

(A, A'), (B, B') uniform over = 0.1 |G|? elements of G?

(A, A') independent from (B, B')

Vv g, | PrfA-B-A'-B' = g] - 1/|G] | < 1/|G|"**1)

o = A*BeA'B'is 1/poly(|G|)-close to uniform in statistical dist.



Interleaved mix:[Gowers V.] G = SL(2, q)

(A, A'), (B, B') uniform over = 0.1 |G|? elements of G?

(A, A') independent from (B, B')

Vv g, | PrfA-B-A'-B' = g] - 1/|G] | < 1/|G|"**1)

e = A*B*A'*B' is 1/poly(|G|)-close to uniform in statistical dist.
e = XY Zresult[G,BNP] for G=SL(2,q9)

¢ Also non-trivial bounds for any non-abelian simple group



Longer mix: [Gowers V.] G = SL(2, q)
,B,) uniform over = 0.1 |G|' elements

A independent from B

Vg, | P . A *B=gl- |G| | < 1/G["* 20

e = []...A * B is 1/]G|?" close to uniform in statistical dist.

e Generalizes previous result, t = 2



Application of interleaved mixing:
Boosting pairwise uniformity

e Lemma lLetG =SL(2,9), s> 100™.

LetD, ,D,, ..., D, beindependent distributions on G™ .
In every D. , every two coordinates uniform over G?

—
D=D, D, **D,_ close to uniform over G™ :
Foranyge G™,|Pr[D=qg]-1/|G|"™| <€/ |G|

Open problem: s = poly(m) suffices?



® Proof of interleaved mixing



Interleaved mix: G = SL(2, q)
(A, A'), (B, B') uniform over = 0.1 |G|? elements of G?

(A, A') independent from (B, B')

Vv g, | PrfA-B+A"*B' = g] - 1/|G| | < 1/|G|"*D

« C(g) = U-'gU = uniform over conjugacy class of g € G

e Lemma, specificto G = SL(2,9):
With prob. 1-1/|G|*" over a, b € G, |C(a)C(b)-U|, < 1/|G|*Y

e Claim, for any G: Main lemma = interleaved mixing



Claim: W.h.p. over a,b € G, |C(a)C(b) - U| < 1/|G|*)
= | PrlA*B-A"B' = 1] - 1/|G| | < 1/|G|"*2")
if (A, A'), (B, B")i.i.d, uniform over S € G?. |S| =a |G|?

Proof: | Pr{AsB+A"B' = 1] - 1/|G] |
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Claim: W.h.p. over a,b € G, |C(a)C(b) - U| < 1/|G|*)
= | PrlA*B-A"B' = 1] - 1/|G| | < 1/|G|"*2")
if (A, A'), (B, B")i.i.d, uniform over S € G?. |S| =a |G|?

Proof: | Pr{AsBeA"B' = 1] - 1/|G] |
= |E S(u,u’) S(v,v') - a* | 1/( a*|GJ) Bayes

u,v,u',v': uvu'v'=1

E S(u,u’) -a)] e S(v,v')

V,V' [ u, u':uvu'v'=1 (
<A E. . E? Sut uvayeg (W) - a?] Yva Cauchy-Schwarz
WV u'; ’
E CS(u,u’) S(x,x')

Vv, U,u’, X, X' : uvu' = Xvx

—> ' — Ty l
- E S(u) S(w, U C(0)-




Claim: W.h.p. over a,b € G, |C(a)C(b) - U| < 1/|G|*)
= | PrlA*B-A"B' = 1] - 1/|G| | < 1/|G|"*2")
if (A, A'), (B, B")i.i.d, uniform over S € G?. |S| =a |G|?

Proof: | PriA«BsA"B' = 1] - 1/|G| |
= E S(uu) SUV) - @ 1(?|G])  Bayes

u,v,u',v': uvu'v'=1

E S(u,u’) -a)] e S(v,v')

V,V' [ u, u':uvu'v'=1 (

<A E. . E? Sut uvayeg (W) - a?] Yva Cauchy-Schwarz
v, u' ,
E CS(u,u’) S(x,x')

Vv, U,u’, X, X' : uvu' = Xvx

— ' — ,~1-1 '

(u,u') — (ux, u' C(x)) hits like (u,u’) — (ux vy, u' C(x) C(y)) o




e Lemma: G =SL(2, q)

With prob. 1-1/|G|*Y over a, b € G, |C(a)C(b)-U|, < 1/|G|*V

e Large literature on products of conjugacy classes.

e Actually for all other results need a stronger condition

(For a € G, the distribution C(ab")C(b) for uniform b is
close to uniform in 2-norm)

e The proof we show gives the stronger condition



e Lemma: G =SL(2, q)

With prob. 1-1/|G|*Y over a, b € G, |C(a)C(b)-U|, < 1/|G|*V

e Observation: for every a, b: C(a)C(b) = C( C(a) C(b) ).

Proof: UTaUV'bV=W'UTaUWW'VIbVW =

e Suffices to show C(a) C(b) hits every class with right prob.



e SL(2,9)= group of 2 x 2 matrices over Fq with determinant 1

d
d

a
a

1 2

3 4

. a,a, -a,a, =1

e g° - g elements. q+O(1) conjugacy classes

All but O(1) classes have size = g° + O(q)

e Uniform element = uniform class

e Almost 1-1 correspondence between classes and

d d

1 2

Trace

d d

3 4

e Show: a, b typica

=a,ta, € Fq , Invariant under conjugation

= [Trace C(a)C(b) - U, |, < 1/



e Show:  a, b typical = |Trace C(a)C(b) - Uq |, < 1/q@M)

e Proof

Trace C(a)C(b) = Trace a C(b)

= Trace

d

1

a

2

u

1

u

2

d

3

a

4

u

3

u

4

= polynomial in u.

Conclude with elementary algebraic geometry.

J 2 I

u,,u, subjecttou, u,-u,u, =1




® Another open problem in interleaved mixing



Recap: For every group

(1) Interleaved mixing | Pr[A«B<A'sB' = 1] - 1/|G| | small

L)

(2) “Hitting” of random walk (u,u') — (ux, u' C(x)) in G2

(1) W.h.p. over a,b € G, |C(a)C(b) - U| < 1/|G|*")

Can prove: (3) true for every non-abelian simple group
(3) false for quasi-random group G = H™

Question: Do (1), (2) hold for every quasi-random group?
What about G = H™ ?
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Types of groups

* Not mixing (e.g., abelian)
3 X, Y independent, high-entropy, distributions over group:
XY far from uniform

*  Quasirandom groups (e.g. SL(2,q))
v X, Y as above:
XY close to uniform

* Next: Somewhat random groups
v X, Y as above:
XY gets “closer” to uniform



Definition: G mixes via distribution F: G — G if
(1) Vx, F(x) + x often
(2) V independent, high-entropy distributions X, Y
| XY —F(XY)|, <€ “invariant under F”
Sufficient for application to communication complexity
Abelian/Almost abelian groups don’t mix (not obvious)

G quasirandom = can take F random function

Next: mixing in various groups “in-between”



Definition: ¢ mixes via distribution F: G - G if
(1) Vx, F(x) # x often
(2) V independent, high-entropy distributions X, Y

| XY — F(XY)|, <e€ “invariant under F”
Example 1:
. _ . a, | a, .
Affine group: Matrices N over F, witha; # 0

Can take F( ) = , U uniform

Strongest possible: can’t change x,



« Definition: G mixes via distribution F: G — G if
(1) Vx, F(x) # x often

(2) V independent, high-entropy distributions X, Y

| XY — F(XY)|, <e€ “invariant under F”

« Example 2:

Finite lamplighter group %, @ Z,,

Elements: (x1,x2,...,xn;s),x; €Z,,s € Z,
Operation: shift (x1, x2, ..., xn) by s then sum coordinates

For n prime, take F(x1,x2,...,xn;s) = (y1,y2,...,yn;s)
for uniform (y1,y2,...,yn) : 2; y; = ).; x; mod 2

Strongest possible: Can’t change ).; x; mod 2 or s



* Definition: G mixes via distribution F: G — G if
(1) Vx, F(x) # x often
(2) V independent, high-entropy distributions X, Y
| XY — F(XY)|, <e€ “invariant under F”
« Example 3:
G = H™, H not abelian (can think [H| = 0(1))

F(h1,h2,...,hn) = (h1,h2,...,C(h)), ..., hn)
uniform coordinate I, uniform conjugate C(h;) of h;

If H has no 1-dimensional representation, can set h; to U

Open problem: error = 1/n (choice of I)



« Definition: G mixes via distribution F: G — G if
(1) Vx, F(x) # x often
(2) V independent, high-entropy distributions X, Y
| XY — F(XY)|, <e€ “invariant under F”

* Open problem: Characterize groups that mix



Definition: G mixes via distribution F: G — G if
(1) Vx, F(x) # x often
(2) V independent, high-entropy distributions X, Y
| XY — F(XY)|, <e€ “invariant under F”

Open problem: Characterize groups that mix

Question/conjecture
G mixes < has some irrep of large dimension “?

Proof (=)
All irreps have dim O(1) < abelian subgroup of index O(1)
= does not mix
Does converse hold?



® Proof of mixing via F



 Lemma: Can approximate XY by coefficients
with small sum of dimensions

* Norm-al proof (Parseval, Cauchy-Schwarz, ...):
flg):=PXY =gl=3,d, tr(f, p(9)")

R = {p: ‘XP‘HS > 0/|G|}, “heavy” coefficients
TrunKation K(x) := X ,cr d, tr(fp p(x)1)

| f — K| <0(6) if Y high entropy

doerdy <0 (%) if X high entropy QED



Kernel method

 Theorem:
If h € G is in kernel of every irrep of dim < d
Then mix via F(g) := hg, error d )

* Proof:
Approximate XY by K with coeffs of dim < d

XY — F(XY)], <

| XY — Kxy ]| Small by lemma
+|F(XY) — K;,xy| Small by lemma
|Kyy — Kinxyl  Zero because

p(hg) = p(h)p(g) = p(g)

QED



Applying kernel method

a, | a
0| 1

« Affine group: Matrices “< over F, with a; # 0

» q— 1irreps of dim 1: y(aq)
» lirrepofdimg—1

« >forreppofdm<qg—1: p( )=1

« Lamplighter group:
Representations related to orbits of vectors € Z7}
Show vectors with period t are in space of dim t



Product groups G = H"
« Cannot use kernel method. Instead:

* lIrrep p of H™ = tensor of irreps of H,
dimensions multiply



Product groups G = H"
Cannot use kernel method. Instead:

Irrep p of H™ = tensor of irreps of H,
dimensions multiply

= p =p' - []p; where p; have dimension 1,
p' depends on < logd, coordinates

Approximation = d,, small = p’ depends on few coords

Mix via F(h1, h2, ..., hn) == (h1, k2, ...,C(h)), ..., hn)
P[p’ depends on I] small; p;(C(g)) = pi(9)
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