Sampling lower bounds

Emanuele Viola

Northeastern University

September 2018

The complexity of distributions

- Leading goal: lower bounds for computing a function on a given input
- This talk: lower bounds for sampling distributions, given uniform bits
- Several papers, connections, still uncharted

The complexity of distributions

 2-source extractors [Chattopadhyay Zuckerman, ..., Ben-Aroya Doron Ta-Shma]

Data structure lower bounds ?

for sampling

ns, given uniform bits

• Several papers, connections, still uncharted

Outline

• A couple of problems for decision trees

- AC⁰
 - Upper bounds
 - Lower bounds

- S = n uniform bits of weight n/4
- X uniform
- $f: \{0,1\}^* \rightarrow \{0,1\}^n$ depth-d forest

• Statistical distance $\Delta(f(X), S) \ge ?$

- S = n uniform bits of weight n/4
- X uniform
- $f: \{0,1\}^* \rightarrow \{0,1\}^n$ depth-d forest

[V]

• Statistical distance $\Delta(f(X), S) \ge \Omega(1/2^d)$

- S = n uniform bits of weight n/4
- X uniform
- $f: \{0,1\}^* \rightarrow \{0,1\}^n$ depth-d forest

• Statistical distance Δ (f(X), S) $\geq \Omega(1/2^d)$ [V] $\leq 1/n$ for d = O(log n) [CKKL]

- S = n uniform bits of weight n/4
- X uniform
- $f: \{0,1\}^* \rightarrow \{0,1\}^n$ depth-d forest

- Statistical distance Δ (f(X), S) $\geq \Omega(1/2^d)$ [V] $\leq 1/n$ for d = O(log n) [CKKL]
- **Open**: Δ (f(X), **S**) for d = O(1)?
- Note: $\Delta \ge 1 o(1) \rightarrow data structure lower bound$

Sampling permutations

- [] := uniform permutations of [n]
- $f:[n]^* \rightarrow [n]^n$ depth-2 forest

- Statistical distance $\Delta(f(X), \prod) \ge ?$
- $\Delta \ge 1 o(1) \Rightarrow$ data structure lower bound

Outline

• A couple of problems for decision trees

• AC⁰

- Some upper bounds
- Lower bounds

Bounded-depth circuits (AC⁰)

AC⁰ cannot compute parity
 [1980's: Furst Saxe Sipser, Ajtai, Yao, Hastad,]

Sampling (Y, parity(Y))

• Theorem [Babai '87; Boppana Lagarias '87]

There is $f : \{0,1\}^n \rightarrow \{0,1\}^{n+1}$, in AC^0 Distribution $f(X) \equiv (Y, parity(Y))$ $(X, Y \in \{0,1\}^n$ uniform)

• (Y, Inner-Product(Y))

[Impagliazzo Naor]

[V]

Permutations (error 2⁻ⁿ) [Matias Vishkin, Hagerup]

- (Y, f(Y)), any symmetric f (error 2⁻ⁿ)
 e.g. f=Majority
- Open: (Y, Majority(Y)) with error **0**?

e.g. f=Majority

• Open: (Y, Majority(Y)) with error 0?

• **Dart throwing** Place i = 1..n in A[1..n] uniformly

- **Dart throwing** Place i = 1..n in A[1..n] uniformly
- If no collisions, done

- **Dart throwing** Place i = 1..n in A[1..n] uniformly
- If no collisions, done -

There will be collisions

- Dart throwing Place i = 1..n in A[1..m] uniformly
- Enlarge A.
 No collisions,
 and I just need
 to remove the

Dart throwing Place i = 1..n in A[1..m] uniformly

• Enlarge A.

No collisions, and I just need to remove the

impossible

- Dart throwing Place i = 1..n in A[1..m] uniformly
- Cycle format.
 Each cycle starts with least element.
 - Least elements sorted.

Next element in cycle computable in AC⁰

Jed

Outline

• A couple of problems for decision trees

• AC⁰

- Some upper bounds
- Lower bounds

• Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]

Z = uniform on good binary code $\subseteq \{0,1\}^n$ AC⁰ circuit C : $\{0,1\}^* \rightarrow \{0,1\}^n$

→ Statistical-Distance(Z, C(X)) ≥ 1 - exp(-n^{0.1})

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
 - Z = uniform on good binary code $\subseteq \{0,1\}^n$ AC⁰ circuit C : $\{0,1\}^* \rightarrow \{0,1\}^n$ → Statistical-Distance(Z, C(X)) ≥ 1 - exp(-n^{0.1})
- (Y, f(Y)) for bit-block extractor f : $\{0,1\}^n \rightarrow \{0,1\}$ Statistical-Distance((Y, f(Y), C(X)) > 0 [V 2011]

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
 - Z = uniform on good binary code $\subseteq \{0,1\}^n$ AC⁰ circuit C : $\{0,1\}^* \rightarrow \{0,1\}^n$ → Statistical-Distance(Z, C(X)) ≥ 1 - exp(-n^{0.1})
- (Y, f(Y)) for bit-block extractor f : $\{0,1\}^n \rightarrow \{0,1\}$ Statistical-Distance((Y, f(Y), C(X)) > 0 [V 2011] > 1/2 - 1/n^{ω (1)} [now]

"Cannot compute f better than tossing a coin, even if you can sample the input yourself"

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
 - Z = uniform on good binary code $\subseteq \{0,1\}^n$ AC⁰ circuit C : $\{0,1\}^* \rightarrow \{0,1\}^n$ → Statistical-Distance(Z, C(X)) ≥ 1 - exp(-n^{0.1})
- (Y, f(Y)) for bit-block extractor $f : \{0,1\}^n \rightarrow \{0,1\}$

Statistical-Distance((Y, f(Y), C(X)) > 0

[V 2011]

"Cannot compute f better than tossing a coin, even if you can sample the input yourself"

- Theorem: AC⁰ circuit C
 min-entropy C(X) ≥ k (∀ a, Pr[C(X) = a] ≤ 2^{-k})
 → C(X) close to convex combination of bit-block sources
 with min-entropy ≥ k²/n^{1.01}
- Bit-block source: each bit is either constant or literal Example: (0, 1, z₅, 1-z₃, z₃, z₃, 0, z₂)
- Corollary: f bit-block extractor \rightarrow C(X) \neq (Y, f(Y))
- Proof:

- Theorem: AC⁰ circuit C min-entropy C(X) ≥ k (∀ a, Pr[C(X) = a] ≤ 2^{-k})
 → C(X) close to convex combination of bit-block sources with min-entropy ≥ k²/n^{1.01}
- Bit-block source: each bit is either constant or literal Example: (0, 1, z₅, 1-z₃, z₃, z₃, 0, z₂)
- Corollary: f bit-block extractor \rightarrow C(X) \neq (Y, f(Y))
- Proof: C(X) = (Y, f(Y)) → min-entropy C(X) ≥ |Y| = n
 → convex combination high min-entropy bit-block sources can fix "f(Y)" bit leaving high min-entropy contradicts extractor property

- Theorem: AC⁰ circuit C
 min-entropy C(X) ≥ k (∀ a, Pr[C(X) = a] ≤ 2^{-k})
 → C(X) close to convex combination of bit-block sources with min-entropy ≥ k²/n^{1.01}
- Proof:

(1) Prove when C is d-local (each output bit depends on d input bits)

(2) For AC⁰ use random restrictions

- switching lemma collapses AC⁰ to d-local
- New: entropy is preserved

Proof

d-local n-bit source min-entropy k: convex combo bit-block

- Output entropy > $\Omega(k) \rightarrow \exists y_i$ with variance > $\Omega(k/n)$
- Isoperimetry $\rightarrow \exists \mathbf{x}_i$ with influence > $\Omega(k/nd)$
- Set uniformly $N(N(\mathbf{x}_j)) \setminus {\mathbf{x}_j}$ (N(v) = neighbors of v)with prob. > $\Omega(k/nd)$, $N(\mathbf{x}_j)$ non-constant block of size 2nd/k
- Repeat $\Omega(k) / |N(N(\mathbf{x}_i))|$ times $\rightarrow \text{expect } \Omega(k^3/n^2d^3)$ blocks

Proof

- Output entropy > $\Omega(k) \rightarrow \exists y_i$ with variance > $\Omega(k/n)$
- Isoperimetry $\rightarrow \exists \mathbf{x}_i$ with influence > $\Omega(k/nd)$
- Set uniformly $N(N(\mathbf{x}_j)) \setminus {\mathbf{x}_j}$ (N(v) = neighbors of v)with prob. > $\Omega(k/nd)$, $N(\mathbf{x}_j)$ non-constant block of size 2nd/k
- Repeat $\Omega(k) / |N(N(\mathbf{x}_j))|$ times $\rightarrow \text{expect } \Omega(k^3/n^2d^3)$ blocks

- Theorem: AC⁰ circuit C
 min-entropy C(X) ≥ k (∀ a, Pr[C(X) = a] ≤ 2^{-k})
 → C(X) close to convex combination of bit-block sources with min-entropy ≥ k²/n^{1.01}
- Proof:

(1) Prove when C is d-local (each output bit depends on d input bits)

(2) For AC⁰ use random restrictions

- switching lemma collapses AC⁰ to d-local
- New: entropy is preserved

The effect of restrictions on entropy

• Theorem f : $\{0,1\}^* \rightarrow \{0,1\}^n$: f(X) has min-entropy k

Let R be random restriction with Pr[*] = pW.h.p. f |_R (X) has min-entropy $\Omega(pk)$

- Proof:
- Bound collision probability $\Pr[f|_R(X) = f|_R(X)]$
- $\begin{array}{ll} \text{Isoperimetric inequality for noise} & [\text{Lovett V}] \\ \forall \ A \subseteq \left\{0,1\right\}^L \ \text{of density } \alpha, \ \text{uniform X, p-noise vector N}: \\ \alpha^2 \leq \Pr[X \in A \ \Lambda \left(X+N\right) \in A] \leq \alpha^{1+p} \end{array}$

Proof of isoperimetric inequality

- $\forall A \subseteq \{0,1\}^{L}$ of density α random X, p-noise vector N : $Pr[X \in A \land (X+N) \in A] \leq \alpha^{1+p}$
- Proof:

$$f := 1_A$$

$$E_{X,N}[f(X) \cdot f(X+N)]$$

$$= E_X[f(X) \cdot E_N[f(X+N)]]$$

Proof of isoperimetric inequality

- $\forall A \subseteq \{0,1\}^{L}$ of density α random X, p-noise vector N : $Pr[X \in A \land (X+N) \in A] \leq \alpha^{1+p}$
- Proof:
 - $$\begin{split} f &:= 1_A \\ & \mathsf{E}_{\mathsf{X},\mathsf{N}}[f(\mathsf{X}) \bullet f(\mathsf{X}{+}\mathsf{N})] \end{split}$$
 - $= \mathsf{E}_{\mathsf{X}}[\mathsf{f}(\mathsf{X}) \bullet \mathsf{E}_{\mathsf{N}}[\mathsf{f}(\mathsf{X} + \mathsf{N})]]$

 $\leq \sqrt{E_X[f^2(X)]} \cdot \sqrt{E_X[E_N^2[f(X+N)]]}$ Cauchy-Schwarz

Proof of isoperimetric inequality

- $\forall A \subset \{0,1\}^{L}$ of density α random X, p-noise vector N : $\Pr[X \in A \land (X+N) \in A] \leq \alpha^{1+p}$
- Proof:
 - f := 1_A $\mathsf{E}_{\mathsf{X},\mathsf{N}}[\mathsf{f}(\mathsf{X})\bullet\mathsf{f}(\mathsf{X}\mathsf{+}\mathsf{N})]$
 - $= E_{X}[f(X) \cdot E_{N}[f(X+N)]]$

 $= \sqrt{\alpha} \cdot \alpha ^{1/(2-O(p))}$

- $\leq \sqrt{E_{X}[f^{2}(X)]} \cdot \sqrt{E_{X}[E_{N}^{2}[f(X+N)]]}$ Cauchy-Schwarz

 $\leq \sqrt{E_x[f^2(X)] \cdot E_x[f^{2-O(p)}(X)]^{1/(2-O(p))}}$ Hypercontractivity

Qed

Recap

- Showed high-entropy $AC^0 \rightarrow high$ -entropy bit-block sources
- Implies sampling lower bounds
- But only Statistical-Distance $\Delta > 0$, not 0.1

Possible: Δ (C(X), (Y,f(Y)) ≤ 0.1, but min-entropy C(X) = O(1)

Example next

Example

• Circuit C: "On input x:

If first 4 bits are 0 output the all-zero string Otherwise sample (Y, f(Y)) exactly"

 Statistical-Distance(C(X) , (Y, f(Y)) ≤ 0.1, but min-entropy C(X) = O(1)

 Observation: If you fix first 4 bits, min-entropy polarizes: either zero or very large We show this happens for every AC⁰ circuit

Polarizing min-entropy

- Theorem: For every AC⁰ circuit C : {0,1}^{*} → {0,1}ⁿ
 ∃ set S of ≤ 2ⁿ restrictions such that:
 - (1) preserve output distribution $\Delta(C|_r(X), C(X)) \le \epsilon$, for uniform $r \in S, X$
 - (2) polarize min-entropy
 - $\forall r \in S, C|_r$ has min-entropy 0 or $n^{0.8}$

Polarizing min-entropy

Theorem: For every AC⁰ circuit C : {0,1}* → {0,1}ⁿ ∃ set S of ≤ 2ⁿ restrictions such that:
(1) preserve output distribution Δ(C|_r (X), C(X)) ≤ ε, for uniform r ∈ S, X
(2) polarize min-entropy ∀ r ∈ S, C|_r has min-entropy 0 or n^{0.8}

• Trivial:

S := one input for each of $\leq 2^n$ outputs, entropy always 0

Polarizing min-entropy

- Theorem: For every AC⁰ circuit C : {0,1}^{*} → {0,1}ⁿ
 ∃ set S of ≤ 2^{n n^{0.9}} restrictions such that:
 - (1) preserve output distribution $\Delta(C|_r(X), C(X)) \le \epsilon$, for uniform $r \in S, X$

(2) polarize min-entropy

 $\forall r \in S, C|_r$ has min-entropy 0 or $n^{0.8}$

Polarization lemma

- Lemma: For every $f : \{0,1\}^* \rightarrow \{0,1\}^n$ $\exists \text{ set S of } \leq 2^n - n^{0.9} \text{ restrictions s.t.}$ $\Delta(f|_r(X), f(X)) \leq \epsilon, \text{ for uniform } r \in S, X$
- Proof:
- Pick S randomly with $Pr[*] = n^{-0.9}$; fix A = f⁻¹(y) of density α Show: $Pr_{S}\left[Pr_{r,X}[X|_{r} \in A] < \alpha - \epsilon 2^{-n} \right] < 2^{-n}$

Note: Deviation $\epsilon 2^{-n}$ but $|S| < 2^{n}$

Polarization lemma

- Lemma: For every $f : \{0,1\}^* \rightarrow \{0,1\}^n$ $\exists \text{ set S of } \leq 2^n - n^{0.9} \text{ restrictions s.t.}$ $\Delta(f|_r(X), f(X)) \leq \epsilon, \text{ for uniform } r \in S, X$
- Proof:
- Pick S randomly with $Pr[*] = n^{-0.9}$; fix A = f⁻¹(y) of density α Show: $Pr_{S}\left[Pr_{r,X}[X|_{r} \in A] < \alpha - \epsilon 2^{-n} \right] < 2^{-n}$

Note: Deviation $\epsilon 2^{-n}$ but $|S| < 2^{n}$ Isoperimetric inequality $\rightarrow \Pr_{r,X}[X|_r \in A]$ "small variance"

Polarization lemma

- Lemma: For every $f : \{0,1\}^* \rightarrow \{0,1\}^n$ $\exists \text{ set S of } \leq 2^n - n^{0.9} \text{ restrictions s.t.}$ $\Delta(f|_r(X), f(X)) \leq \epsilon, \text{ for uniform } r \in S, X$
- Proof:
- Pick S randomly with $Pr[*] = n^{-0.9}$; fix A = f⁻¹(y) of density α Show: $Pr_{S}\left[Pr_{r,X}[X|_{r} \in A] < \alpha - \epsilon 2^{-n} \right] < 2^{-n}$

Note: Deviation $\epsilon 2^{-n}$ but $|S| < 2^n$ Isoperimetric inequality \Rightarrow $\Pr_{r,X}[X|_r \in A]$ "small variance" Use specific lower-tail concentration bound Qed

Putting things together

- In the end, lower bound for sampling (Y, f(Y)) $f: \{0,1\}^n \to \{0,1\} \text{ bit-block extractor}$
- Given circuit C, statistical distance 1/2 1/n^{ω(1)} witness:
 A U B =
 - { z : z one of those $2^{n-n^{0.9}}$ restrictions s.t. C is constant} U { (y,b) : b \neq f(y) }
- Proof: Think of C(X) as $C|_r(X)$ for uniform $r \in S$ $C|_r \text{ constant } O|_r(X) \in A$, but (Y, f(Y)) not in A w.h.p. else $Pr[C|_r(X) \in B] > 1/2 - 1/n^{\omega(1)}$, but (Y, f(Y)) never in B

More open problems and conclusion

Open problem: Statistical distance 1/2 - exp(-n^{0.1})

• Derandomize entropy polarization

• Much more to chart...

