Sampling lower bounds

Emanuele Viola

Northeastern University
September 2018

The complexity of distributions

- Leading goal: lower bounds for computing a function on a given input
- This talk: lower bounds for sampling distributions, given uniform bits
- Several papers, connections, still uncharted

The complexity of distributions

- 2-source extractors [Chattopadhyay Zuckerman, ..., Ben-Aroya Doron Ta-Shma]
- Data structure lower bounds ?

for sampling \quad ns, given uniform bits
- Several papers, connections, still uncharted

Outline

- A couple of problems for decision trees
- $A C^{0}$
- Upper bounds
- Lower bounds

Sampling Hamming slices

- $S=n$ uniform bits of weight $n / 4$
- X uniform
- $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{n}}$ depth-d forest

- Statistical distance $\Delta(f(X), S) \geq$?

Sampling Hamming slices

- $S=n$ uniform bits of weight $n / 4$
- X uniform
- $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{n}}$ depth-d forest

- Statistical distance $\Delta(f(X), S) \geq \Omega\left(1 / 2^{d}\right)$
[V]

Sampling Hamming slices

- $S=n$ uniform bits of weight $n / 4$
- X uniform
- $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{n}}$ depth-d forest

- Statistical distance $\Delta(f(X), S) \geq \Omega\left(1 / 2^{\mathrm{d}}\right)$
[V] $\leq 1 / n$ for $d=O(\log n)$
[CKKL]

Sampling Hamming slices

- $\mathrm{S}=\mathrm{n}$ uniform bits of weight $\mathrm{n} / 4$
- X uniform
- $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{n}}$ depth-d forest

- Statistical distance $\Delta(f(X), S) \geq \Omega\left(1 / 2^{\mathrm{d}}\right)$
- Open: $\Delta(f(X), S)$ for $\mathrm{d}=\mathrm{O}(1)$?
- Note: $\Delta \geq 1-o(1) \quad \rightarrow$ data structure lower bound

Sampling permutations

- $\Pi:=$ uniform permutations of [n]
- $\mathrm{f}:[\mathrm{n}]^{*} \rightarrow[\mathrm{n}]^{\mathrm{n}}$
depth- 2 forest

- Statistical distance $\Delta(f(X), \Pi) \geq$?
- $\Delta \geq 1-\mathrm{o}(1) \rightarrow$ data structure lower bound

Outline

- A couple of problems for decision trees
- $A C^{0}$
- Some upper bounds
- Lower bounds

Bounded-depth circuits (AC^{0})

$$
\begin{aligned}
& V=\text { or } \\
& \Lambda=\text { and } \\
& \neg=\text { not }
\end{aligned}
$$

- AC^{0} cannot compute parity [1980's: Furst Saxe Sipser, Ajtai, Yao, Hastad,]

Sampling ($\mathrm{Y}, \operatorname{parity}(\mathrm{Y})$)

- Theorem [Babai '87; Boppana Lagarias '87]

There is $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}+1}$, in AC^{0}
Distribution $f(X) \equiv(Y$, parity $(Y)) \quad\left(X, Y \in\{0,1\}^{n}\right.$ uniform $)$

$A C^{0}$ can sample

- (Y, Inner-Product(Y))
[Impagliazzo Naor]
- Permutations
(error 2^{-n}) [Matias Vishkin, Hagerup]
- $(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$, any symmetric f (error $\left.2^{-\mathrm{n}}\right)$
[V]
e.g. $f=$ Majority
- Open: (Y, Majority(Y)) with error 0?

AC^{0} can sample

Next

- (Y, Inner-Product(Y))
- Permutations
(error 2 ${ }^{-\mathrm{n}}$) [Matias Vishkin, Hagerup]
- $(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$, any symmetric f (error $\left.2^{-\mathrm{n}}\right)$
[V] e.g. $f=$ Majority
- Open: (Y, Majority(Y)) with error 0?

Sampling permutations in AC^{0}

- Dart throwing Place $\mathrm{i}=1 . . \mathrm{n}$ in $\mathrm{A}[1 . . \mathrm{n}]$ uniformly

Sampling permutations in AC^{0}

- Dart throwing Place $\mathrm{i}=1 . . \mathrm{n}$ in A[1..n] uniformly
- If no collisions, done

Sampling permutations in AC^{0}

- Dart throwing Place $\mathrm{i}=1 . . \mathrm{n}$ in $\mathrm{A}[1 . . \mathrm{n}]$ uniformly

There will be collisions

Sampling permutations in AC^{0}

- Dart throwing Place $\mathrm{i}=1 . . \mathrm{n}$ in $\mathrm{A}[1 . . \mathrm{m}]$ uniformly
- Enlarge A.

No collisions, and I just need to remove the \square

Sampling permutations in AC^{0}

- Dart throwing Place $\mathrm{i}=1 . . \mathrm{n}$ in $\mathrm{A}[1 . . \mathrm{m}]$ uniformly
- Enlarge A.

No collisions,
and I just need
te remove the \square

impossible

Sampling permutations in AC^{0}

- Dart throwing Place $\mathrm{i}=1 . . \mathrm{n}$ in $\mathrm{A}[1 . . \mathrm{m}]$ uniformly
- Cycle format.

Each cycle starts with least element.

Least elements sorted.

- Next element in cycle computable in AC^{0}

Outline

- A couple of problems for decision trees
- $A C^{0}$
- Some upper bounds
- Lower bounds
AC^{0} cannot sample

AC^{0} cannot sample

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
$Z=$ uniform on good binary code $\subseteq\{0,1\}^{n}$
$A C^{0}$ circuit $C:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
\rightarrow Statistical-Distance $(Z, C(X)) \geq 1-\exp \left(-n^{0.1}\right)$

AC^{0} cannot sample

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett] $Z=$ uniform on good binary code $\subseteq\{0,1\}^{n}$ $A C^{0}$ circuit $C:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
\rightarrow Statistical-Distance $(Z, C(X)) \geq 1-\exp \left(-n^{0.1}\right)$
- $(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$ for bit-block extractor $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ Statistical-Distance((Y, f(Y), C(X)) >0
[V 2011]

AC^{0} cannot sample

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
$Z=$ uniform on good binary code $\subseteq\{0,1\}^{n}$
$A C^{0}$ circuit $C:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
\rightarrow Statistical-Distance $(Z, C(X)) \geq 1-\exp \left(-n^{0.1}\right)$
- $(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$ for bit-block extractor $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ Statistical-Distance((Y, f(Y), C(X)) >0

$$
>1 / 2-1 / n^{\omega(1)} \quad[\text { now] }
$$

"Cannot compute f better than tossing a coin, even if you can sample the input yourself"

AC^{0} cannot sample

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
$Z=$ uniform on good binary code $\subseteq\{0,1\}^{n}$
$A C^{0}$ circuit $C:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
\rightarrow Statistical-Distance $(Z, C(X)) \geq 1-\exp \left(-n^{0.1}\right)$

Next

- $(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$ for bit-block extractor $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ Statistical-Distance((Y, f(Y), C(X)) >0

$$
>1 / 2-1 / n^{\omega(1)} \quad[\text { now }]
$$

"Cannot compute f better than tossing a coin, even if you can sample the input yourself"

- Theorem: AC^{0} circuit C min-entropy $C(X) \geq k \quad\left(\forall a, \operatorname{Pr}[C(X)=a] \leq 2^{-k}\right)$
$\rightarrow \mathrm{C}(\mathrm{X})$ close to convex combination of bit-block sources with min-entropy $\geq k^{2} / n^{1.01}$
- Bit-block source: each bit is either constant or literal Example: ($0,1, z_{5}, 1-z_{3}, z_{3}, z_{3}, 0, z_{2}$)
- Corollary: f bit-block extractor $\rightarrow \mathrm{C}(\mathrm{X}) \neq(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$
- Proof:
- Theorem: AC^{0} circuit C
min-entropy $\mathrm{C}(\mathrm{X}) \geq \mathrm{k}\left(\forall \mathrm{a}, \operatorname{Pr}[\mathrm{C}(\mathrm{X})=\mathrm{a}] \leq 2^{-\mathrm{k}}\right)$
$\rightarrow \mathrm{C}(\mathrm{X})$ close to convex combination of bit-block sources with min-entropy $\geq \mathrm{k}^{2} / \mathrm{n}^{1.01}$
- Bit-block source: each bit is either constant or literal Example: ($0,1, z_{5}, 1-z_{3}, z_{3}, z_{3}, 0, z_{2}$)
- Corollary: f bit-block extractor $\rightarrow \mathrm{C}(\mathrm{X}) \neq(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$
- Proof: $\mathrm{C}(\mathrm{X})=(\mathrm{Y}, \mathrm{f}(\mathrm{Y})) \rightarrow$ min-entropy $\mathrm{C}(\mathrm{X}) \geq|\mathrm{Y}|=\mathrm{n}$
\rightarrow convex combination high min-entropy bit-block sources can fix " $f(Y)$ " bit leaving high min-entropy contradicts extractor property
- Theorem: AC min-entropy
\rightarrow C(X) close
Heads up
Rules out Statistical-Distance 0, but not 0.1
with min-e
- Bit-b ock sour Exa mple: (0,

Possible:

Statistical-Distance(C(X), $(\mathrm{Y}, \mathrm{f}(\mathrm{Y})) \leq 0.1$, but min-entropy $C(X)=O(1)$

Example later

- Co ollary: f bit
- Proo $C(X)=(Y, f(Y)) \rightarrow$ min-entropy $C(X) \geq|Y|=n$
\rightarrow convex combination high min-entropy bit-block sources can fix " $f(Y)$ " bit leaving high min-entropy contradicts extractor property
- Theorem: AC^{0} circuit C min-entropy $C(X) \geq k \quad\left(\forall a, \operatorname{Pr}[C(X)=a] \leq 2^{-k}\right)$
$\rightarrow \mathrm{C}(\mathrm{X})$ close to convex combination of bit-block sources with min-entropy $\geq \mathrm{k}^{2} / \mathrm{n}^{1.01}$
- Proof:
(1) Prove when C is d-local (each output bit depends on d input bits)
(2) For $A C^{0}$ use random restrictions
- switching lemma collapses AC^{0} to d-local
- New: entropy is preserved

Proof

- d-local n-bit source min-entropy k: convex combo bit-block

- Output entropy $>\Omega(\mathrm{k}) \rightarrow \exists y_{i}$ with variance $>\Omega(\mathrm{k} / \mathrm{n})$
- Isoperimetry $\rightarrow \exists x_{j}$ with influence $>\Omega(\mathrm{k} / \mathrm{nd})$
- Set uniformly $N\left(N\left(\mathbf{x}_{j}\right)\right) \backslash\left\{\mathbf{x}_{j}\right\}$
$(\mathrm{N}(\mathrm{v})=$ neighbors of v$)$
with prob. $>\Omega(\mathrm{k} / \mathrm{nd}), N\left(\mathbf{x}_{\mathrm{j}}\right)$ non-constant block of size $2 \mathrm{nd} / \mathrm{k}$
- Repeat $\Omega(k) /\left|N\left(N\left(x_{j}\right)\right)\right|$ times \rightarrow expect $\Omega\left(k^{3} / n^{2} d^{3}\right)$ blocks

Proof

- d-local n-bit s

Open problem:

Do this for depth-d trees
w.l.o.g. \longrightarrow Would give better error bounds
$y_{1} \mathrm{y}_{2} \mathrm{~J}_{2} \mathrm{~J}_{3}\left[J_{4} \mathrm{~J}_{5}\right.$

- Output entropy $>\Omega(k) \rightarrow \exists y_{i}$ with variance $>\Omega(\mathrm{k} / \mathrm{n})$
- Isoperimetry $\rightarrow \exists x_{j}$ with influence $>\Omega(k / n d)$
- Set uniformly $N\left(N\left(x_{j}\right)\right) \backslash\left\{\mathbf{x}_{\mathrm{j}}\right\} \quad(N(v)=$ neighbors of $v)$ with prob. $>\Omega(\mathrm{k} / \mathrm{nd}), \mathrm{N}\left(\mathbf{x}_{\mathrm{j}}\right)$ non-constant block of size $2 \mathrm{nd} / \mathrm{k}$
- Repeat $\Omega(\mathrm{k}) /\left|\mathrm{N}\left(\mathrm{N}\left(\mathbf{x}_{\mathrm{j}}\right)\right)\right|$ times \rightarrow expect $\Omega\left(\mathrm{k}^{3} / \mathrm{n}^{2} \mathrm{~d}^{3}\right)$ blocks
- Theorem: AC^{0} circuit C min-entropy $C(X) \geq k \quad\left(\forall a, \operatorname{Pr}[C(X)=a] \leq 2^{-k}\right)$
$\rightarrow \mathrm{C}(\mathrm{X})$ close to convex combination of bit-block sources with min-entropy $\geq k^{2} / n^{1.01}$
- Proof:
(1) Prove when C is d-local (each output bit depends on d input bits)
(2) For $A C^{0}$ use random restrictions
- switching lemma collapses $A C^{0}$ to d-local
- New: entropy is preserved

The effect of restrictions on entropy

- Theorem $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{n}}: \mathrm{f}(\mathrm{X})$ has min-entropy k

Let R be random restriction with $\operatorname{Pr}\left[{ }^{*}\right]=p$
W.h.p. $\left.f\right|_{R}(X)$ has min-entropy $\Omega(p k)$

- Proof:
- Bound collision probability $\operatorname{Pr}\left[\left.f\right|_{R}(X)=\left.f\right|_{R}(X)\right]$
- Isoperimetric inequality for noise $\forall A \subseteq\{0,1\}^{L}$ of density α, uniform X, p-noise vector N :

$$
\alpha^{2} \leq \operatorname{Pr}[X \in A \wedge(X+N) \in A] \leq \alpha^{1+p}
$$

Proof of isoperimetric inequality

- $\forall A \subseteq\{0,1\}^{L}$ of density α random X, p-noise vector N : $\operatorname{Pr}[X \in A \wedge(X+N) \in A] \leq \alpha^{1+p}$
- Proof:

$$
\begin{aligned}
& f:=1_{A} \\
& E_{X, N}[f(X) \cdot f(X+N)] \\
& \quad=E_{X}\left[f(X) \cdot E_{N}[f(X+N)]\right]
\end{aligned}
$$

Proof of isoperimetric inequality

- $\forall A \subseteq\{0,1\}^{L}$ of density α random X, p-noise vector N : $\operatorname{Pr}[X \in A \wedge(X+N) \in A] \leq \alpha^{1+p}$
- Proof:

$$
f:=1_{A}
$$

$$
E_{X, N}[f(X) \cdot f(X+N)]
$$

$$
=\mathrm{E}_{\mathrm{X}}\left[\mathrm{f}(\mathrm{X}) \cdot \mathrm{E}_{\mathrm{N}}[\mathrm{f}(\mathrm{X}+\mathrm{N})]\right]
$$

$\leq \sqrt{ } E_{X}\left[f^{2}(X)\right] \cdot \sqrt{ } E_{X}\left[E_{N}^{2}[f(X+N)]\right] \quad$ Cauchy-Schwarz

Proof of isoperimetric inequality

- $\forall A \subseteq\{0,1\}^{L}$ of density α random X, p-noise vector N : $\operatorname{Pr}[X \in A \wedge(X+N) \in A] \leq \alpha^{1+p}$
- Proof:

$$
f:=1_{A}
$$

$$
E_{X, N}[f(X) \cdot f(X+N)]
$$

$$
=E_{X}\left[f(X) \cdot E_{N}[f(X+N)]\right]
$$

$\leq \sqrt{ } E_{X}\left[f^{2}(X)\right] \cdot \sqrt{ } E_{X}\left[E_{N}^{2}[f(X+N)]\right] \quad$ Cauchy-Schwarz
$\leq \sqrt{ } \mathrm{E}_{X}\left[\mathrm{f}^{2}(\mathrm{X})\right] \cdot \mathrm{E}_{X}\left[\mathrm{f}^{2-O(p)}(\mathrm{X})\right]^{1 /(2-O(p))}$ Hypercontractivity
$=\sqrt{ } \alpha \cdot \alpha^{1 /(2-O(p))}$

Recap

- Showed high-entropy $\mathrm{AC}^{0} \rightarrow$ high-entropy bit-block sources
- Implies sampling lower bounds
- But only Statistical-Distance $\Delta>0$, not 0.1

Possible:
$\Delta(\mathrm{C}(\mathrm{X}),(\mathrm{Y}, \mathrm{f}(\mathrm{Y})) \leq 0.1$, but min-entropy $\mathrm{C}(\mathrm{X})=\mathrm{O}(1)$

Example next

Example

- Circuit C: "On input x:

If first 4 bits are 0 output the all-zero string Otherwise sample (Y, f(Y)) exactly"

- Statistical-Distance($\mathrm{C}(\mathrm{X}),(\mathrm{Y}, \mathrm{f}(\mathrm{Y})) \leq 0.1$, but min-entropy $C(X)=O(1)$
- Observation: If you fix first 4 bits, min-entropy polarizes: either zero or very large We show this happens for every AC^{0} circuit

Polarizing min-entropy

- Theorem: For every AC 0 circuit $C:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ \exists set S of $\leq 2^{n}$ restrictions such that:
(1) preserve output distribution
$\Delta\left(\left.\mathrm{C}\right|_{\mathrm{r}}(\mathrm{X}), \mathrm{C}(\mathrm{X})\right) \leq \varepsilon$, for uniform $\mathrm{r} \in \mathrm{S}, \mathrm{X}$
(2) polarize min-entropy

$$
\forall r \in S,\left.C\right|_{r} \text { has min-entropy } 0 \text { or } \mathrm{n}^{0.8}
$$

?

?

$?$

$?$

Polarizing min-entropy

- Theorem: For every AC 0 circuit $C:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
\exists set S of $\leq 2^{n}$ restrictions such that:
(1) preserve output distribution $\Delta\left(\left.\mathrm{C}\right|_{\mathrm{r}}(\mathrm{X}), \mathrm{C}(\mathrm{X})\right) \leq \varepsilon$, for uniform $\mathrm{r} \in \mathrm{S}, \mathrm{X}$
(2) polarize min-entropy $\forall r \in S,\left.C\right|_{r}$ has min-entropy 0 or $\mathrm{n}^{0.8}$
- Trivial:
S := one input for each of $\leq 2^{n}$ outputs, entropy always 0

Polarizing min-entropy

- Theorem: For every AC 0 circuit $C:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ \exists set S of $\leq 2^{n-n^{0.9}}$ restrictions such that:
(1) preserve output distribution $\Delta\left(\left.\mathrm{C}\right|_{r}(\mathrm{X}), \mathrm{C}(\mathrm{X})\right) \leq \varepsilon$, for uniform $\mathrm{r} \in \mathrm{S}, \mathrm{X}$
(2) polarize min-entropy
$\forall r \in S,\left.C\right|_{r}$ has min-entropy 0 or $\mathrm{n}^{0.8}$

Polarization lemma

- Lemma: For every $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
\exists set S of $\leq 2^{n-n^{0.9}}$ restrictions s.t. $\Delta\left(\left.f\right|_{r}(X), f(X)\right) \leq \varepsilon$, for uniform $r \in S, X$
- Proof:
- Pick S randomly with $\operatorname{Pr}\left[{ }^{*}\right]=n^{-0.9} ;$ fix $A=f^{-1}(y)$ of density α Show: $\operatorname{Pr}_{S}\left[\operatorname{Pr}_{r, X}\left[\left.X\right|_{r} \in A\right]<\alpha-\varepsilon 2^{-n}\right]<2^{-n}$

Note: Deviation $\varepsilon 2^{-n}$ but $|S|<2^{n}$

Polarization lemma

- Lemma: For every $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
\exists set S of $\leq 2^{n-n^{0.9}}$ restrictions s.t. $\Delta\left(\left.f\right|_{r}(X), f(X)\right) \leq \varepsilon$, for uniform $r \in S, X$
- Proof:
- Pick S randomly with $\operatorname{Pr}\left[{ }^{*}\right]=n^{-0.9} ;$ fix $A=f^{-1}(y)$ of density α Show: $\operatorname{Pr}_{S}\left[\operatorname{Pr}_{r, X}\left[\left.X\right|_{r} \in A\right]<\alpha-\varepsilon 2^{-n}\right]<2^{-n}$

Note: Deviation $\varepsilon 2^{-n}$ but $|S|<2^{n}$ Isoperimetric inequality $\rightarrow \operatorname{Pr}_{r, X}\left[\left.X\right|_{r} \in A\right]$ "small variance"

Polarization lemma

- Lemma: For every $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
\exists set S of $\leq 2^{n-n^{0.9}}$ restrictions s.t. $\Delta\left(\left.f\right|_{r}(X), f(X)\right) \leq \varepsilon$, for uniform $r \in S, X$
- Proof:
- Pick S randomly with $\operatorname{Pr}\left[{ }^{*}\right]=n^{-0.9} ; f i x A=f^{-1}(y)$ of density α Show: $\operatorname{Pr}_{S}\left[\operatorname{Pr}_{r, X}\left[\left.X\right|_{r} \in A\right]<\alpha-\varepsilon 2^{-n}\right]<2^{-n}$

Note: Deviation $\varepsilon 2^{-n}$ but $|S|<2^{n}$ Isoperimetric inequality $\rightarrow \operatorname{Pr}_{r, X}\left[\left.X\right|_{r} \in A\right]$ "small variance" Use specific lower-tail concentration bound

Putting things together

- In the end, lower bound for sampling ($\mathrm{Y}, \mathrm{f}(\mathrm{Y})$) $f:\{0,1\}^{n} \rightarrow\{0,1\}$ bit-block extractor
- Given circuit C, statistical distance $1 / 2-1 / n^{\omega(1)}$ witness: $A \cup B=$ $\left\{z: z\right.$ one of those $2^{n-n^{0.9}}$ restrictions s.t. C is constant $\}$ $\mathbf{U}\{(\mathrm{y}, \mathrm{b}): \mathrm{b} \neq \mathrm{f}(\mathrm{y})\}$
- Proof: Think of $C(X)$ as $\left.C\right|_{r}(X)$ for uniform $r \in S$ $\left.C\right|_{r}$ constant $\left.\rightarrow C\right|_{r}(X) \in A$, but $(Y, f(Y))$ not in A w.h.p. else $\operatorname{Pr}\left[\left.C\right|_{r}(X) \in B\right]>1 / 2-1 / n^{\omega(1)}$, but $(Y, f(Y))$ never in B

More open problems and conclusion

- Open problem: Statistical distance $1 / 2-\exp \left(-\mathrm{n}^{0.1}\right)$
- Derandomize entropy polarization
- Much more to chart...

