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● Leading goal of computational complexity: lower bounds 
for computing a function on a given input

● Since 2009 have advocated lower bounds
for sampling distributions, given uniform bits

● Several papers, connections,
still uncharted

The complexity of distributions



  

● AC0 cannot compute parity
[1980's: Furst Saxe Sipser, Ajtai, Yao, Hastad, ….]

Bounded-depth circuits (AC0) 
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● Theorem [Babai '87; Boppana Lagarias '87]

There is f : {0,1}n  {0,1}n+1 , in AC0 

Distribution f(X)  ( Y, parity(Y) )     (X, Y  {0,1}n  uniform)

Sampling ( Y, parity(Y) )
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● (Y, Inner-Product(Y))             [Impagliazzo Naor]

● Permutations                    (error 2-n)  [Matias Vishkin, Hagerup]

● (Y, f(Y)), any symmetric f  (error 2-n)                                [V]

e.g. f = Majority, Mod-3, ...

AC0 can sample



  

AC0 cannot sample



  

● Error-correcting codes  [Lovett V 2011, Beck Impagliazzo Lovett]

Z = uniform on good binary code  {0,1}⊆ n 

AC0 circuit C : {0,1}L → {0,1}n 

  Statistical-Distance( Z, C(X) ) ≥ 1 - exp(-n0.1)

AC0 cannot sample
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“Cannot compute f better than tossing a coin,
   even if you can sample the input yourself”

● Error-correcting codes  [Lovett V 2011, Beck Impagliazzo Lovett]

Z = uniform on good binary code  {0,1}⊆ n 

AC0 circuit C : {0,1}L → {0,1}n 

  Statistical-Distance( Z, C(X) ) ≥ 1 - exp(-n0.1)

● (Y, f(Y)) for bit-block extractor f : {0,1}n → {0,1}

Statistical-Distance( (Y, f(Y) ,C(X)) > 0                     [V 2011]

                                                        > 1/2 - 1/nω(1)    [V now]

AC0 cannot sample



  

“Cannot compute f better than tossing a coin,
   even if you can sample the input yourself”

● Error-correcting codes  [Lovett V 2011, Beck Impagliazzo Lovett]

Z = uniform on good binary code  {0,1}⊆ n 

AC0 circuit C : {0,1}L → {0,1}n 

  Statistical-Distance( Z, C(X) ) ≥ 1 - exp(-n0.1)

● (Y, f(Y)) for bit-block extractor f : {0,1}n → {0,1}

Statistical-Distance( (Y, f(Y) ,C(X)) > 0                     [V 2011]

                                                        > 1/2 - 1/nω(1)    [V now]

AC0 cannot sample

Next



  

● Theorem: AC0 circuit C

min-entropy C(X) ≥ k  (  a, Pr[C(X) = a] ≤ 2∀ -k)
  C(X) close to convex combination of bit-block sources  

     with min-entropy ≥ k (k/n)

● Bit-block source: each bit is either constant or literal
Example: (0, 1, z5 , 1-z3 , z3 , z3 , 0 , z2 )

● Corollary: f bit-block extractor   C(X) ≠ (Y, f(Y) )

● Proof:
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     with min-entropy ≥ k (k/n)

● Bit-block source: each bit is either constant or literal
Example: (0, 1, z5 , 1-z3 , z3 , z3 , 0 , z2 )

● Corollary: f bit-block extractor   C(X) ≠ (Y, f(Y) )

● Proof: C(X) = (Y, f(Y))  min-entropy C(X)  ≥ |Y| = n
  convex combination high min-entropy bit-block sources

can fix “f(Y)” bit leaving high min-entropy
contradicts extractor property                                     QED



  

● Theorem: AC0 circuit C

min-entropy C(X) ≥ k  (  a, Pr[C(X) = a] ≤ 2∀ -k)
  C(X) close to convex combination of bit-block sources  

     with min-entropy ≥ k (k/n)

● Bit-block source: each bit is either constant or literal
Example: (0, 1, z5 , 1-z3 , z3 , z3 , 0 , z2 )

● Corollary: f bit-block extractor   C(X) ≠ (Y, f(Y) )

● Proof: C(X) = (Y, f(Y))  min-entropy C(X)  ≥ |Y| = n
  convex combination high min-entropy bit-block sources

can fix “f(Y)” bit leaving high min-entropy
contradicts extractor property                                     QED

Rules out Statistical-Distance 0, but not 0.1

Possible:
Statistical-Distance( C(X), (Y,f(Y)) ≤ 0.1,

but min-entropy C(X) = O(1)

Example next



  

● Circuit C: “On input x:
                    If first 4 bits are 0 output the all-zero string
                    Otherwise sample (Y, f(Y)) exactly”

● Statistical-Distance( C(X) , (Y, f(Y)) ≤ 0.1,
but min-entropy C(X) = O(1)

● Observation: If you fix first 4 bits,
min-entropy polarizes: either zero or very large

We show this happens for every AC0 circuit

Example



  

● Theorem: For every AC0 circuit C : {0,1}L → {0,1}n  

 ∃ set S of exp(n - n0.9) restrictions such that:

(1) preserve output distribution
     C|r (X) ≈ C(X) for uniform r  S∈
(2) polarize min-entropy

       ∀ r  S, C|∈ r has min-entropy 0 or n0.8

● Note: |S| = exp(n) useless and trivial:

S := one input for each of ≤ 2n outputs, entropy always 0

Polarizing min-entropy



  

● AC0 

● Decision trees

● Polarized decision trees

Proof steps
Small set of restrictions that
(1) preserve output distribution
      hypercontractivity +
      specific concentration of measure

(2) collapse AC0 to decision trees
      switching lemma

Further restrict
tree either fixed or has high min entropy



  

● Open problem: Statistical distance 1/2 - exp(-n0.1)
Neither in reduction to bit-block nor entropy polarization

● Much more to chart...

Conclusion


