Emanuele Viola

Northeastern University

September 2019

Outline

• History, conjectures, and upper bounds

• Intermission: Natural proofs and fast crypto

• The lower bounds we have are best?

• Some recent connections and results

Can we multiply n-digit integers faster than n²?

 Feeling: "As regards number systems and calculation techniques, it seems that the final and best solutions were found in science long ago"

• In 1950's, Kolmogorov conjectured time $\Omega(n^2)$ Started a seminar with the goal of proving it

Can we multiply n-digit integers faster than n²?

 Feeling: "As regards number systems and calculation techniques, it seems that the final and best solutions were found in science long ago"

- In 1950's, Kolmogorov conjectured time $\Omega(n^2)$ Started a seminar with the goal of proving it
- One week later, O(n^{1.59}) time by Karatsuba

• [..., 2007 Furer] $O(n \cdot log(n) \cdot exp(log^* n))$

Can we multiply nxn matrices faster than n³?

1968 Strassen working to prove $\Omega(n^3)$

Can we multiply nxn matrices faster than n³?

Proving lower bounds for linear transformations

Problem: Give explicit $n \times n$ matrix such that linear transformation requires $\omega(n)$ size circuits

1970 Valiant:

Fourier transform matrix is a **super-concentrator**

Conjecture: Super-concentrators require $\omega(n)$ wires

Proving lower bounds for linear transformations

Problem: Give explicit $n \times n$ matrix such that linear transformation requires $\omega(n)$ size circuits

1970 Valiant:

Fourier transform matrix is a **super-concentrator**

Conjecture: Super-concentrators require $\omega(n)$ wires

Later, Valiant: Super-concentrators with O(n) wires exist

Space-bounded

Finite-state automata read input left to right

Theorem: Can't recognize palindromes

Let's allow them to read bits multiple times

Conjecture 1983 [Borodin, Dolev, Fich, Paul] Can't compute majority efficiently

Space-bounded

Finite-state automata read input left to right

Theorem: Can't recognize palindromes

Let's allow them to read bits multiple times

Conjecture 1983 [Borodin, Dolev, Fich, Paul] Can't compute majority efficiently

Mix Barrington 1989: Can compute Majority (and *NC*¹)

Boolean circuits

Universal hash functions [Carter Wegman 79]

Conjecture 1990 [Mansour Nisan Tiwari] Require super-linear size circuits

Boolean circuits

Universal hash functions [Carter Wegman 79]

Conjecture 1990 [Mansour Nisan Tiwari]

Require super-linear size circuits

Theorem 2008 [Ishai Kushilevitz Ostrovsky Sahai] Linear-size suffices

Conjecture $P \neq NP$

Outline

• History, conjectures, and upper bounds

Intermission: Natural proofs and fast crypto

• The lower bounds we have are best?

• Some recent connections and results

Natural proofs [90's Razborov Rudich, Naor Reingold]

If class C can compute pseudorandom functions,
 Then proving lower bounds against C is "difficult"

• **theory** of cryptography

Candidate pseudorandom functions in classes such as NC^1 Somewhat far from state of lower bounds

• [Miles V] **practice** of cryptography Candidate more efficient pseudorandom functions

The SPN paradigm

[Shannon '49, Feistel-Notz-Smith '75]

S(ubstitution)-box

- $\begin{array}{c} \mathsf{S}:\mathsf{GF}(\mathsf{2^b}) \longrightarrow \mathsf{GF}(\mathsf{2^b}) \\ \times \mapsto ^{2^{\mathsf{b}}-2} \end{array}$
- computationally expensive
- "strong" crypto properties

Linear transformation

$M: GF(2^{b})^{m} \rightarrow GF(2^{b})^{m}$

- computationally cheap
- "weak" crypto properties

Key XOR

- only source of secrecy
- round keys = uniform, independent

• Candidate pseudorandom function computable in quasi-linear time

• ... And in other models that will appear later in this talk

Open: Construct more candidates from practical constructions

Outline

• History, conjectures, and upper bounds

• Intermission: Natural proofs and fast crypto

• The lower bounds we have are best?

• Some recent connections and results

*AC*⁰ circuits

• Depth-d, And-Or-Not circuits (AC^0)

• Why not stronger bounds?

AC⁰ circuits

• Depth-d, And-Or-Not circuits (AC^0)

• $2^{n^{\Omega(\frac{1}{d})}}$ lower bounds [80's: Furst Saxe Sipser, Ajtai, Yao, Hastad,...]

- Why not stronger bounds?
- Folklore: NC^1 has circuits of size $2^{n^{O(\frac{1}{d})}}$

⇒ 80's bounds are best without proving major (false?) results

f := product of n permutations
 on O(1) elements (NC¹ complete)

• [1997: Impagliazzo Paturi Saks] $n^{1+c^{-d}}$ lower bounds f

f := product of n permutations
 on O(1) elements (NC¹ complete)

Depth d=3

- [1997: Impagliazzo Paturi Saks] $n^{1+c^{-d}}$ lower bounds f
- [2010 Allender Koucky]: $NC^1 = TC^0 \Rightarrow f \text{ has size } n^{1+O(\frac{1}{d})}$

f := product of n permutations
 on O(1) elements (NC¹ complete)

- [1997: Impagliazzo Paturi Saks] $n^{1+c^{-d}}$ lower bounds f
- [2010 Allender Koucky]: $NC^1 = TC^0 \Rightarrow f$ has size $n^{1+O(\frac{1}{d})}$
- [2015 Miles Viola]: size $n^{1+O(\frac{1}{d})}$ candidate pseudorandom function

f := product of n permutations
 on O(1) elements (NC¹ complete)

Depth d=3

- [1997: Impagliazzo Paturi Saks] $n^{1+c^{-d}}$ lower bounds f
- [2010 Allender Koucky]: $NC^1 = TC^0 \Rightarrow f$ has size $n^{1+O(\frac{1}{d})}$
- [2015 Miles Viola]: size $n^{1+O(\frac{1}{d})}$ candidate pseudorandom function
- [2018 Chen Tell]: $NC^1 = TC^0 \Rightarrow f has$ size $n^{1+c^{-a}} \Rightarrow$ 1997 bound is best without proving major (false?) results

Proof [2018 Chen Tell]

- Recall: f = product of n permutations on O(1) elements (NC¹ complete)
- Theorem: $\exists k : f \text{ in size } n^k \& \text{depth } k \Rightarrow \forall d : f \text{ in size } n^{1+c^{-d}} \& \text{depth } O(d)$
- Proof: Build a tree. Aim for size $n^{1+\epsilon}$ $n_i :=$ number of nodes at level *i* (root level 0)

Level *i* fan-in: $(n^{1+\epsilon}/n_i)^{1/k}$ Recursion: $n_{i+1} = n_i \cdot (n^{1+\epsilon}/n_i)^{1/k}$ Solution: $n_i = n^{(1+\epsilon)(1-(1-1/k)^i)}$

OED

Setting $i = O(k \log(1/\epsilon))$ gives $n_i > n$

Algebraic complexity

• [2013 Gupta Kamath Kayal Saha Saptharishi] $n^{\Omega(\sqrt{n})}$ lower bounds for depth-4 homogeneous circuits

• Why not stronger bounds?

Algebraic complexity

• [2013 Gupta Kamath Kayal Saha Saptharishi] $n^{\Omega(\sqrt{n})}$ lower bounds for depth-4 homogeneous circuits

• Why not stronger bounds?

• [Agrawal Vinay, Koiran, Tavenas 2013] $n^{\omega(\sqrt{n})}$ lower bounds $\Rightarrow VP \neq VNP$

1. No reason, it's coincidence

I would find this "strange" because same bounds proved with seemingly different techniques

1. No reason, it's coincidence

I would find this "strange" because same bounds proved with seemingly different techniques

2. Current techniques are X, for major results need Y

1. No reason, it's coincidence

I would find this "strange" because same bounds proved with seemingly different techniques

2. Current techniques are X, for major results need Y

3. Major results are false

Outline

• History, conjectures, and upper bounds

• Intermission: Natural proofs and fast crypto

• The lower bounds we have are best?

- Some recent connections and results
 - Circuits encoding error-correcting codes
 - Data structures
 - Turing machines

Complexity of error-correction encoding

• Asymptotically good code over {0,1}: $C \subseteq \{0,1\}^n$ rate $\Omega(1)$: $|C| = 2^k$, $k = \Omega(n)$ distance $\Omega(n)$: $\forall x \neq y \in C$, x and y differ in $\Omega(n)$ bits

• Consider encoding function $f: \{0,1\}^k \to \{0,1\}^n$

 Want to compute *f* with circuits with arbitrary gates; only count number of wires

Previous work

Depth 1 Wires Θ(n²)

Unbounded fan-in

Depth O(log n) Wires Θ(n)

Fan-in 2 [Gelfand Dobrushin Pinsker 73] [Spielman 95]

n-bit Codeword

• Question: How many wires for depth 2?

- λ inverse Ackermann: $\lambda_3(n) = \log \log n$, $\lambda_4(n) = \log^* n$, ...
- Best-known bound for linear function in NP

Probabilistic construction

- i-th block balanced for message weight w = $\Theta(n/2^i)$ Can do with wires (n/w) log $\binom{n_w}{v}$ < n i
- Total wires = $\Sigma_{i < \log n}$ (n i) + n log n = $n \cdot O(\log^2 n)$

Outline

• History, conjectures, and upper bounds

• Intermission: Natural proofs and fast crypto

• The lower bounds we have are best?

- Some recent connections and results
 - Circuits encoding error-correcting codes
 - Data structures
 - Turing machines

Static data structures

• Store n bits $x \in \{0,1\}^n$ into n + r bits so that each of m queries can be answered reading t bits

• Trivial:
$$r = m - n, t = 1 \text{ or } r = 0, t = n$$

• This talk: Think r = o(n), m = O(n)

Best lower bound:

$$t = \Omega\left(\frac{n}{r}\right)$$
 ['07 Gal Miltersen]

From circuits to data structures [V 2018]

• Theorem:

If $f: \{0,1\}^n \to \{0,1\}^m$ computable with *w* wires in depth *d* then *f* has data structure with space n + r time $t = \left(\frac{w}{r}\right)^d$ for any *r*

• Corollaries:

•
$$f = \text{encoding} \Rightarrow t = O\left(\frac{n}{r}\right)\log^3 n$$
 [GHKPV], matches [Gal Miltersen] $\Omega\left(\frac{n}{r}\right)$
• $t > \left(\frac{n}{r}\right)^5$ for $f \in NP$ implies new circuit lower bounds

• Concurrent [Dvir Golovnev Weinstein]: broader regime, but linear model

From circuits to data structures [V 2018]

• Theorem:

If $f: \{0,1\}^n \to \{0,1\}^m$ computable with *w* wires in depth *d* then *f* has data structure with space n + r time $t = \left(\frac{w}{r}\right)^d$ for any *r*

• Proof:

Store *n*-bit input and values of gates with fan-in > w/rNumber of such gates is $\le r$ To compute any gate: either you have it, or it depends on $\le w/r$ gates

(Jed

at next layer, repeat.

Open

• Data structures lower bounds for $r = n^2$, $m = r^3$ imply anything?

Outline

• History, conjectures, and upper bounds

• Intermission: Natural proofs and fast crypto

• The lower bounds we have are best?

- Some recent connections and results
 - Circuits encoding error-correcting codes
 - Data structures
 - Turing machines

1) A useless model which only has historical significance

2) A fundamental challenge which lies right at the frontier of knowledge

[Hennie 65] $\Omega(n^2)$ time lower bounds for 1-tape machines

[Hennie 65] $\Omega(n^2)$ time lower bounds for 1-tape machines

[Miles V] Candidate pseudorandom function in time $O(n^2)$

[Hennie 65] $\Omega(n^2)$ time lower bounds for 1-tape machines

[Miles V] Candidate pseudorandom function in time $O(n^2)$

Open: $n^{1+\Omega(1)}$ lower bounds for 2-tape machines

[Hennie 65] $\Omega(n^2)$ time lower bounds for 1-tape machines

[Miles V] Candidate pseudorandom function in time $O(n^2)$

Open: $n^{1+\Omega(1)}$ lower bounds for 2-tape machines

[Maass Schorr 87, $n^{1+\Omega(1)}$ lower bounds for 2-tape machines van Melkebeek but input tape read-only Raz, Williams]

[Hennie 65] $\Omega(n^2)$ time lower bounds for 1-tape machines

[Miles V] Candidate pseudorandom function in time $O(n^2)$

Open: $n^{1+\Omega(1)}$ lower bounds for 2-tape machines

[Maass Schorr 87, $n^{1+\Omega(1)}$ lower bounds for 2-tape machines van Melkebeek but input tape read-only Raz, Williams]

Question [V, Lipton, ...]: What if the machine is randomized?

- [V 2019] $n^{1+\Omega(1)}$ lower bounds for 2-tape randomized machines but input tape read-only
- Key step of proof: Pseudorandom generator for 1-tape machines
- [1994 Impagliazzo Nisan Wigderson]
 Weaker model: Can fill the tape with bits that look random
- Need machine can toss coins at any point. This breaks /

- First attempt to pseudorandom generator: bounded independence [Carter Wegman]
- Does not work
- **Bounded independence** and flip each bit independently with probability 0.01 (And recurse)
- Theorem: [Haramaty Lee V, …]
 Bounded independence plus noise fools small-space algorithms
- Essentially simulate Turing machine computation with small space

Table 1: Computation table of an RTM with 9 work tape cells reading 6 random bits. Each row corresponds to a different time stamp and shows the position of the head H on the work tape. The symbol \star indicates when a random bit is read. We have three boundaries shown at the bottom. The "block" row shows the partition of work cells in blocks. The induced partition on the random-bit tape is 133233.

Thanks!

