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Can we multiply n-digit integers faster than n2 ?

• Feeling: “As regards number systems and calculation techniques,
it seems that the final and best solutions were found in science long ago”

• In 1950’s, Kolmogorov conjectured time Ω 𝑛𝑛2

Started a seminar with the goal of proving it



Can we multiply n-digit integers faster than n2 ?

• Feeling: “As regards number systems and calculation techniques,
it seems that the final and best solutions were found in science long ago”

• In 1950’s, Kolmogorov conjectured time Ω 𝑛𝑛2

Started a seminar with the goal of proving it

• One week later, O(n1.59) time by Karatsuba

• […, 2007 Furer] 𝑂𝑂(𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 ⋅ exp(log∗ 𝑛𝑛))



Can we multiply nxn matrices faster than n3 ?

1968 Strassen working to prove Ω 𝑛𝑛3



Can we multiply nxn matrices faster than n3 ?

1968 Strassen working to prove Ω 𝑛𝑛3

1969: Volker Strassen.

Gaussian elimination is not optimal.

Numer. Math., 13:354–356, 1969.

𝑂𝑂(𝑛𝑛2.81) algorithm



Proving lower bounds for linear transformations

Problem: Give explicit  𝑛𝑛 × 𝑛𝑛 matrix such that
linear transformation requires 𝜔𝜔 𝑛𝑛 size circuits

1970 Valiant:
Fourier transform matrix is a super-concentrator

Conjecture: Super-concentrators require 𝜔𝜔 𝑛𝑛 wires



Proving lower bounds for linear transformations

Problem: Give explicit  𝑛𝑛 × 𝑛𝑛 matrix such that
linear transformation requires 𝜔𝜔 𝑛𝑛 size circuits

1970 Valiant:
Fourier transform matrix is a super-concentrator

Conjecture: Super-concentrators require 𝜔𝜔 𝑛𝑛 wires

Later, Valiant: Super-concentrators with 𝑂𝑂 𝑛𝑛 wires exist



Space-bounded

Finite-state automata read input left to right

Theorem: Can’t recognize palindromes

Let’s allow them to read bits multiple times

Conjecture 1983 [Borodin, Dolev, Fich, Paul]  Can’t compute majority efficiently
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Space-bounded

Finite-state automata read input left to right

Theorem: Can’t recognize palindromes

Let’s allow them to read bits multiple times

Conjecture 1983 [Borodin, Dolev, Fich, Paul]  Can’t compute majority efficiently

Mix Barrington 1989: Can compute Majority (and 𝑁𝑁𝐶𝐶1)

q0 q11
0 0
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Boolean circuits

Universal hash functions [Carter Wegman 79]

Conjecture 1990 [Mansour Nisan Tiwari]

Require super-linear size circuits



Boolean circuits

Universal hash functions [Carter Wegman 79]

Conjecture 1990 [Mansour Nisan Tiwari]

Require super-linear size circuits

Theorem 2008  [Ishai Kushilevitz Ostrovsky Sahai]

Linear-size suffices



Conjecture 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃
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Natural proofs  [90’s Razborov Rudich, Naor Reingold]

• If class C can compute pseudorandom functions,
Then proving lower bounds against C is “difficult”

• theory of cryptography
Candidate pseudorandom functions in classes such as 𝑁𝑁𝐶𝐶1

Somewhat far from state of lower bounds

• [Miles V] practice of cryptography
Candidate more efficient pseudorandom functions



S S S S

(n=mb)-bit input

M

(n=mb)-bit output

key1

The SPN paradigm

.  .  .

S S S S

M

key2

.  .  .

S S S S

M

keyr

.  .  .

. . .

S : GF(2b) → GF(2b)
x     x 2b-2

S(ubstitution)-box

Linear transformation

M : GF(2b)m → GF(2b)m

- computationally expensive
- “strong” crypto properties

- computationally cheap
- “weak” crypto properties

Key XOR
- only source of secrecy
- round keys = uniform, independent

round 1

round 2

round r

[Shannon '49, Feistel-Notz-Smith '75] key0



[Miles V]

• Candidate pseudorandom function computable in quasi-linear time

• ... And in other models that will appear later in this talk

• Open: Construct more candidates from practical constructions
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• Depth-d, And-Or-Not circuits (𝐴𝐴𝐶𝐶0)

• 2𝑛𝑛
Ω(1𝑑𝑑)

lower bounds         [80’s: Furst Saxe Sipser, Ajtai, Yao, Hastad,…]

• Why not stronger bounds?

𝐴𝐴𝐶𝐶0 circuits
¬

V V V

/\ /\ /\

Input x

V

¬
Depth
d=3



• Depth-d, And-Or-Not circuits (𝐴𝐴𝐶𝐶0)

• 2𝑛𝑛
Ω(1𝑑𝑑)

lower bounds         [80’s: Furst Saxe Sipser, Ajtai, Yao, Hastad,…]

• Why not stronger bounds?

• Folklore: 𝑁𝑁𝐶𝐶1 has circuits of size 2𝑛𝑛
O(1𝑑𝑑)

⇒ 80’s bounds are best without proving major (false?) results

𝐴𝐴𝐶𝐶0 circuits
¬

V V V

/\ /\ /\

Input x

V

¬
Depth
d=3



• 𝑓𝑓 ∶= product of n permutations
on O(1) elements (𝑁𝑁𝐶𝐶1 complete)

• [1997: Impagliazzo Paturi Saks]  𝑛𝑛1+𝑐𝑐−𝑑𝑑 lower bounds 𝑓𝑓

Threshold circuits
Σ Σ Σ Σ
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• 𝑓𝑓 ∶= product of n permutations
on O(1) elements (𝑁𝑁𝐶𝐶1 complete)

• [1997: Impagliazzo Paturi Saks]  𝑛𝑛1+𝑐𝑐−𝑑𝑑 lower bounds 𝑓𝑓

• [2010 Allender Koucky]: 𝑁𝑁𝐶𝐶1 = 𝑇𝑇𝐶𝐶0 ⇒ 𝑓𝑓 ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛1+𝑂𝑂(1𝑑𝑑)

• [2015 Miles Viola]: 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛1+𝑂𝑂(1𝑑𝑑) candidate pseudorandom function

• [2018 Chen Tell]: 𝑁𝑁𝐶𝐶1 = 𝑇𝑇𝐶𝐶0 ⇒ 𝑓𝑓 ℎ𝑎𝑎𝑎𝑎 size 𝑛𝑛1+𝑐𝑐−𝑑𝑑

⇒ 1997 bound is best without proving major (false?) results

Threshold circuits
Σ Σ Σ Σ

Σ Σ Σ

Input x

Σ

Σ
Depth
d=3



• Recall: f = product of n permutations on O(1) elements (𝑁𝑁𝐶𝐶1 complete)
• Theorem: ∃ 𝑘𝑘 ∶ 𝑓𝑓 in size 𝑛𝑛𝑘𝑘 & depth k ⇒ ∀𝑑𝑑 ∶ 𝑓𝑓 in size 𝑛𝑛1+𝑐𝑐−𝑑𝑑 & depth O(d)

• Proof: Build a tree. Aim for size 𝑛𝑛1+𝜖𝜖
𝑛𝑛𝑖𝑖 ∶= number of nodes at level 𝑠𝑠 (root level 0)

Level 𝑠𝑠 fan-in:                          Re         Recursion: 

Solution: 

Setting                                                       gives 𝑛𝑛𝑖𝑖 > 𝑛𝑛 QED

Proof [2018 Chen Tell]



• [2013 Gupta Kamath Kayal Saha Saptharishi]
𝑛𝑛Ω 𝑛𝑛 lower bounds for depth-4 homogeneous circuits

• Why not stronger bounds?

Algebraic complexity
+ x x +

+ + x

Input x

+

+
Depth
d=3



• [2013 Gupta Kamath Kayal Saha Saptharishi]
𝑛𝑛Ω 𝑛𝑛 lower bounds for depth-4 homogeneous circuits

• Why not stronger bounds?

• [Agrawal Vinay, Koiran, Tavenas 2013 ]
𝑛𝑛𝜔𝜔 𝑛𝑛 lower bounds ⇒ 𝑉𝑉𝑃𝑃 ≠ 𝑉𝑉𝑁𝑁𝑃𝑃

Algebraic complexity
+ x x +

+ + x

Input x

+

+
Depth
d=3



Why do current bounds stop “just before” 
proving major results?



1. No reason, it’s coincidence                                                               
I would find this “strange” because same bounds          
proved with seemingly different techniques

Why do current bounds stop “just before” 
proving major results?
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2. Current techniques are X, for major results need Y
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1. No reason, it’s coincidence                                                               
I would find this “strange” because same bounds          
proved with seemingly different techniques

2. Current techniques are X, for major results need Y

3. Major results are false

Why do current bounds stop “just before” 
proving major results?
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• Asymptotically good code over {0,1}: C ⊆ {0,1}n

rate Ω(1): |C| =2k, k = Ω(n)
distance Ω(n): ∀ x ≠ y ∈ C, x and y differ in Ω(n) bits

• Consider encoding function 𝑓𝑓: 0,1 𝑘𝑘 → 0,1 𝑛𝑛

• Want to compute 𝑓𝑓 with circuits with arbitrary gates; 
only count number of wires

Complexity of error-correction encoding

k-bit message

n-bit codeword

Encoding



.......

..

Previous work
Depth 1 Wires Θ(n2)
Unbounded fan-in

• Depth O(log n) Wires Θ(n)

Fan-in 2
[Gelfand Dobrushin Pinsker 73]  
[Spielman 95]

• Question: How many wires for depth 2?

Message
+ + + + + + + +

n-bit Codeword

Message

n-bit Codeword

+ + + + +
+ + + + +

++ + + + + +
Message

n-bit Codeword

+ + + + + + + +
+ + + + + + + +



[Gál Hansen  Koucký Pudlák V 2012]

• λ inverse Ackermann: λ3(n)=log log n, λ4(n)=log*n, ...

• Best-known bound for linear function in NP

Message

n-bit Codeword

+ + + + + + + +
+ + + + + + + +

Depth Wires

2 𝑛𝑛 ⋅ Θ
𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

log log𝑛𝑛

2

d > 2 n·Θ(λd(n) )



Probabilistic construction

• i-th block balanced for message weight w = Θ(n/2i)  
Can do with wires (n/w) log (nw) < n i

• Total wires = Σ i < log n (n i) + n log n = 𝑛𝑛 ⋅ 𝑂𝑂(log2 𝑛𝑛)

message
...+

Layer of log n blocks
∀ message ∃ balanced block

Output bit:
XOR one random bit per block

+ + + + + + +
n-bit codeword

+ + + + ++
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• Store n bits 𝑥𝑥 ∈ 0,1 𝑛𝑛 into 𝑛𝑛 + 𝑟𝑟 bits so that each of 𝑚𝑚 queries
can be answered reading 𝑡𝑡 bits

• Trivial: r = 𝑚𝑚 − 𝑛𝑛, 𝑡𝑡 = 1 𝑙𝑙𝑟𝑟 𝑟𝑟 = 0, 𝑡𝑡 = 𝑛𝑛

• This talk: Think 𝑟𝑟 = 𝑙𝑙 𝑛𝑛 ,𝑚𝑚 = 𝑂𝑂(𝑛𝑛)

• Best lower bound:
t = Ω n

r
[‘07 Gal Miltersen]

Static data structures

n-bit data

𝑛𝑛 + 𝑟𝑟 bits

Arbitrary  
map A

m-bit output (queries)

t



• Theorem:
If 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑚𝑚 computable with 𝑤𝑤 wires in depth 𝑑𝑑

then 𝑓𝑓 has data structure with space 𝑛𝑛 + 𝑟𝑟 time 𝑡𝑡 = 𝑤𝑤
𝑟𝑟

𝑑𝑑
for any 𝑟𝑟

• Corollaries: 
• 𝑓𝑓 = encoding ⇒ t = O n

r
log3 𝑛𝑛 [GHKPV], matches [Gal Miltersen] Ω n

r

• t > n
r

5
for 𝑓𝑓 ∈ 𝑁𝑁𝑃𝑃 implies new circuit lower bounds

• Concurrent [Dvir Golovnev Weinstein]: broader regime, but linear model

From circuits to data structures [V 2018]



• Theorem: 
If 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑚𝑚 computable with 𝑤𝑤 wires in depth 𝑑𝑑

then 𝑓𝑓 has data structure with space 𝑛𝑛 + 𝑟𝑟 time 𝑡𝑡 = 𝑤𝑤
𝑟𝑟

𝑑𝑑
for any 𝑟𝑟

• Proof:
Store 𝑛𝑛-bit input and values of gates with fan-in > 𝑤𝑤/𝑟𝑟
Number of such gates is ≤ 𝑟𝑟
To compute any gate: either you have it, or it depends on ≤ 𝑤𝑤/𝑟𝑟 gates 
at next layer, repeat.                                                                      Qed

From circuits to data structures [V 2018]



Open

• Data structures lower bounds for  r = 𝑛𝑛2,𝑚𝑚 = 𝑟𝑟3 imply anything?
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Turing machines

1) A useless model which only has historical 
significance

2) A fundamental challenge which lies right at the 
frontier of knowledge

0 0 1 1 0 1 ...
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Turing machines

[Hennie 65] Ω(𝑛𝑛2) time lower bounds for 1-tape machines

[Miles V]                 Candidate pseudorandom function in time 𝑂𝑂 𝑛𝑛2

Open: 𝑛𝑛1+Ω 1 lower bounds for 2-tape machines

[Maass Schorr 87,       𝑛𝑛1+Ω 1 lower bounds for 2-tape machines
van Melkebeek but input tape read-only
Raz, Williams]

Question [V, Lipton, …]: What if the machine is randomized?

0 0 1 1 0 1 ...



Turing machines

• [V 2019]              𝑛𝑛1+Ω 1 lower bounds for 2-tape randomized machines
but input tape read-only

• Key step of proof:
Pseudorandom generator for 1-tape machines

• [1994 Impagliazzo Nisan Wigderson]
Weaker model: Can fill the tape with bits that look random

• Need machine can toss coins at any point.  This breaks

0 0 1 1 0 1 ...



Turing machines

• First attempt to pseudorandom generator:
bounded independence [Carter Wegman]

• Does not work

• Bounded independence and
flip each bit independently with probability 0.01         (And recurse)

• Theorem: [Haramaty Lee V, …]
Bounded independence plus noise fools small-space algorithms

• Essentially simulate Turing machine computation with small space

0 0 1 1 0 1 ...





Thanks!
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