

Local Reductions

September 2014

Emanuele Viola

Northeastern University

Papers:

Local Reductions
with Hamid Jahanjou and Eric Miles

Succinct and explicit circuits for sorting and connectivity
With Hamid Jahanjou and Eric Miles

Short PCPs with projection queries
With Eli Ben-Sasson

Theorem [Cook, Levin]: 3SAT is NP-complete

Theorem [Cook, Levin]: 3SAT is NP-complete

 ∀M NTIME(t) reduction R : x∈ ∃ ∀

 R(x) = φ 3SAT ↔ M(x) = 1∈
 R runs in time poly(t) (t = poly(n), t = 2n etc.)

Applications require to optimize (by themselves or both)

- | φ |

- “Complexity” of R

● Optimizing | φ | (70s - 80s)
[…, Pippenger Fischer, Gurevich Shelah,...]

| φ | = t logO(1) t

● Optimizing complexity of R.

If reduction has resources polynomial in t,
it is almost trivial

Our focus: resources << t

Clause-explicit R

R(i,x) = i-th clause of φ , e.g. (y15 V ¬ y7 V ¬ y8)

|i| = log | φ |

We will ignore x and focus on the map as a function of i,
though dealing with x is not easy.

Why care about explicitness?

Explicit R

● Succint-sat NEXP complete
 t = 2n , | φ | = poly(t), R(i) run in time poly(|i|)

● Lower bounds for SAT
[Van Melkebeek, Fortnow, Lipton, Vigas]
t = poly(n), | φ | = t logO(1) t, R(i) in time poly(|i|), space O|i|

● Williams lower bounds from SAT/derandomization
Lower bound against C (e.g., C = ACC0), can use
 t = 2n , | φ | = t logO(1) t, R(i) computable by C

Explicit R

| φ | = poly(t), R AC∈ 0

[Arora Steurer Wigderson] (or folklore)

| φ | = t logO(1) t, R ∈NC1
[Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan] (2005)

Note: Williams ACC0 lower bound uses workaround due to
 absence of more efficient reductions.

 More efficient reductions “hard (perhaps impossible)”

Consequent drawbacks to be discussed shortly

Theorem [Jahanjou Miles V.]
Reduce NTIME(t) to 3SAT via reduction R :

● | φ | = t logO(1) t

● Each output bit of R(i) depends on O(1) bits of i.
 (A.k.a. local, NC0 , junta).

Note: R(i) = (y15 V ¬ y7 V ¬ y8)

 |y15 | = log t = |i| bits; each bit depends on O(1) bits of i.

Note: Local R cannot even compute i → i+1

Outline

Intro

Consequences of local reductions

Proof of local reductions

PCP reductions

Warm-up consequence:

SUCCINCT-3SAT, SUCCINCT-3COLOR, etc. remain
NEXP complete even on instances represented by NC0
circuits

Slightly better ACC0 lower bound

Consequence: Tighther connection between
SAT algorithms and lower bounds

NOTE: “lower bound” throughout means for f NEXP or E∈ NP

[W] gives lower bounds against size s, depth d from SAT
algorithm for size sc , depth c d

We only require SAT algorithm for size c s, depth d + c.

This (and refinements) gives several new connections for
classes of interest:

For each, new lower bound from SAT algorithm.

● Linear-size circuits

● Linear-size log-depth circuits [Valiant 1977]

● Linear-size series-parallel circuits [Valiant 1977]

● Quasi-polynomial SYM-AND circuits

 These can be related to assumptions about kSAT

● [W] Exponential-time hypothesis [Impagliazzo Paturi] false

 => linear-size circuits lower bound

Our proof from previous result: Apply Cook-Levin. 

● [JMV] Strong Exponential-time hypothesis false

 => linear-size series-parallel circuits lower bound

● [JMV] nc - SAT in time 2n - ω n/log log n
 => linear-size log-depth circuits lower bound

Some tighther results [Ben-Sasson V., JMV]

● Unbounded-depth circuits:
 Lower bound for depth d <= SAT for depth d+1.

● Recall for general circuits a 3n lower bound is unknown.

 3n lower bound from 3SAT in TIME(1.07)n

 non-boolean 3n lower bound from 3SAT in TIME(1.10)n

 Record: TIME(1.34)n

Do we simplify the proof [W] that NEXP is not in ACC0 ?

● Recall that [W] uses as black-box previous reductions

● If instead use as black-box ours, the proof is more direct.

● In fact, for this application it suffices R AC∈ 0
 Much easier to establish.

Independently, Kowalski and Van Melkebeek proved R AC∈ 0

Outline

Intro

Consequences of local reductions

Proof of local reductions

PCP reductions

Background

We reduce NTIME(t) to CIRCUIT-SAT C :
 (1) | C | = t logO(1) t

 (2) Given index i to gate, R(i) outputs type, and children
with constant locality

Pippenger Fischer oblivious simulation gives (1), but (2) hard

Use alternative [Van Melkebeek], based on sorting networks
(The idea of sorting is from Gurevich Shelah)

Strangely little known!?

Rediscovered by “mini-poly-math” class project at NEU

AND

AND

That's why
sorting matters!

Sorting network.

This can be done quite efficiently, but O(1) locality unknown
[Separate write-up, all that you need for AC0 reduction]

For constant locality, we instead use routing networks,
as in PCP literature since Polischuck and Spielman

With De Buijin graphs, computation very simple:
children of i are

 i XOR CONSTANT

 (i rotated) XOR constant

Check circuits:

Easy to obtain R running in linear space (= log |C| space).

Theorem [JMV] For every C with linear-space R
there is equivalent C', | C' | = poly |C|, with local R

Technique [Ruzzo]
New gates of C' are configurations of linear-space R.

But Ruzzo does not aim or prove constant locality.

Obtaining that is not trivial, as you can't check if a
configuration is valid.

Problem: Given index to i-th configuration, need to compute
index to (i+1) configuration

Recall you cannot even compute i → i+1

Problem: Given index to i-th configuration, need to compute
index to (i+1) configuration

Solution: Use routing networks in a different way.
Instead of output of network being sorted order, it will be
“successor” function.

Config2 Config3 Config1

Routing

Config1 Config2 ConfigT

Check

Outline

Intro

Consequences of local reductions

Proof of local reductions

PCP reductions

> 10-year old problem:

 MAX-3SAT in time 2n / n ω(1) ?

Equivalently, SAT of MAJ-AND3 circuits

Bottleneck for Williams' approach based on SAT algorithms.
Needed for TC0 , threshold of threshold, etc.

Note: This is for size n3 , much of what we saw earlier was
for size O(n).

Derandomization comes to rescue.

MAJ-AND3 and some other classes, can be derandomized.

This suffices for lower bounds [W], using PCP reductions.

Same considerations made earlier about Cook-Levin:

 1) more efficient reduction => tighter connection

 2) [W, Santhanam W] need workaround due to
 INefficiency of reductions.

● [Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan]
Explicit PCP with t logO(1) t constraints, many queries

● [Mie] Improves queries to O(1).

Theorem: [Ben-Sasson V.]
 Variant of [BGHSV] PCP:
 given index to constraint, variables (a.k.a. queries) are
projections.
 Postprocess is a CNF [easy]

Note: Projection queries were used in concurrent [W] lower
bound for AC0 SYM from #SAT. By above enough to
derandomize (or SAT)

Consequence:

Derandomizing (unbounded fan-in) depth d+2 circuits

 lower bound for depth d

Example: depth-2 threshold lower bound still open.

Question:

Improve number of queries to O(1), matching [Mie]

How efficient PCP reductions? Constant locality?

