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Theorem [Cook, Levin]: 3SAT is NP-complete



Theorem [Cook, Levin]: 3SAT is NP-complete

V M &€ NTIME(t) d reduction R : V x

R(x) = ¢ € 3SAT « M(x) =1

R runs in time poly(t) (t = poly(n), t = 2" etc.)

Applications require to optimize (by themselves or both)
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- “Complexity” of R



e Optimizing | @ | (70s - 80s)
[..., Pippenger Fischer, Gurevich Shelah,...]

@ | =tlog®PMt

e Optimizing complexity of R.

If reduction has resources polynomial in t,
it is almost trivial

Our focus: resources <<t



Clause-explicit R

R(i,x) = i-th clause of ¢ , e.9. (Y45V 7y; V7yg)

il =log | ¢ |

We will ignore x and focus on the map as a function of |,
though dealing with x is not easy.

Why care about explicitness?



Explicit R

e Succint-sat NEXP complete
t=2" || |=poly(t), R(i) runin time poly(]i|)

e Lower bounds for SAT
[Van Melkebeek, Fortnow, Lipton, Vigas]

t = poly(n), | @ |=1tlog®Mt, R()in time poly(]i|), space Oli

e Williams lower bounds from SAT/derandomization
Lower bound against C (e.g., C = ACC?), can use
t=2", |@|=tlog®°Mt, R(i) computable by C



Explicit R

| @ | = poly(t), R € ACY
[Arora Steurer Wigderson] (or folklore)

|| =tlog®Mt R e NC’
[Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan] (2005)

Note: Williams ACCP lower bound uses workaround due to
absence of more efficient reductions.

More efficient reductions “hard (perhaps impossible)”

Consequent drawbacks to be discussed shortly



Theorem [Jahanjou Miles V.]
Reduce NTIME(t) to 3SAT via reduction R :

o |@|=tlogPMt

e Each output bit of R(i) depends on O(1) bits of .
(A.k.a. local, NC? | junta).

Note: R(i)=(y4sV 7y; V7yg)
ly45 | = log t = |i| bits; each bit depends on O(1) bits of i.

Note: Local R cannot even compute | — i+1
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Warm-up consequence:

SUCCINCT-3SAT, SUCCINCT-3COLOR, etc. remain

NEXP complete even on instances represented by NC°
circuits

Slightly better ACC® lower bound



Consequence: Tighther connection between
SAT algorithms and lower bounds

NOTE: “lower bound” throughout means for f € NEXP or ENP

[W] gives lower bounds against size s, depth d from SAT
algorithm for size s, depth c d

We only require SAT algorithm for size ¢ s, depth d + c.

This (and refinements) gives several new connections for
classes of interest:



For each, new lower bound from SAT algorithm.

e Linear-size circuits

e Linear-size log-depth circuits [Valiant 1977]

e Linear-size series-parallel circuits [Valiant 1977]

e Quasi-polynomial SYM-AND circuits

These can be related to assumptions about kKSAT



e [W] Exponential-time hypothesis [Impagliazzo Paturi] false

=> |inear-size circuits lower bound
Our proof from previous result: Apply Cook-Levin. i

e [JMV] Strong Exponential-time hypothesis false

=> |inear-size series-parallel circuits lower bound

e [JMV] n® - SAT in time 2" - w n/log log n
=> |inear-size log-depth circuits lower bound



Some tighther results [Ben-Sasson V., JMV]

e Unbounded-depth circuits:
Lower bound for depth d <= SAT for depth d+1.

e Recall for general circuits a 3n lower bound is unknown.
3n lower bound from 3SAT in TIME(1.07)"

non-boolean 3n lower bound from 3SAT in TIME(1.10)"

Record: TIME(1.34)"



Do we simplify the proof [W] that NEXP is not in ACCY ?
e Recall that [W] uses as black-box previous reductions

e If instead use as black-box ours, the proof is more direct.

e In fact, for this application it suffices R € ACY
Much easier to establish.

Independently, Kowalski and Van Melkebeek proved R € ACP
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Background

We reduce NTIME(t) to CIRCUIT-SAT C :
(1) | C|=tlog®Mt

(2) Given index i to gate, R(i) outputs type, and children
with constant locality
Pippenger Fischer oblivious simulation gives (1), but (2) hard
Use alternative [Van Melkebeek], based on sorting networks
(The idea of sorting is from Gurevich Shelah)
Strangely little known!?

Rediscovered by “mini-poly-math” class project at NEU
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That's why
sorting matters!

= size NI ). The checking circuits have size
¢ (\T). kisaconstant. Hence overall circuit has




Sorting network.

This can be done quite efficiently, but O(1) locality unknown
[Separate write-up, all that you need for AC® reduction]

For constant locality, we instead use routing networks,
as in PCP literature since Polischuck and Spielman

With De Buijin graphs, computation very simple:
children of i are

| XOR CONSTANT

(i rotated) XOR constant



Check circuits:
Easy to obtain R running in linear space (= log |C| space).
Theorem [UJMV] For every C with linear-space R
there is equivalent C', | C' | = poly |C]|, with local R
Technique [Ruzzo]

New gates of C' are configurations of linear-space R.

But Ruzzo does not aim or prove constant locality.

Obtaining that is not trivial, as you can't check if a
configuration is valid.



Problem: Given index to i-th configuration, need to compute
index to (i+1) configuration

check flam conants check fom, onteos

check famy coments

‘;} st by Rorny hesd position \

Recall you cannot even compute | — i+1



Problem: Given index to i-th configuration, need to compute
index to (i+1) configuration

Solution: Use routing networks in a different way.

Instead of output of network being sorted order, it will be
“successor” function.

Coa] -

Routing

o) O ([
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> 10-year old problem:

MAX-3SAT in time 2" / n w(1)

Equivalently, SAT of MAJ-AND; circulits

Bottleneck for Williams' approach based on SAT algorithms.
Needed for TCP , threshold of threshold, etc.

Note: This is for size n3 . much of what we saw earlier was
for size O(n).



Derandomization comes to rescue.

MAJ-AND3 and some other classes, can be derandomized.

This suffices for lower bounds [W], using PCP reductions.

Same considerations made earlier about Cook-Levin:
1) more efficient reduction => tighter connection

2) [W, Santhanam W] need workaround due to
INefficiency of reductions.



e [Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan]
Explicit PCP with t log®(!) t constraints, many queries

e [Mie] Improves queries to O(1).

Theorem: [Ben-Sasson V]

Variant of [BGHSV] PCP:

given index to constraint, variables (a.k.a. queries) are
projections.

Postprocess is a CNF [easy]

Note: Projection queries were used in concurrent [W] lower

bound for AC® SYM from #SAT. By above enough to
derandomize (or SAT)



Consequence:

Derandomizing (unbounded fan-in) depth d+2 circuits

8

lower bound for depth d

Example: depth-2 threshold lower bound still open.



Question:
Improve number of queries to O(1), matching [Mie]

How efficient PCP reductions? Constant locality?



