Lower Bounds

Emanuele Viola

Columbia University

February 2008

Computation

- Efficient computation is fundamental to Science

Increasingly important to many fields
biology

physics

economics \square

- Goal: understand efficient computation

Lower Bounds

- Goal: Show that natural problems cannot be solved with limited resources (e.g., time, memory,...)
E.g.: Cannot factor n-digit number in time n^{2}
- Fundamental enterprise, basis of cryptography
- Widespread belief: very challenging area
- This talk: Lower bounds for various resources surprising connections

Communication complexity [Yao, Chandra Furst Lipton '83]

- Task: Compute function $f:$ input $\rightarrow\{0,1\}$
- Input distributed among collaborating players

- Cost = how many bits players must broadcast
- E.g.: For 2 players computing " $x=$? y " costs $\Theta(|x|)$

Application: CHIP design [..., Lipton Sedgewick '81]

- Task: Design CHIP for $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ Side length measure: wire width

Wires carry 1 bit per time step

- 2-players simulate CHIP sending |side| bits per step
- Theorem: |side| x time > 2-player cost of f

Pointer chasing

- Input: directed depth-k graph

Output: node reached from source

- k players speak in turn;i-th knows all but depth-i edges

- High cost for $\log (|g r a p h|)$ players \Rightarrow breakthrough Question[<1996]: 4 players?

Our results

[V. Wigderson; FOCS '07 special issue]

Theorem[VW] To chase a pointer in graph of depth k k players must communicate $\geq \mid$ graph $\left.\right|^{1 / k}$ bits

- Handle up to $k=\log (|g r a p h|)^{1 / 3}$
- Applications:
round hierarchy for communication multiple-pass streaming algorithms

Proof Idea

- Induction on depth = number of players
- Assume 1 chasing o \square
high cost for k players
high cost for k players
- $\Rightarrow 100$ chasings
 for most graphs
$\Rightarrow 1$ chasing
 high cost for $\mathrm{k}+1$ players New player's message won't help
Q.e.d.

Outline

- Communication complexity
- Circuit complexity
- Randomness vs. time

Circuits

- Gates:

$$
\begin{aligned}
& \wedge=\mathrm{AND} \\
& \mathrm{~V}=\mathrm{OR} \\
& \neg=\mathrm{NOT}
\end{aligned}
$$

- Resource: size = number of gates
- Poly-size constant-depth = constant parallel time
- Theorem[Yao, Beigel Tarui, Hastad Goldman] Communication lower bound (polylog players) \Rightarrow circuit lower bound
(small-depth, Mod gates)

Error correcting codes

List contains message

- Question: Complexity of encoder, decoder?

Motivation: average-case complexity

Our results: Encoding needs parity

 [V.; J. Comp. Complexity]Message 0100100

Encoder

Codeword

101101011010011010

- Parity $\oplus\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right):=1 \Leftrightarrow \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ odd sufficient for encoding (e.g., linear codes)
- Theorem[V]:

Cannot encode with small size, small depth, \neg, \vee, \wedge gates. Parity is necessary

Our results: Decoding needs majority [Shaltiel V.; STOC ‘08]

1111110
0100100
0000111

List Decoder
 111000011111001100
 Received word

- Often more involved than encoding
- Theorem[SV]:

Cannot decode with small size, small depth $\neg, \vee, \wedge, \oplus$ gates. Majority is necessary

Proof idea: Decoding needs majority

- Repetition code:

- Decoder: Majority $(101010111010101001)=1$
- Theorem[SV]: This happens in every code
- Acknowledgment: Madhu Sudan
- Main difficulty: Large lists. Use information theory.

Outline

- Communication complexity
- Circuit complexity
- Randomness vs. time

Randomness vs. Time

- Probabilistic Time: for every $x, \operatorname{Pr}[M(x)$ errs $]<1 \%$
- Deterministic simulation?

Brute force: probabilistic time $t \subseteq$ deterministic time 2^{t}
Belief: probabilistic time $\mathrm{t} \subseteq$ deterministic time $\mathrm{t}^{(1)}$

- Surprise: Belief \Leftrightarrow circuit lower bounds by Babai Fortnow Kabanets Impagliazzo Nisan Wigderson...

Our Results

[V.; SIAM J. Comp., SIAM student paper prize 2006]

- Theorem[V]: Poly(n)-size probabilistic constant-depth circuits with $\neg, v, \wedge, \log (n)$ parity gates
\subseteq Deterministic Time $\left(2^{n^{\varepsilon}}\right)$
$\left(\subset\right.$ trivial Time $\left(2^{n^{\mathrm{O}(1)}}\right)$)

- Richest probabilistic circuit class in Time $\left(2^{n}\right)$
- Proof: Lower bound \Rightarrow pseudorandom generator

Our Results

 [Bogdanov V.; FOCS '07 special issue]Output "looks random" to polynomials, e.g. $x_{1} \cdot x_{2}+x_{3}$

- Theorem[Bogdanov V.] Optimal stretch generator (I) Unconditionally: for degree 2,3
(II) Under conjecture: for any degree
- Theorem [Green Tao, Lovett Meshulam Samorodnitsky]: Conjecture false

Our latest result [V.; CCC ‘08]

- Theorem[V.]: Optimal stretch generator for any degree d.
(Despite the conjecture being false)
- Improves on [Bogdanov V.] and [Lovett]
- Also simpler proof

BPP vs. Poly-time Hierarchy

- Probabilistic Polynomial Time (BPP): for every $x, \operatorname{Pr}[M(x)$ errs $]<1 \%$
- Recall belief: $\quad B P P=P$ Still open: $\quad B P P \subseteq N P ?$
- Theorem[Sipser Gács, Lautemann '83]: $\mathrm{BPP} \subseteq \Sigma_{2} P$
- Recall $N P=\Sigma_{1} P \quad \rightarrow \quad \exists y M(x, y)$

$$
\Sigma_{2} \mathrm{P} \quad \rightarrow \quad \exists \mathrm{y} \forall \mathrm{z} \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$

The Problem We Study

- More precisely [Sipser Gács, Lautemann] give BPTime $(\mathrm{t}) \subseteq \Sigma_{2}$ Time $\left(\mathrm{t}^{2}\right)$
- Question: Is quadratic slow-down necessary?
- Motivation: Lower bounds

Know Σ_{1} Time(n) \neq Time(n) on some models
[Paul Pippenger Szemeredi Trotter, Fortnow, ...]
Technique: speed-up computation with quantifiers

For Σ_{1} Time $(\mathrm{n}) \neq$ BPTime (n) can't afford Σ_{2} Time $\left(\mathrm{t}^{2}\right)$

Approximate Majority

- Input: R = 101111011011101011
- Task: Tell $\operatorname{Pr}_{i}\left[R_{i}=1\right]>99 \%$ from $\operatorname{Pr}_{i}\left[R_{i}=1\right]<1 \%$

Do not care if $\operatorname{Pr}_{i}\left[R_{i}=1\right] \sim 50 \%$ (approximate)

- Model: Depth-3 circuit

The connection

[Furst Saxe Sipser '83]
$\mathrm{M}(\mathrm{x} ; \mathrm{r}) \in$ BPTime (t)
Compute M(x):
Tell $\operatorname{Pr}_{[}[\mathrm{M}(\mathrm{x} ; \mathrm{r})=1]>99 \%$ from $\operatorname{Pr}_{r}[\mathrm{M}(\mathrm{x} ; \mathrm{r})=1]<1 \%$

BPTime (t) $\subseteq \Sigma_{2}$ Time $\left(\mathrm{t}^{\prime}\right)$ $=\exists \forall$ Time $\left(\mathrm{t}^{\prime}\right)$

Running time $\mathbf{t}^{\mathbf{\prime}}$

- run M at most $\mathrm{t}^{\prime} / \mathrm{t}$ times
\Rightarrow Compute Appr-Maj

$$
\begin{aligned}
& R=11011011101011 \\
& |R|=2^{t}
\end{aligned} R_{i}=M(x ; i)
$$

Bottom fan-in $\mathbf{f}=\mathbf{t}^{\prime} / \mathbf{t}$

Our Results

[V.; CCC '07]

- Theorem[V]: Small depth-3 circuits for Approximate Majority on N bits have bottom fan-in $\Omega(\log N)$
- Tight [Ajtai]
- Corollary: Quadratic slow-down necessary for black-box techniques:

BPTime ${ }^{A}(t) \notin \Sigma_{2}$ Time ${ }^{A}\left(t^{1.99}\right)$

- Theorem[Diehl van Melkebeek, V]: BPTime $(\mathrm{t}) \subseteq \Sigma_{3}$ Time $\left(\mathrm{t} \cdot \log ^{5} \mathrm{t}\right)$
- For time, the level is the third

Our Negative Result

- Theorem[V]: $2^{\mathrm{N}^{\varepsilon}}$-size depth-3 circuits for Approximate Majority on N bits have bottom fan-in $f>(\log N) / 10$
- Note: $2^{\Omega(N)}$ bound \Rightarrow bound for log-depth circuits
[Valiant]
- Recall:

tells $R \in Y E S:=\left\{R: \operatorname{Pr}_{i}\left[R_{i}=1\right]>99 \%\right\}$ from $R \in N O:=\left\{R: \operatorname{Pr}_{i}\left[R_{i}=1\right]<1 \%\right\}$

Proof

- Circuit: OR of $\mathrm{S}=2^{N^{\varepsilon}} \mathrm{CNF} \quad \mathrm{C}_{1} \mathrm{C}_{2} \cdots \mathrm{C}_{\mathrm{s}}$

$$
C_{i}=(\underbrace{x_{1} \vee x_{2} \vee \neg x_{3}}_{\text {clause size }=\text { fan-in }}) \wedge\left(\neg x_{4}\right) \wedge\left(x_{5} \vee x_{3}\right)
$$

- By definition of OR :

$$
\begin{aligned}
& R \in Y E S \Rightarrow \text { some } C_{i}(R)=1 \\
& R \in N O \Rightarrow \text { all } \quad C_{i}(R)=0
\end{aligned}
$$

- By averaging, fix $\mathrm{C}=\mathrm{C}_{\mathrm{i}}$ s.t.

$$
\begin{aligned}
& \operatorname{Pr}_{R \in \mathrm{YES}}[C(x)=1] \geq 1 / \mathrm{s}=1 / 2^{N^{\varepsilon}} \\
& \forall R \in N O \quad \Rightarrow \quad C(R)=0
\end{aligned}
$$

Claim: Impossible if C has clause size < $(\log N) / 10$

Either $\operatorname{Pr}_{R \in Y E S}[C(x)=1]<1 / 2^{N^{\varepsilon}}$ or $\exists R \in N O: C(x)=1$

Proof Outline

- Definition: $\mathrm{S} \subseteq\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}\right\}$ is a covering if every clause has a variable in S
E.g.: $S=\left\{x_{3}, x_{4}\right\} \quad C=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{4}\right) \wedge\left(x_{5} \vee x_{3}\right)$
- Proof idea: Consider smallest covering S

Case |S| BIG: $\operatorname{Pr}_{R \in Y E S}[C(x)=1]<1 / 2^{N^{\varepsilon}}$
Case |S| tiny: Fix few variables and repeat

Either $\operatorname{Pr}_{R \in Y E S}[C(x)=1]<1 / 2^{N^{\varepsilon}}$ or $\exists R \in N O: C(x)=1$

Case |S| BIG

- $|S| \geq N^{\delta} \Rightarrow$ have $N^{\delta} / \log N$ disjoint clauses Γ_{i}
- Can find Γ_{i} greedily
- $\operatorname{Pr}_{R \in Y E S}[C(R)=1] \leq \operatorname{Pr}\left[\forall i, \Gamma_{i}(R)=1\right]$

$$
\begin{aligned}
& =\prod_{i} \operatorname{Pr}\left[\Gamma_{i}(R)=1\right] \quad \text { (independence) } \\
& \leq \prod_{i}\left(1-1 / 100^{(\log N) / 10}\right) \leq \prod_{i}\left(1-1 / N^{1 / 2}\right) \\
& =\left(1-1 / N^{1 / 2}\right)^{\left(N^{\delta} / \log N\right)} \leq 1 / 2^{N^{\varepsilon}} V
\end{aligned}
$$

Either $\operatorname{Pr}_{R \in Y E S}[C(x)=1]<1 / 2^{N^{\varepsilon}}$ or $\exists R \in N O: C(x)=1$

Case |S| tiny

- $|S|<\mathrm{N}^{\delta} \Rightarrow$ Fix variables in S
- Maximize $\operatorname{Pr}_{\mathrm{R} \in \mathrm{YES}}[\mathrm{C}(\mathrm{x})=1]$
- Note: S covering \Rightarrow clauses shrink

Example
$\left.\left(\mathrm{x}_{1} \vee \mathrm{x}_{2} \vee \mathrm{x}_{3}\right) \wedge\left(\neg \mathrm{x}_{3}\right) \wedge\left(\mathrm{x}_{5} \vee \neg \mathrm{x}_{4}\right) \quad \begin{array}{l}\mathrm{x}_{3} \leftarrow 0 \\ \mathrm{x}_{4} \leftarrow 1\end{array}\right\rangle\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left(\mathrm{x}_{5}\right)$

- Repeat

Consider smallest covering S', etc.

Either $\operatorname{Pr}_{R \in Y E S}[C(x)=1]<1 / 2^{N^{\varepsilon}}$ or $\exists R \in N O: C(x)=1$

Finish up

- Recall: Repeat \Rightarrow shrink clauses So repeat at most $(\log \mathrm{N}) / 10$ times
- When you stop:

Either smallest covering size $>\mathrm{N}^{\delta}$
Or C = 1
Fixed $\leq N^{\delta}(\log N) / 10 \ll N$ vars.
Set rest to $0 \Rightarrow R \in N O: C(R)=1$

Conclusion

- Lower bounds: rich area, surprising connections
- Communication complexity, pointer chasing
- Circuit complexity, encoding vs. decoding

- Time vs. Randomness

Constant-depth circuits, polynomials
BPP vs. poly-time hierarchy
[V]
Circuit lower bound for approximate majority

