Lower Bounds

Emanuele Viola

Columbia University

February 2008

Computation

• Efficient computation is fundamental to Science

Increasingly important to many fields

Goal: understand efficient computation

Lower Bounds

• Goal: Show that natural problems cannot be solved with limited resources (e.g., time, memory,...)

E.g.: Cannot factor n-digit number in time n²

- Fundamental enterprise, basis of cryptography
- Widespread belief: very challenging area
- This talk: Lower bounds for various resources
 surprising connections

Communication complexity [Yao, Chandra Furst Lipton '83]

• Task: Compute function f :

: input
$$\rightarrow \{0,1\}$$

010

(i)np(u)t

 Input distributed among collaborating players

E.g.: For 2 players computing "x =? y" costs Θ(|x|)

Application: CHIP design [..., Lipton Sedgewick '81]

• Task: Design CHIP for $f : \{0,1\}^n \rightarrow \{0,1\}$

- 2-players simulate CHIP sending side bits per step
- Theorem: |side| x time > 2-player cost of f

Pointer chasing

Input: directed depth-k graph
 Output: node reached from source O'

- k players speak in turn; i-th knows all but depth-i edges
 Player 1: O
 Player 2: O
- High cost for log(|graph|) players ⇒ breakthrough Question[<1996]: 4 players?

Our results [V. Wigderson; FOCS '07 special issue]

- Theorem[VW] To chase a pointer in graph of depth k k players must communicate ≥ |graph|^{1/k} bits
 - Handle up to $k = log(|graph|)^{1/3}$
- Applications: round hierarchy for communication multiple-pass streaming algorithms

Proof Idea

- Induction on depth = number of players
- Assume 1 chasing or

• \Rightarrow 100 chasings

high cost for k players

high cost for k players for most graphs

• \Rightarrow 1 chasing

high cost for k+1 players New player's message won't help

Q.e.d.

Outline

- Communication complexity
- Circuit complexity
- Randomness vs. time

- Resource: size = number of gates
- Poly-size constant-depth = constant parallel time
- Theorem[Yao, Beigel Tarui, Hastad Goldman]
 Communication lower bound (polylog players) ⇒ circuit lower bound (small-depth, Mod gates)

Error correcting codes

List contains message

Question: Complexity of encoder, decoder?
 Motivation: average-case complexity

Our results: Encoding needs parity [V.; J. Comp. Complexity]

- Parity $\oplus(x_1,...,x_n) := 1 \Leftrightarrow \sum_i x_i \text{ odd}$ sufficient for encoding (e.g., linear codes)
- Theorem[V]:

Cannot encode with small size, small depth, \neg , \lor , \land gates. Parity is necessary

Our results: Decoding needs majority [Shaltiel V.; STOC '08]

Often more involved than encoding

 Theorem[SV]: Cannot decode with small size, small depth ¬, ∨, ∧, ⊕ gates. Majority is necessary

Proof idea: Decoding needs majority

• Repetition code:

- Decoder: Majority(1010101010101001) = 1
- Theorem[SV]: This happens in every code
 - Acknowledgment: Madhu Sudan
- Main difficulty: Large lists. Use information theory.

Outline

- Communication complexity
- Circuit complexity
- Randomness vs. time

Randomness vs. Time

- Probabilistic Time: for every x, Pr [M(x) errs] < 1%
- Deterministic simulation?

Brute force: probabilistic time t \subseteq deterministic time 2^t

Belief: probabilistic time t \subseteq deterministic time t^{O(1)}

Surprise: Belief ⇔ circuit lower bounds
 by Babai Fortnow Kabanets Impagliazzo Nisan Wigderson...

Our Results

[V.; SIAM J. Comp., SIAM student paper prize 2006]

 Theorem[V]: Poly(n)-size probabilistic constant-depth circuits with ¬, ∨, ∧, log(n) parity gates

 \subseteq Deterministic Time(2^{n^ε}) (\subset trivial Time(2^{n^{O(1)}}))

- Richest probabilistic circuit class in Time(2^{n^ε})
- Proof: Lower bound \Rightarrow pseudorandom generator

Our Results [Bogdanov V.; FOCS '07 special issue]

Output "looks random" to polynomials, e.g. $x_1 \cdot x_2 + x_3$

- Theorem[Bogdanov V.] Optimal stretch generator
 (I) Unconditionally: for degree 2,3
 (II) Under conjecture: for any degree
- Theorem [Green Tao, Lovett Meshulam Samorodnitsky]: Conjecture false

Our latest result [V.; CCC '08]

 Theorem[V.]: Optimal stretch generator for any degree d.

(Despite the conjecture being false)

- Improves on [Bogdanov ∨.] and [Lovett]
- Also simpler proof

BPP vs. Poly-time Hierarchy

- Probabilistic Polynomial Time (BPP):
 for every x, Pr [M(x) errs] < 1%
- Recall belief: BPP = PStill open: $BPP \subseteq NP$?
- Theorem[Sipser Gács, Lautemann '83]: BPP $\subseteq \Sigma_2 P$
- Recall $NP = \Sigma_1 P \rightarrow \exists y M(x,y)$ $\Sigma_2 P \rightarrow \exists y \forall z M(x,y,z)$

The Problem We Study

- More precisely [Sipser Gács, Lautemann] give BPTime(t) $\subseteq \Sigma_2$ Time(t²)
- Question: Is quadratic slow-down necessary?
- Motivation: Lower bounds
 Know Σ₁Time(n) ≠ Time(n) on some models
 [Paul Pippenger Szemeredi Trotter, Fortnow, ...]
 Technique: speed-up computation with quantifiers

For Σ_1 Time(n) \neq BPTime(n) can't afford Σ_2 Time(t²)

Approximate Majority

- Input: R = 101111011011101011
- Task: Tell $Pr_i[R_i = 1] > 99\%$ from $Pr_i[R_i = 1] < 1\%$ Do not care if $Pr_i[R_i = 1] \sim 50\%$ (approximate)

The connection [Furst Saxe Sipser '83]

 $M(x;r) \in BPTime(t)$

Compute M(x): Tell $Pr_r[M(x;r) = 1] > 99\%$ from $Pr_r[M(x;r) = 1] < 1\%$

 $\begin{array}{l} \mathsf{BPTime}(\mathsf{t}) \subseteq \Sigma_2 \mathsf{Time}(\mathsf{t}') \\ = \exists \forall \mathsf{Time}(\mathsf{t}') \end{array}$

R = 11011011101011 |R| = 2^t R_i = M(x;i)

Compute Appr-Maj

Running time t'

Bottom fan-in f = t' / t

- run M at most t'/t times

Our Results [V.; CCC '07]

- Theorem[V]: Small depth-3 circuits for Approximate Majority on N bits have bottom fan-in Ω(log N)
 – Tight [Ajtai]
- Corollary: Quadratic slow-down necessary for black-box techniques: BPTime A (t) $\searrow \Sigma_2$ Time A (t^{1.99})
- Theorem[Diehl van Melkebeek, V]: BPTime (t) ⊆ Σ₃Time (t·log⁵ t)
- For time, the level is the third

Our Negative Result

- Theorem[V]: 2^{N^ε}-size depth-3 circuits for Approximate Majority on N bits have bottom fan-in f > (log N)/10
- Note: $2^{\Omega(N)}$ bound \Rightarrow bound for log-depth circuits

[Valiant]

 $\begin{array}{l} \text{tells } R \in YES \mathrel{\mathop:}= \left\{ \; R : \Pr_i [\; R_i = 1] > 99\% \; \right\} \\ \text{from } R \in NO \; \mathrel{\mathop:}= \left\{ \; R : \Pr_i [\; R_i = 1] < 1\% \; \right\} \end{array}$

Proof

- Circuit: OR of s=2^{N^ε} CNF $C_1 C_2 \cdots C_s C_i = (x_1 V x_2 V \neg x_3) \land (\neg x_4) \land (x_5 V x_3)$ clause size = fan-in
- $\begin{array}{ll} \bullet & \text{By definition of OR}: \\ & R \in \ YES \Rightarrow \text{some } C_i \ (R) = 1 \\ & R \in \ NO \ \Rightarrow \text{all} \quad C_i \ (R) = 0 \end{array}$
- By averaging, fix $C = C_i s.t.$ $\begin{array}{l} \mathsf{Pr}_{\mathsf{R} \in \; \mathsf{YES}}\left[C\left(x\right) = 1 \;\right] \geq 1/s = 1/2^{\mathsf{N}^{\epsilon}} \\ \forall \; \mathsf{R} \in \; \mathsf{NO} \quad \Rightarrow \quad C\left(\mathsf{R}\right) = 0 \end{array}$
- Claim: Impossible if C has clause size < (log N)/10

Either $Pr_{R \in YES} [C(x)=1] < 1/2^{N^{\epsilon}} \text{ or } \exists R \in NO : C(x) = 1$

Proof Outline

• Definition: $S \subseteq \{x_1, x_2, ..., x_N\}$ is a covering if every clause has a variable in S

E.g.:
$$S = \{x_3, x_4\}$$
 $C = (x_1Vx_2V \neg x_3) \land (\neg x_4) \land (x_5Vx_3)$

• Proof idea: Consider smallest covering S

Case |S| BIG : $Pr_{R \in YES} [C (x) = 1] < 1 / 2^{N^{\epsilon}}$

Case |S| tiny : Fix few variables and repeat

Either $Pr_{R \in YES} [C(x)=1] < 1/2^{N^{\epsilon}} \text{ or } \exists R \in NO : C(x) = 1$

Case |S| BIG

- $|S| \ge N^{\delta} \Rightarrow$ have $N^{\delta} / \log N$ disjoint clauses Γ_i – Can find Γ_i greedily
- $\Pr_{R \in YES} \left[C(R) = 1 \right] \leq \Pr\left[\forall i, \Gamma_i(R) = 1 \right]$ = $\prod_i \Pr[\Gamma_i(R) = 1]$ (independence)
 - $\leq \prod_{i} (1 1/100^{(\log N)/10}) \leq \prod_{i} (1 1/N^{1/2})$
 - $= (1 1/N^{1/2})^{(N^{\delta/\log N})} \le 1/2^{N^{\epsilon}}$

Either $Pr_{R \in YES} [C(x)=1] < 1/2^{N^{\epsilon}}$ or $\exists R \in NO : C(x) = 1$

Case |S| tiny

- $|S| < N^{\delta} \implies Fix variables in S$ - Maximize $Pr_{R \in YES} [C(x)=1]$
- Note: S covering \Rightarrow clauses shrink

Example

$$(x_1Vx_2Vx_3) \land (\neg x_3) \land (x_5V \neg x_4)$$

$$\begin{array}{c} x_3 \leftarrow 0 \\ x_4 \leftarrow 1 \end{array} \land (x_1Vx_2) \land (x_5) \end{array}$$

 Repeat Consider smallest covering S', etc.

Either $Pr_{R \in YES} [C(x)=1] < 1/2^{N^{\epsilon}} \text{ or } \exists R \in NO : C(x) = 1$

Finish up

- Recall: Repeat \Rightarrow shrink clauses So repeat at most (log N)/10 times
- When you stop: Either smallest covering size > N^{δ} \checkmark Or C = 1 Fixed \leq N^{δ} (log N) /10 << N vars. Set rest to 0 \Rightarrow R \in NO : C(R) = 1 \checkmark

Conclusion

- Lower bounds: rich area, surprising connections
- Communication complexity, pointer chasing [VW]
- Circuit complexity, encoding vs. decoding
 [V,SV]
- Time vs. Randomness

Constant-depth circuits, polynomials [V,BV,V] BPP vs. poly-time hierarchy [V] Circuit lower bound for approximate majority