Extractors for Turing-machine sources

Random 2012

Emanuele Viola

Northeastern University

Turing-machine source

- One-tape machines, initialized to blank (all-zero)
- "Coin-toss" state: writes random bit

When computation is over, first n bits on tape are sample

This work: extractors

• Theorem: From Turing-machine n-bit source running in time ≤ n^{1.9} and with min-entropy k ≥ n^{0.9}:

Extract $n^{\Omega(1)}$ bits, $exp(-n^{\Omega(1)})$ close to uniform

• Matches $\Omega(n^2)$ time lower bound standing since 1960s

This work: sampling lower bound

Theorem Turing-machine running in time ≤ n^{1.9} cannot sample (X, Y, InnerProduct(X,Y))
 for |X| = |Y| = n

Outline of talk

Overview of results

Proof of main theorem

The complexity of distributions

This work: extractors

• Theorem: From Turing-machine n-bit source running in time ≤ n^{1.9} and with min-entropy k ≥ n^{0.9}:

Extract $n^{\Omega(1)}$ bits, $exp(-n^{\Omega(1)})$ close to uniform

- Proof idea:
 - 1) Simulate source by one-way, low-memory source
 - 2) Use extractors [Kamp Rao Vadhan Zuckerman] [Chor Goldreich]

Simulate Turing-machine in one-way fashion

- Variant of crossing-sequences [Hennie]
- Sample one column at the time, one-way
- Few crossings ⇒ short description (little memory)

- Sample first column
- 3 crossings, too many, keep sampling

- Sample first two columns
- Only one crossing ⇒ all you need to store to continue
- Output first two bits, forget the rest, and continue

- Sample next column
- Only one crossing ⇒ all you need to store to continue
- Output next bit, forget the rest, and continue

- Sample next column
- 3 crossings, too many, keep sampling

- Sample next two columns
- Only one crossing ⇒ all you need to store to continue
- Output next two bits, forget the rest, and continue

- Sample last column
- Output last bit

Crossing sequences

For simulating Turing machine with little memory

Classical E.g., is x palindrome?	Sampling
Error	No error
2 blocks generally enough	Useful to have more blocks

Outline of talk

Overview of results

Proof of main theorem

The complexity of distributions

Objects of study

Classical: Efficient Computation

f: INPUT → OUTPUT

Alternative: Efficient Sampling

f: RANDOM BITS → OUTPUT DISTRIBUTION

Sampling literature

Generate Random Factored Numbers [Bach '85, Kalai]

 Random Generation of Combinatorial Structures from a Uniform Distribution [Jerrum Valiant Vazirani '86]

 The Quantum Communication Complexity of Sampling [Ambainis Schulman Ta-Shma Vazirani Wigderson '98]

On the Implementation of Huge Random Objects
 [Goldreich Goldwasser Nussboim '03]

Recent papers revisit sampling

First sampling lower bounds for restricted models, e.g. AC⁰

```
    New connections to:
        succinct data structures,
        combinatorics,
        and extractors tigthening [Trevisan Vadhan '00]
```

```
    [V. '09]
    [Lovett V.]
    [De Watson] [V.]
    [Beck Impagliazzo Lovett]

Mostly circuit models
```

This work: Turing machines