The complexity of distributions

Emanuele Viola

Northeastern University

October 2010

Local functions (NC⁰)

f: {0,1}ⁿ → {0,1} d-local:
 output depends on d input bits

• Fact: Parity(x) = $1 \Leftrightarrow \sum x_i = 1 \mod 2$ is not n-1 local

Proof: Flip any input bit ⇒ output flips ◆

Local generation of (Y, parity(Y))

Theorem [Babai ; Boppana Lagarias '87]

There is $f: \{0,1\}^n \to \{0,1\}^{n+1}$, each bit 2-local Distribution $f(X) \equiv (Y, parity(Y))$ $(X, Y \in \{0,1\}^n uniform)$

Our message

Complexity theory of distributions (as opposed to functions)

How hard is it to generate (a.k.a. sample)

distribution D given random bits?

E.g., D = (Y, parity(Y)), D = W_k := uniform n-bit with k 1's

 AC^0

DNF

local

Rest of talk

Generating W_k := uniform n-bit with k 1's

Local (NC⁰)

Decision tree

• Results for (Y, b(Y))

Proof of local lower bound for W_{n/2}

Our results: local

Theorem

- Tight up to $\Omega()$: f(x) = x
- Extends to W_k, k≠n/2, tight?

Our results: succinct data structures

Problem:

Store k-subset $S \subseteq \{1, 2, ..., n\}$ in u = optimal + r bits,answer " $i \in S$?" probing d bits.

Connection:

Solution \Rightarrow generate $W_{|S|=k}$ d-local, Stat. Distance < 1 - 2^{-r}

• Corollary: Need $r > \Omega(\log n)$ if $d = 0.1 \log n$ First lower bound for |S| = n/2, n/4, ...

Decision tree model

 $f_i(b_1 b_m)$ • $f: \{0,1\}^m \to \{0,1\}^n$ depth d each output bit fi is depth-d decision tree

Depth d ⊆ 2^d local

Our results: decision trees

• Theorem $f: \{0,1\}^* \rightarrow \{0,1\}^n$ depth < 0.1 log n \Rightarrow Distance(f(X), $W_{n/2}$) > 1/n

• Worse than 1 - $n^{-\Omega(1)}$ lower bound for local

Fact building on [Czumaj Kanarek Lorys Kutyłowski]
 ∃ f : depth O(log n) and Distance(f(X), W_{n/2}) < 1/n

Rest of talk

Generating W_k := uniform n-bit with k 1's

Local (NC⁰)

Decision tree

Results for (Y, b(Y))

Proof of local lower bound for W_{n/2}

Our results for (Y, b(Y))

• Theorem: $f: \{0,1\}^n \rightarrow \{0,1\}^{n+1}$ 0.1 log n-local \Rightarrow Distance(f(X), (Y, Y mod p > p/2)) > 0.490.1 log n-depth \Rightarrow Distance(f(X), (Y, majority Y)) > 1/n

- Theorem building on [Matias Vishkin, Hagerup]
 ∃ f bounded-depth circuit AC⁰:
 Distance(f(X), (Y, majority Y)) < 2⁻ⁿ
- Challenge: explicit boolean b : AC⁰ can't generate (Y, b(Y))

Rest of talk

Generating W_k := uniform n-bit with k 1's

Local (NC⁰)

Decision tree

• Results for (Y, b(Y))

Proof of local lower bound for W_{n/2}

Local lower bound

• Theorem: Let $f: \{0,1\}^n \to \{0,1\}^n$: $d=0.1 \log n$ -local. $\Rightarrow \exists T \subseteq \{0,1\}^n: |Pr[f(x)\in T] - Pr[W_{n/2}\in T]| > 1 - n^{-\Omega(1)}$

Warm-up scenarios:

•
$$f(x) = 000111$$
 Low-entropy $T := \{ 000111 \}$
 $Pr[f(x) \in T] - Pr[W_{n/2} \in T] = 1 - |T| / (n choose n/2) |$

• f(x) = x "Anti-concentration" $T := \{ z : \sum_i z_i \neq n/2 \}$ $\left| Pr[f(x) \in T] - Pr[W_{n/2} \in T] \right| = \left| 1 - \Theta(1) / \sqrt{n} - 0 \right|$

Proof

• Input $X = (X_1, X_2, ..., X_s, H)$

- Fix H. Output block B_i depends only on bit X_i
 - Many B_i constant (B_i(0,H) = B_i(1,H)) ⇒ low-entropy
 - Many B_i depend on X_i (B_i(0,H) ≠ B_i(1,H))
 Idea: Independent ⇒ anti-concentration: sum ≠ n/2 w.h.p.

If many weight(B_i(0,H)) ≠ weight(B_i(1,H)), use

Anti-concentration Lemma [Littlewood Offord]

For
$$a_1, a_2, ..., a_s \neq 0$$
, any c, $\Pr_{X \in \{0,1\}^S} \left[\sum_i a_i X_i = c \right] < 1/\sqrt{n}$

- Problem: $B_i(0,H) = 100$, $B_i(1,H) = 010$ high entropy but no anti-concentration
- Fix: want many blocks 000 : high entropy ⇒ different weight

Conclusion

Complexity of distributions = uncharted territory

- Lower bounds for W_k := uniform n-bit with k 1's
 - Local ⇒ lower bound for storing sets efficiently
 - Decision tree

Lower bounds for (Y, b(Y)), e.g. (Y, majority Y)

Rest of talk

Generating W_k := uniform n-bit with k 1's

Local (NC⁰)

Decision tree

Results for (Y, b(Y))

Proof of local lower bound for W_{n/2}

Our results: decision trees

- Theorem $f: \{0,1\}^* \rightarrow \{0,1\}^n$ depth < 0.1 log n \Rightarrow Distance(f(X), $W_{n/2}$) > 1/n
 - Proof: Is f(X) 4-wise independent?

YES: [Paley Zygmund] $\sum f(x)_i$ anti-concentrated, \neq n/2 w.h.p.

NO: Let Q := biased 4 bits of f(X)

Distance (f(X) $|_{Q}$, W_{n/2} $|_{Q} \approx uniform$) > 2⁻⁴ (0.1 log n)

by granularity of decision-tree probability

• Test $T \subseteq \{0,1\}^n$: $\Pr[f(X_1,...,X_s,H) \in T] \approx 1$; $\Pr[W_{n/2} \in T] \approx 0$

$$z \in T \Leftrightarrow$$

 \exists H : \exists X₁,...,X_s w/ many blocks B_i fixed : $f(X_1,...,X_s,H) = z$ OR

Few blocks $z|_{B_i}$ are 000

OR

$$\sum_{i} z_{i} \neq n/2$$

Rest of this talk

Connection with succinct data structures

• Lower bound for locally generating $W_{n/2} = n$ -bit with n/2 1's

Decision tree model

Bounded-depth circuit model

Tool for lower bound proof

Central limit theorem:

$$\mathbf{x_{_1}}$$
, $\mathbf{x_{_2}}$, ..., $\mathbf{x_{_n}}$ independent $\Rightarrow \sum \mathbf{x_{_i}} \approx normal$

 Bounded-independence central limit theorem [Diakonikolas Gopalan Jaiswal Servedio V.]

$$x_1, x_2, ..., x_n \text{ k-wise independent} \Rightarrow \sum x_i \approx \text{normal}$$

Note: For next result, Paley—Zygmund inequality enough

Proof

• Theorem[V.] $f:\{0,1\}^* \to \{0,1\}^n:$ each bit depth < 0.1 log n Distance($f(X), W_{n/2}$)> $n^{-\Omega(1)}$

Proof: Is output distribution f(X) (k = 10)-wise independent?

NO \Rightarrow W_{n/2} \approx k-wise independent Distance(those k bits, uniform on $\{0,1\}^k$) > $2^{-k(0.1 \log n)}$ (granularity of decision tree probability)

YES \Rightarrow by prev. theorem $\sum f(X)_i \approx \text{normal}$ so often $\sum f(X)_i \neq n/2$

Rest of this talk

Connection with succinct data structures

• Lower bound for locally generating $W_{n/2} = n$ -bit with n/2 1's

Decision tree model

Bounded-depth circuit model

Lower bound for codes

• Code $C \subseteq \{0,1\}^n$ of size $|C| = 2^{k = \Omega(n)}$ $x \neq y \in C \Rightarrow x, y \text{ far : hamming distance } \Omega(n)$

• Theorem [Lovett V.] $f: \{0,1\}^* \to \{0,1\}^n$, $f \in AC^0$ Distance(f(X), uniform over C) > 1 - $n^{-\Omega(1)}$

 Consequences for data structures for codewords, complexity of pseudorand. generators against AC⁰ [Nisan]

Warm-up

- Fact: f: {0,1}^k → {0,1}ⁿ, f ∈ AC⁰
 f cannot compute encoding function of C,
 mapping message m ∈ {0,1}^k to codeword
- Proof:
- [Linial Mansour Nisan, Boppana] low sensitivity of AC⁰:
 m, m' random at hamming distance 1
 ⇒ f(m), f(m') close in hamming distance.
- But $f(m) \neq f(m') \in C \Rightarrow$ far in hamming distance

Lower bound for codes

• Theorem [Lovett V.] $f: \{0,1\}^L >> k \rightarrow \{0,1\}^n$, $f \in AC^0$ Distance(f(X), uniform over C) > 1 - $n^{-\Omega(1)}$

Problem: f needs not compute encoding function. Input length >> message length

Idea: Input {0,1}^L to f partitioned in |C| sets

Isoperimetric inequality [Harper, Hart]:
 Random m, m' at distance 1 often in ≠ sets ⇒ low sensitivity

Lower bound for codes

• Theorem [Lovett V.] $f: \{0,1\}^L >> k \rightarrow \{0,1\}^n$, $f \in AC^0$ Distance(f(X), uniform over C) > 1 - $n^{-\Omega(1)}$

Note: to get
 Need isoperimetric inequality for m, m' at distance >> 1

Fact[thanks to Samorodnitsky] \forall A \subseteq {0,1}^L of density α random m, m' obtained flipping bits w/ probability p :

$$\alpha^2 \le \text{Pr[both m} \in A \text{ and m'} \in A] \le \alpha^{1/(1-p)}$$

- $\Sigma\Pi\sqrt{\alpha}$ using the state of the state of
- $\neq \approx T\Theta\Omega\theta$

- Recall: edit style changes ALL settings.
- Click on "line" for just the one you highlight

More connections

- More uses of generating W_k := uniform n-bit string with k 1's
- McEliece cryptosystem
- Switching networks, ...

Previous results

- Store S ⊆ {1, 2, ..., n}, |S| = k, in bits, answer "i ∈ S?"
 - [Minsky Papert '69] Average-case study
 - [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh '00]
 Space O(optimal), probe O(1) when k = Θ(n)

Lower bounds for $k < n^{1-\epsilon}$

- [..., Pagh, Pătraşcu] space = optimal + o(n), probe O(log n)
- [V. '09] lower bounds for $k = \Omega(n)$, except $k = n / 2^a$

Succinct data structures for sets

• Store $S \subseteq \{1, 2, ..., n\}$ of size |S| = k

In u bits $b_1, ..., b_u \in \{0,1\}$

$$\begin{bmatrix} b_1 & b_2 & b_3 & b_4 & b_5 \end{bmatrix} \dots \begin{bmatrix} b_u \end{bmatrix}$$

Want:

Small space u (optimal = $\lceil \lg_2 (n \text{ choose k}) \rceil$)

Answer " $i \in S$?" by probing few bits (optimal = 1)

In combinatorics: Nešetřil Pultr, ..., Körner Monti

Previous results

• Store S ⊆ {1, 2, ..., n}, |S| = k, in bits, answer "i ∈ S?"

 [Minsky Papert '69, Buhrman Miltersen Radhakrishnan Venkatesh; Pagh; ...; Pătraşcu; V. '09]

Surprising upper bounds
 space = optimal + o(n), probe O(log n)

No lower bounds for k = n / 2^a

Rest of this talk

Local (NC⁰)

Lower bound for $W_{n/2} = n$ -bit with n/2 1's Succinct data structures

Decision tree

Lower bound for W_{n/2}

- Bounded-depth circuit (AC0)
- Proof of local lower bound

Bounded-depth circuits (AC⁰)

O(log n)-local ⊆ depth O(log n) ⊆ AC⁰

- Theorem [Matias Vishkin, Hagerup, this work]
 Can generate W_k, exp. small error
- Theorem [Lovett V.] Cannot generate error-correcting code
- Challenge: ∃ explicit boolean f : cannot generate (Y, f(Y))?

Our results: pseudorandomness for AC⁰

 Pseudorandom distribution against circuit of depth d (want: reduce randomness w/ minimum overhead)

Direct implementation of Nisan's generator: depth ≥ d
 circuit + generator → depth 2d

Generator in depth 2 circuit + generator → depth d+1
 [Braverman] + [Guruswami Umans Vadhan]