The of distributions

Emanuele Viola

Northeastern University
October 2010

Local functions (NC^{0})

- $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ d-local : output depends on d input bits

- Fact: $\operatorname{Parity}(x)=1 \Leftrightarrow \sum x_{i}=1 \bmod 2$ is not $\mathrm{n}-1$ local
- Proof: Flip any input bit \Rightarrow output flips

Local generation of (Y , parity (Y))

- Theorem [Babai ; Boppana Lagarias '87]

There is $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$, each bit 2-local Distribution $f(X) \equiv(Y$, parity $(Y)) \quad\left(X, Y \in\{0,1\}^{n}\right.$ uniform $)$

Our message

- Complexity theory of distributions (as opposed to functions)

How hard is it to generate (a.k.a. sample)
distribution D given random bits ?
E.g., $D=(Y, \operatorname{parity}(Y)), \quad D=W_{k}:=$ uniform n-bit with k 1's

- This work:

DNF

$A C^{0}$

Rest of talk

- Generating W_{k} := uniform n -bit with k 1 's
- Local (NC0)
- Decision tree
- Results for ($\mathrm{Y}, \mathrm{b}(\mathrm{Y})$)
- Proof of local lower bound for $\mathrm{W}_{\mathrm{n} / 2}$

Our results: local

- Theorem

$$
\begin{gathered}
f:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}} \quad 0.1 \text { log } \mathrm{n} \text { - local } \\
\Downarrow \\
\mathrm{f}(\mathrm{X}) \text { at Statistical Distance }>1-\mathrm{n}^{-\Omega(1)} \\
\text { from } \mathrm{W}_{\mathrm{n}} / 2=\text { uniform } \mathrm{W} / \text { weight } \mathrm{n} / 2
\end{gathered}
$$

- Tight up to $\Omega(): \mathrm{f}(\mathrm{x})=\mathrm{x}$
- Extends to $\mathrm{W}_{\mathrm{k}}, \mathrm{k} \neq \mathrm{n} / 2$, tight?

Our results: succinct data structures

- Problem: Store k-subset $S \subseteq\{1,2, \ldots, n\}$ in $u=$ optimal $+r$ bits, answer " $\mathrm{i} \in \mathrm{S}$?" probing d bits.

- Connection: Solution \Rightarrow generate $\mathrm{W}_{|\mathrm{S}|=\mathrm{k}}$ d-local, Stat. Distance $<1-2^{-r}$
- Corollary: Need $r>\Omega(\log n)$ if $d=0.1 \log n$ First lower bound for $|\mathrm{S}|=\mathrm{n} / 2, \mathrm{n} / 4, \ldots$

Decision tree model

- $f:\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ depth d each output bit f_{i} is depth-d decision tree

- Depth $d \subseteq 2^{\text {d }}$ local

Our results: decision trees

- Theorem $f:\{0,1\}^{*} \rightarrow\{0,1\}^{n} \quad$ depth $<0.1 \log n$
\Rightarrow Distance $\left(f(X), W_{n / 2}\right)>1 / n$
- Worse than $1-\mathrm{n}^{-\Omega(1)}$ lower bound for local
- Fact building on [Czumaj Kanarek Lorys Kutyłowski] $\exists \mathrm{f}$: depth $\mathrm{O}(\log \mathrm{n})$ and Distance $\left(\mathrm{f}(\mathrm{X}), \mathrm{W}_{\mathrm{n} / 2}\right)<1 / n$

Rest of talk

- Generating W_{k} := uniform n -bit with k 1 's

- Local (NC0)

- Decision tree
- Results for ($\mathrm{Y}, \mathrm{b}(\mathrm{Y})$)
- Proof of local lower bound for $\mathrm{W}_{\mathrm{n} / 2}$

Our results for ($\mathrm{Y}, \mathrm{b}(\mathrm{Y})$)

- Theorem: $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}+1}$
0.1 log n-local $\Rightarrow \operatorname{Distance}(f(X),(Y, Y \bmod p>p / 2))>0.49$ $0.1 \log n$-depth $\Rightarrow \operatorname{Distance}(f(X),(Y$, majority $Y))>1 / n$
- Theorem building on [Matias Vishkin, Hagerup] \exists f bounded-depth circuit AC ${ }^{0}$: Distance $(f(X),(Y$, majority $Y))<2^{-n}$
- Challenge: explicit boolean b : ACº can't generate (Y, b(Y))

Rest of talk

- Generating W_{k} := uniform n -bit with k 1 's

- Local (NC0)

- Decision tree
- Results for ($\mathrm{Y}, \mathrm{b}(\mathrm{Y})$)
- Proof of local lower bound for $\mathrm{W}_{\mathrm{n} / 2}$

Local lower bound

- Theorem: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}: \quad \mathrm{d}=0.1$ log n -local.

$$
\Rightarrow \exists \mathrm{T} \subseteq\{0,1\}^{\mathrm{n}}:\left|\operatorname{Pr}[\mathrm{f}(\mathrm{x}) \in \mathrm{T}]-\operatorname{Pr}\left[\mathrm{W}_{\mathrm{n} / 2} \in \mathrm{~T}\right]\right|>1-\mathrm{n}^{-\Omega(1)}
$$

- Warm-up scenarios:
- $f(x)=000111$ Low-entropy $T:=\{000111\}$

$$
\left|\operatorname{Pr}[f(x) \in T]-\operatorname{Pr}\left[W_{n} / 2 \in T\right]\right|=|1-|T| /(n \text { choose } n / 2)|
$$

- $f(x)=x \quad$ "Anti-concentration" $T:=\left\{z: \sum_{i} z_{i} \neq n / 2\right\}$

$$
\left|\operatorname{Pr}[f(x) \in T]-\operatorname{Pr}\left[W_{n} / 2 \in T\right]\right|=|1-\Theta(1) / \sqrt{n}-0|
$$

Proof

- Input $X=\left(X_{1}, X_{2}, \ldots, X_{S}, H\right)$

- Fix H. Output block B_{i} depends only on bit X_{i}
- Many B_{i} constant $\left(\mathrm{B}_{\mathrm{i}}(0, \mathrm{H})=\mathrm{B}_{\mathrm{i}}(1, \mathrm{H})\right) \Rightarrow$ low-entropy
- Many B_{i} depend on $X_{i}\left(B_{i}(0, H) \neq B_{i}(1, H)\right)$ Idea: Independent \Rightarrow anti-concentration: sum $\neq \mathrm{n} / 2$ w.h.p.

- If many weight $\left(\mathrm{B}_{\mathrm{i}}(0, \mathrm{H})\right) \neq$ weight $\left(\mathrm{B}_{\mathrm{i}}(1, \mathrm{H})\right)$, use

Anti-concentration Lemma [Littlewood Offord]
For $a_{1}, a_{2}, \ldots, a_{s} \neq 0$, any $\left.c, \operatorname{Pr}_{X \in\{0,1\}}\left[\sum_{i} a_{i} X_{i}=c\right]<1 / \sqrt{n}\right]$

- Problem: $\mathrm{B}_{\mathrm{i}}(0, \mathrm{H})=100, \mathrm{~B}_{\mathrm{i}}(1, \mathrm{H})=010$ high entropy but no anti-concentration
- Fix: want many blocks 000 : high entropy \Rightarrow different weight

Conclusion

- Complexity of distributions = uncharted territory
- Lower bounds for W_{k} := uniform n-bit with k 1 's
- Local \Rightarrow lower bound for storing sets efficiently
- Decision tree
- Lower bounds for (Y, $b(Y)$), e.g. (Y, majority Y)

Rest of talk

- Generating W_{k} := uniform n -bit with k 1 's

- Local (NC0)

- Decision tree
- Results for ($\mathrm{Y}, \mathrm{b}(\mathrm{Y})$)
- Proof of local lower bound for $\mathrm{W}_{\mathrm{n} / 2}$

Our results: decision trees

- Theorem $f:\{0,1\}^{*} \rightarrow\{0,1\}^{n} \quad$ depth $<0.1 \log n$
\Rightarrow Distance $\left(\mathrm{f}(\mathrm{X}), \mathrm{W}_{\mathrm{n} / 2}\right)>1 / \mathrm{n}$
- Proof: Is $f(X) 4$-wise independent?

YES: [Paley Zygmund] $\sum \mathrm{f}(\mathrm{x})_{\mathrm{i}}$ anti-concentrated, $\neq \mathrm{n} / 2$ w.h.p.
NO: Let $Q:=$ biased 4 bits of $f(X)$
Distance $\left(\left.f(X)\right|_{Q},\left.W_{n / 2}\right|_{Q} \approx\right.$ uniform $)>2^{-4}(0.1 \log n)$ by granularity of decision-tree probability

- Test $T \subseteq\{0,1\}^{\mathrm{n}}: \operatorname{Pr}\left[f\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{s}}, \mathrm{H}\right) \in \mathrm{T}\right] \approx 1 ; \operatorname{Pr}\left[\mathrm{W}_{\mathrm{n} / 2} \in \mathrm{~T}\right] \approx 0$
$z \in T \Leftrightarrow$
$\exists H: \exists X_{1}, \ldots, X_{s} w /$ many blocks B_{i} fixed : $f\left(X_{1}, \ldots, X_{s}, H\right)=z$ OR
Few blocks z $_{\mathrm{B}_{i}}$ are 000 OR
$\sum_{\mathrm{i}} \mathrm{z}_{\mathrm{i}} \neq \mathrm{n} / 2$

Rest of this talk

- Connection with succinct data structures
- Lower bound for locally generating $\mathrm{W}_{\mathrm{n} / 2}=\mathrm{n}$-bit with $\mathrm{n} / 21$'s
- Decision tree model
- Bounded-depth circuit model

Tool for lower bound proof

- Central limit theorem:
$x_{1}, x_{2}, \ldots, x_{n}$ independent $\Rightarrow \sum x_{i} \approx$ normal

- Bounded-independence central limit theorem [Diakonikolas Gopalan Jaiswal Servedio V.] $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ k-wise independent $\Rightarrow \sum \mathrm{x}_{\mathrm{i}} \approx$ normal
- Note: For next result, Paley-Zygmund inequality enough

Proof

- Theorem[V.] $f:\{0,1\}^{*} \rightarrow\{0,1\}^{n}:$ each bit depth $<0.1 \log n$ Distance $\left(f(X), W_{n / 2}\right)>n^{-\Omega(1)}$
- Proof: Is output distribution $f(X)(k=10)$-wise independent?
$\mathrm{NO} \Rightarrow \mathrm{W}_{\mathrm{n} / 2} \approx \mathrm{k}$-wise independent
Distance(those k bits, uniform on $\left.\{0,1\}^{k}\right)>2^{-k}(0.1 \log n)$
(granularity of decision tree probability)

YES \Rightarrow by prev. theorem $\sum \mathrm{f}(\mathrm{X})_{\mathrm{i}} \approx$ normal so often $\sum \mathrm{f}(\mathrm{X})_{\mathrm{i}} \neq \mathrm{n} / 2$

Rest of this talk

- Connection with succinct data structures
- Lower bound for locally generating $\mathrm{W}_{\mathrm{n} / 2}=\mathrm{n}$-bit with $\mathrm{n} / 21$'s
- Decision tree model
- Bounded-depth circuit model

Lower bound for codes

- Code $C \subseteq\{0,1\}^{n}$ of size $|C|=2^{k=\Omega(n)}$
$x \neq y \in C \Rightarrow x, y$ far : hamming distance $\Omega(n)$
- Theorem [Lovett V.] $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{n}}, \mathrm{f} \in \mathrm{AC}{ }^{0}$ Distance $(f(X)$, uniform over $C)>1-n^{-\Omega(1)}$
- Consequences for data structures for codewords, complexity of pseudorand. generators against AC ${ }^{0}$ [Nisan]

Warm-up

- Fact: $\mathrm{f}:\{0,1\}^{k} \rightarrow\{0,1\}^{\mathrm{n}}, \mathrm{f} \in \mathrm{AC} \mathrm{C}^{0}$ f cannot compute encoding function of C , mapping message $m \in\{0,1\}^{k}$ to codeword
- Proof:
- [Linial Mansour Nisan, Boppana] low sensitivity of AC ${ }^{0}$: m, m random at hamming distance 1
$\Rightarrow f(m), f\left(m^{\prime}\right)$ close in hamming distance.
- But $f(m) \neq f\left(m^{\prime}\right) \in C \Rightarrow$ far in hamming distance

Lower bound for codes

- Theorem [Lovett V.] f: $\{0,1\}^{L \gg k} \rightarrow\{0,1\}^{\mathrm{n}}, \mathrm{f} \in \mathrm{AC}{ }^{0}$ Distance $(f(X)$, uniform over $C)>1-n^{-\Omega(1)}$

Problem: f needs not compute encoding function. Input length >> message length

- Idea: Input $\{0,1\}^{L}$ to f partitioned in |C| sets

- Isoperimetric inequality [Harper, Hart]: Random m, m ' at distance 1 often in \neq sets \Rightarrow low sensitivity

Lower bound for codes

- Theorem [Lovett V.] $\mathrm{f}:\{0,1\}^{\mathrm{L} \gg \mathrm{k}} \rightarrow\{0,1\}^{\mathrm{n}}, \mathrm{f} \in \mathrm{AC} \mathrm{C}^{0}$

Distance $(f(X)$, uniform over $C)>1-n^{-\Omega(1)}$

- Note: to get

Need isoperimetric inequality for m, m at distance >> 1

Fact[thanks to Samorodnitsky] $\forall \mathrm{A} \subseteq\{0,1\}^{\mathrm{L}}$ of density α random m , m ' obtained flipping bits $\mathrm{w} /$ probability p : $\alpha^{2} \leq \operatorname{Pr}\left[\right.$ both $m \in A$ and $\left.m^{\prime} \in \mathrm{A}\right] \leq \alpha^{1 /(1-\mathrm{p})}$

- $\Sigma \Pi \vee \cap \notin \cup \supseteq \not \subset \subset \subseteq \in \Downarrow \Rightarrow \Uparrow \Leftarrow \Leftrightarrow \vee \wedge \geq \leq \forall \exists \Omega \alpha \beta \varepsilon \gamma \delta \rightarrow$
- $\neq \approx \mathrm{T} \Theta \Omega \theta$
- Recall: edit style changes ALL settings.
- Click on "line" for just the one you highlight

More connections

- More uses of generating W_{k} := uniform n-bit string with k 1's
- McEliece cryptosystem
- Switching networks, ...

Previous results

- Store $S \subseteq\{1,2, \ldots, n\},|S|=k$, in bits, answer " $i \in S$?"
- [Minsky Papert '69] Average-case study
- [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh '00]

Space O (optimal), probe $O(1)$ when $k=\Theta(n)$
Lower bounds for $\mathrm{k}<\mathrm{n}^{1-\varepsilon}$

- [..., Pagh, Pătraşcu] space = optimal +o(n), probe O(log n)
- [V. '09] lower bounds for $k=\Omega(n)$, except $k=n / 2^{a}$

Succinct data structures for sets

- Store $S \subseteq\{1,2, \ldots, n\}$ of size $|S|=k$ In u bits $b_{1}, \ldots, b_{u} \in\{0,1\}$

- Want:

Small space u (optimal $=\left\lceil\lg _{2}(\mathrm{n}\right.$ choose k$\left.\left.)\right\rceil\right)$
Answer " $\mathrm{i} \in \mathrm{S}$?" by probing few bits (optimal = 1)

- In combinatorics: Nešetřil Pultr, ..., Körner Monti

Previous results

- Store $S \subseteq\{1,2, \ldots, n\},|S|=k$, in bits, answer " $i \in S$?"
- [Minsky Papert '69, Buhrman Miltersen Radhakrishnan

Venkatesh; Pagh; ...; Pătraşcu; V. '09]

- Surprising upper bounds space $=$ optimal $+o(n)$, probe $O(\log n)$
- No lower bounds for $k=n / 2^{a}$

Rest of this talk

- Local (NCO^{0})

Lower bound for $\mathrm{W}_{\mathrm{n} / 2}=\mathrm{n}$-bit with $\mathrm{n} / 2$ 1's
Succinct data structures

- Decision tree

Lower bound for $\mathrm{W}_{\mathrm{n} / 2}$

- Bounded-depth circuit (AC0)
- Proof of local lower bound

Bounded-depth circuits $\left(A C^{0}\right)$

- $\mathrm{O}(\log n)-\operatorname{local} \subseteq$ depth $O(\log n) \subseteq A C^{0}$

$$
\begin{aligned}
& V=\mathrm{or} \\
& \Lambda=\text { and } \\
& \neg=\text { not }
\end{aligned}
$$

- Theorem [Matias Vishkin, Hagerup, this work]

Can generate W_{k}, exp. small error

- Theorem [Lovett V.] Cannot generate error-correcting code
- Challenge: \exists explicit boolean f : cannot generate ($\mathrm{Y}, \mathrm{f}(\mathrm{Y})$) ?

Our results: pseudorandomness for $A C^{0}$

- Pseudorandom distribution against circuit of depth d (want: reduce randomness w/ minimum overhead)
- Direct implementation of Nisan's generator: depth $\geq d$ circuit + generator \rightarrow depth 2d
- Generator in depth $2 \quad$ circuit + generator \rightarrow depth d+1
[Braverman] + [Guruswami Umans Vadhan]

