The complexity of distributions

Emanuele Viola

Northeastern University

March 2012

Local functions (a.k.a. Junta, NC⁰)

• $f: \{0,1\}^n \rightarrow \{0,1\}$ d-local : output depends on d input bits

• Fact: Parity(x) = 1 $\Leftrightarrow \sum x_i = 1 \mod 2$ is not n-1 local

• Proof: Flip any input bit \Rightarrow output flips \blacklozenge

Local generation of (Y, parity(Y))

• Theorem [Babai '87; Boppana Lagarias '87]

There is f : $\{0,1\}^n \rightarrow \{0,1\}^{n+1}$, each bit 2-local Distribution f(X) = (Y, parity(Y)) (X, Y \in \{0,1\}^n uniform)

• Complexity theory of distributions (as opposed to functions)

How hard is it to generate (a.k.a. sample) distribution D given random bits ?

E.g., $D = (Y, parity(Y)), D = W_k := uniform n-bit with k 1's$

Is message new?

- Generate Random Factored Numbers
 [Bach '85, Kalai]
- Random Generation of Combinatorial Structures from a Uniform Distribution [Jerrum Valiant Vazirani '86]
- The Quantum Communication Complexity of Sampling [Ambainis Schulman Ta-Shma Vazirani Wigderson]
- On the Implementation of Huge Random Objects [Goldreich Goldwasser Nussboim]
- Our line of work:1) first negative results (lower bounds) for local, AC⁰, Turing machines, etc.
 2) new connections

Outline of talk

• Lower bound for sampling W_k = uniform weight-k string

- Randomness extractors
 - Local sources
 - Bounded-depth circuit (AC⁰)
 - Turing machine

- Tight up to $\Omega()$: f(x) = x
- Extends to W_k , $k \neq n/2$, tight?
- Also open: remove bound on input length

Succinct data structures

• Problem:

Store $S \subseteq \{1, 2, ..., n\}$, |S| fixed in u = optimal + r bits, answer "i \in S?" probing d bits.

• Connection [V.]: Solution \Rightarrow generate $W_{|S|}$ d-local, Stat. Distance < 1- 2^{-r}

Corollary: Need r > Ω(log n) if d = 0.1 log n
 First lower bound for |S| = n/2, n/4, ...

Proof

- Theorem: Let $f: \{0,1\}^n \rightarrow \{0,1\}^n$: d= 0.1 log n-local. There is $T \subseteq \{0,1\}^n$: $\Pr[f(x) \in T] - \Pr[W_{n/2} \in T] > 1 - n^{-\Omega(1)}$
 - Warm-up scenarios:
 - f(x) = 000111 Low-entropy $T := \{ 000111 \}$ $Pr[f(x) \in T] - Pr[W_{n/2} \in T] = 1 - |T| / (n choose n/2)$
- f(x) = x "Anti-concentration" $T := \{ z : \sum_{i} z_{i} = n/2 \}$ $\left| \Pr[f(x) \in T] - \Pr[W_{n/2} \in T] \right| = \left| \Theta(1)/\sqrt{n} - 1 \right|$

Proof

• Partition input bits $X = (X_1, X_2, \dots, X_s, H)$

- Fix H. Output block B_i depends only on bit X_i
 - Many B_i constant ($B_i(0,H) = B_i(1,H)$) \Rightarrow low-entropy
 - Many B_i depend on X_i (B_i(0,H) ≠ B_i(1,H))
 Idea: Independent ⇒ anti-concentration: can't sum to n/2

• If many $B_i(0,H)$, $B_i(1,H)$ have different sum of bits, use

Anti-concentration Lemma [Littlewood Offord] For $a_1, a_2, ..., a_s \neq 0$, any c, $\Pr_{X \in \{0,1\}^s} \left[\sum_i a_i X_i = c \right] < 1/\sqrt{n}$

- Problem: $B_i(0,H) = 100$, $B_i(1,H) = 010$ high entropy but no anti-concentration
- Fix: want many blocks 000, so high entropy \Rightarrow different sum

• Test $T \subseteq \{0,1\}^n$: $\Pr[f(X_1,...,X_s,H) \in T] \approx 1$; $\Pr[W_{n/2} \in T] \approx 0$

$z \in T \Leftrightarrow$

∃ H : ∃ X₁,...,X_s w/ many blocks B_i fixed : $f(X_1,...,X_s,H) = z$ OR Few blocks $z|_{B_i}$ are 000 OR $\sum_i z_i \neq n/2$

Open problem

 Understand complexity of W_k = uniform weight-k string for all choices of: k,

model (local, decision tree, etc.), statistical distance, randomness complexity

- Similar problems in combinatorics, coding, ergodic theory
- One example

∃ 2-local f : {0,1}²ⁿ→{0,1}ⁿ Distance(f(X), W_{n/4}) ≤ 1-Θ(1)/√n input length= H(1/4)n+o(n) ♦ Distance ≥ 1 - 2^{-Ω(n)} ?

Outline of talk

• Lower bound for sampling W_k = uniform weight-k string

- Randomness extractors
 - Local sources
 - Bounded-depth circuit (AC⁰)
 - Turing machine

Randomness extractors

• Want: turn weak randomness (correlation, bias, ...) into close to uniform

• Extractor for sources (distributions) S on {0,1}ⁿ

Deterministic, efficient map : $\{0,1\}^n \rightarrow \{0,1\}^m$

 $\forall D \in S$, Extractor(D) ε -close to uniform

• Starting with [Von Neumann '51] major line of research

Sources

- Independent blocks [Chor Goldreich 88, Barak Bourgain Impagliazzo Kindler Rao Raz Shaltiel Sudakov Wigderson ...]
- Some bits fixed, others uniform & indep.

[Chor Friedman Goldreich Hastad Rudich Smolensky '85, Cohen Wigderson, Kamp Zuckerman, ...]

- One-way, space-bounded algorithm [Blum '86, Vazirani, Koenig Maurer, Kamp Rao Vadhan Zuckerman]
- Affine set [BKSSW, Bourgain, Rao, Ben-Sasson Kopparty, Shaltiel]
- Our results: first extractors for circuit sources: local, AC⁰ and for Turing-machine sources

Trevisan Vadhan; 2000

 Sources D with min-entropy k (Pr[D = a] < 2^{-k} ∀ a) sampled by small circuit C: {0,1}^{*} → {0,1}ⁿ given random bits.

- Extractor ⇒ Lower bound for C (even 1 bit from k=n-1)

[V.]

Extractor \iff Sampling lower bound (1 bit from k=n-1)

f: $\{0,1\}^n \rightarrow \{0,1\}$ small circuits cannot sample f⁻¹(0) (uniformly, given random bits)

(lower bound we just saw \Diamond

extract 1 bit, error < 1, from entropy k=n-1, O(1)-local source)

Outline of talk

• Lower bound for sampling W_k = uniform weight-k string

- Randomness extractors
 - Local sources
 - Bounded-depth circuit (AC⁰)
 - Turing machine

Extractors for local functions

- $f: \{0,1\}^* \rightarrow \{0,1\}^n$ d-local : each output bit depends on d input
- Theorem[V.] From d-local n-bit source with min-entropy k: Let T := k poly(k/nd) Extract T bits, error exp(-T)
- E.g. $T = k^{C}$ from $k = n^{1-C}$, $d = n^{C}$
- Note: always need k > d
- $d = O(1) \Rightarrow NC^0$ source. Independently [De Watson]

High-level proof

- Theorem d-local n-bit min-entropy k source (T:=k poly(k/nd))
 Is convex combination of bit-block source
 block-size = dn/k, entropy T, error exp(-T)
- Bit-block source with entropy T: (0, 1, X₁, 1- X₅, X₃, X₃, 1- X₂, 0, X₇, 1- X₈, 1, X₁) X₁, X₂, ..., X_T ∈ {0,1} 0 < occurrences of X_i < block-size = dn/k

- Special case of low-weight affine sources
 Use [Rao 09]

Proof

d-local n-bit source min-entropy k: convex combo bit-block

- Output entropy > k $\Rightarrow \exists y_i$ with variance > k/n
- Isoperimetry $\Rightarrow \exists \mathbf{x}_i$ with influence > k/nd
- Set uniformly N(N(x_j)) \ {x_j} (N(v) = neighbors of v) with prob. > k/nd, N(x_j) non-constant block of size nd/k
- Repeat k / |N(N(x_i))| = k k/nd² times, expect k k²/n²d³ blocks

Open problem

• Does previous result hold for decision-tree sources?

 May use isoperimetric inequality for decision trees [O'Donnell Saks Schramm Servedio]

Outline of talk

• Lower bound for sampling W_k = uniform weight-k string

- Randomness extractors
 - Local sources
 - Bounded-depth circuit (AC⁰)
 - Turing machine

Bounded-depth circuits (AC⁰)

• Theorem [V.]

From AC⁰ n-bit source with min-entropy k: Extract k poly(k / $n^{1.001}$) bits, error $1/n^{\omega(1)}$

High-level proof

• Apply random restriction [Furst Saxe Sipser, Ajtai, Yao, Hastad]

 Switching lemma: Circuit collapses to d=n^ɛ-local apply previous extractor for local sources

• Problem: fix 1-o(1) input variables, entropy?

The effect of restrictions on entropy

• Theorem f : $\{0,1\}^* \rightarrow \{0,1\}^n$: f(X) has min-entropy k

Let R be random restriction with Pr[*] = pWith high prob., $f|_{R}$ (X) has min-entropy pk

• Parameters: $\mathbf{k} = poly(n), p = 1/\sqrt{\mathbf{k}}$

After restriction both circuit collapsed and min-entropy $p\mathbf{k} = \sqrt{\mathbf{k}}$ still poly(n)

The effect of restrictions on entropy

• Theorem f : $\{0,1\}^* \rightarrow \{0,1\}^n$: f(X) has min-entropy k

Let R be random restriction with Pr[*] = pWith high prob., $f|_{R}(X)$ has min-entropy pk

- **Proof**: Builds on [Lovett V]
- Isoperimetric inequality for noise: ∀ A ⊆ {0,1}^L of density α random m, m' obtained flipping bits w/ probability p :

()ed

$$\alpha^2 \leq \Pr[both \ m \in A and \ m' \in A] \leq \alpha^{1+p}$$

• Bound collision probability $Pr[f|_{R}(X) = f|_{R}(Y)]$

Bounded-depth circuits (AC⁰)

• Corollary to AC⁰ extractor

Explicit boolean f : AC⁰ cannot sample (Y, f(Y))

f := 1-bit affine extractor for min-entropy $k = n^{0.99}$

 Note: For k > 1/2, Inner Product 1-bit affine extractor, and AC⁰ can sample (Y, InnerProduct(Y)) [Impagliazzo Naor]

• Explains why affine extractors for k < 1/2 more complicated

Open problem

Theorem[V.] AC⁰ can generate (Y, majority(Y)), error 2-|Y|

• Challenge: error 0?

• Related [Lovett V.] Does every bijection $\{0,1\}^n = \bigoplus \rightarrow \bigsqcup = \{x \in \{0,1\}^{n+1} : \sum x_i \ge n/2 \}$

have large expected hamming distortion? (n even)

Outline of talk

• Lower bound for sampling W_k = uniform weight-k string

- Randomness extractors
 - Local sources
 - Bounded-depth circuit (AC⁰)
 - Turing machine

Turing-machine source

• Machines start on blank (all-zero) tape

have "coin-toss" state: writes random bit on tape

• When computation is over, first n bits on tape are sample

Extractors

• Theorem [V.] From Turing-machine n-bit source running in time $\leq n^{1.9}$ and with min-entropy k $\geq n^{0.9}$: Extract $n^{\Omega(1)}$ bits, error exp($-n^{\Omega(1)}$)

 Proof: Variant of crossing-sequence technique TM source = convex combo of independent-block source (no error)

Use e.g. [Kamp Rao Vadhan Zuckerman]

Extractors

 Corollary [V.] Turing-machine running in time ≤ n^{1.9} cannot sample (X, Y, InnerProduct(X,Y)) for |X| = |Y| = n

• Proof: As before, but use extractor in [Chor Goldreich]

Summary

• Complexity of distributions = uncharted research direction

New connections to data structures,

randomness extractors, and various combinatorial problems

 First sampling lower bounds and extractors for local, decision tree (not in this talk), AC⁰ Turing machines