The of distributions

Emanuele Viola

Northeastern University
March 2012

Local functions
 (a.k.a. Junta, NC^{0})

- $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ d-local : output depends on d input bits

- Fact: $\operatorname{Parity}(x)=1 \Leftrightarrow \sum x_{i}=1 \bmod 2$ is not $\mathrm{n}-1$ local
- Proof: Flip any input bit \Rightarrow output flips

Local generation of (Y , parity (Y))

- Theorem [Babai '87; Boppana Lagarias '87]

There is $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$, each bit 2-local Distribution $f(X) \equiv(Y$, parity $(Y)) \quad\left(X, Y \in\{0,1\}^{n}\right.$ uniform $)$

Our message

- Complexity theory of distributions (as opposed to functions)

How hard is it to generate (a.k.a. sample)
distribution D given random bits ?
E.g., $D=(Y, \operatorname{parity}(Y)), \quad D=W_{k}:=$ uniform n-bit with k 1's

Is message new?

- Generate Random Factored Numbers
[Bach '85, Kalai]
- Random Generation of Combinatorial Structures from a Uniform Distribution [Jerrum Valiant Vazirani '86]
- The Quantum Communication Complexity of Sampling [Ambainis Schulman Ta-Shma Vazirani Wigderson]
- On the Implementation of Huge Random Objects
[Goldreich Goldwasser Nussboim]
- Our line of work:1) first negative results (lower bounds) for local, $A C^{0}$, Turing machines, etc.

2) new connections

Outline of talk

- Lower bound for sampling W_{k} = uniform weight- k string
- Randomness extractors
- Local sources
- Bounded-depth circuit $\left(\mathrm{AC}^{0}\right)$
- Turing machine
- Theorem [V.]

$$
\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}} \quad 0.1 \text { log } \mathrm{n} \text { - local }
$$

$$
\Downarrow
$$

$\mathrm{f}(\mathrm{X})$ at Statistical Distance $>1-\mathrm{n}^{-\Omega(1)}$ from $W_{n / 2}=$ uniform $w /$ weight $n / 2$

- Tight up to $\Omega(): \mathrm{f}(\mathrm{x})=\mathrm{x}$
- Extends to $\mathrm{W}_{\mathrm{k}}, \mathrm{k} \neq \mathrm{n} / 2$, tight?
- Also open: remove bound on input length

Succinct data structures

- Problem: Store $S \subseteq\{1,2, \ldots, n\},|S|$ fixed in $u=$ optimal $+r$ bits, answer "i \in S?" probing d bits.

- Connection [V.]: Solution \Rightarrow generate $\mathrm{W}_{|\mathrm{S}|}$ d-local, Stat. Distance $<1-2^{-r}$
- Corollary: Need $r>\Omega(\log n)$ if $d=0.1 \log n$ First lower bound for $|S|=n / 2, n / 4, \ldots$

Proof

- Theorem: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}: \quad \mathrm{d}=0.1$ log n -local.

There is $T \subseteq\{0,1\}^{n}:\left|\operatorname{Pr}[f(x) \in T]-\operatorname{Pr}\left[W_{n / 2} \in T\right]\right|>1-n^{-\Omega(1)}$

- Warm-up scenarios:
- $f(x)=000111$ Low-entropy $T:=\{000111\}$

$$
\left|\operatorname{Pr}[f(x) \in T]-\operatorname{Pr}\left[\mathrm{W}_{\mathrm{n} / 2} \in \mathrm{~T}\right]\right|=|1-|\mathrm{T}| /(\mathrm{n} \text { choose } \mathrm{n} / 2)|
$$

- $f(x)=x \quad$ "Anti-concentration" $T:=\left\{z: \sum_{i} z_{i}=n / 2\right\}$

$$
\left|\operatorname{Pr}[f(x) \in T]-\operatorname{Pr}\left[W_{n / 2} \in T\right]\right|=|\Theta(1) / \sqrt{n}-1|
$$

Proof

- Partition input bits $\mathrm{X}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{s}}, \mathrm{H}\right)$

- Fix H. Output block B_{i} depends only on bit X_{i}
- Many B_{i} constant $\left(\mathrm{B}_{\mathrm{i}}(0, \mathrm{H})=\mathrm{B}_{\mathrm{i}}(1, \mathrm{H})\right) \Rightarrow$ low-entropy
- Many B_{i} depend on $\mathrm{X}_{\mathrm{i}}\left(\mathrm{B}_{\mathrm{i}}(0, \mathrm{H}) \neq \mathrm{B}_{\mathrm{i}}(1, \mathrm{H})\right.$) Idea: Independent \Rightarrow anti-concentration: can't sum to $\mathrm{n} / 2$

- If many $\mathrm{B}_{\mathrm{i}}(0, \mathrm{H}), \mathrm{B}_{\mathrm{i}}(1, \mathrm{H})$ have different sum of bits, use

Anti-concentration Lemma [Littlewood Offord]
For $a_{1}, a_{2}, \ldots, a_{s} \neq 0$, any $c, \operatorname{Pr}_{X \in\{0,1\}}\left[\sum_{i} a_{i} X_{i}=c\right]<1 / \sqrt{ } n$

- Problem: $\mathrm{B}_{\mathrm{i}}(0, \mathrm{H})=100, \mathrm{~B}_{\mathrm{i}}(1, \mathrm{H})=010$ high entropy but no anti-concentration
- Fix: want many blocks 000 , so high entropy \Rightarrow different sum

- Test $T \subseteq\{0,1\}^{\mathrm{n}}: \operatorname{Pr}\left[f\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{s}}, \mathrm{H}\right) \in \mathrm{T}\right] \approx 1 ; \operatorname{Pr}\left[\mathrm{W}_{\mathrm{n} / 2} \in \mathrm{~T}\right] \approx 0$
$z \in T \Leftrightarrow$
$\exists H: \exists X_{1}, \ldots, X_{s} w /$ many blocks B_{i} fixed : $f\left(X_{1}, \ldots, X_{s}, H\right)=z$ OR
Few blocks z $_{\mathrm{B}_{i}}$ are 000 OR
$\sum_{\mathrm{i}} \mathrm{z}_{\mathrm{i}} \neq \mathrm{n} / 2$

Open problem

- Understand complexity of $\mathrm{W}_{\mathrm{k}}=$ uniform weight-k string for all choices of: k, model (local, decision tree, etc.), statistical distance, randomness complexity
- Similar problems in combinatorics, coding, ergodic theory
- One example
\exists 2-local $\mathrm{f}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$ Distance $\left(f(X), W_{n / 4}\right) \leq 1-\Theta(1) / \sqrt{n}$ input length $=H(1 / 4) n+o(n) \downarrow$ Distance $\geq 1-2^{-\Omega(n)}$?

Outline of talk

- Lower bound for sampling $W_{k}=$ uniform weight-k string
- Randomness extractors
- Local sources
- Bounded-depth circuit (AC ${ }^{0}$)
- Turing machine

Randomness extractors

- Want: turn weak randomness (correlation, bias, ...) into close to uniform
- Extractor for sources (distributions) S on $\{0,1\}^{n}$

Deterministic, efficient map : $\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{m}}$
$\forall \mathrm{D} \in \mathrm{S}$, Extractor(D) ε-close to uniform

- Starting with [Von Neumann '51] major line of research

Sources

- Independent blocks
[Chor Goldreich 88, Barak Bourgain Impagliazzo Kindler Rao Raz Shaltiel Sudakov Wigderson ...]
- Some bits fixed, others uniform \& indep.
[Chor Friedman Goldreich Hastad Rudich Smolensky '85, Cohen Wigderson, Kamp Zuckerman, ...]
- One-way, space-bounded algorithm
[Blum '86, Vazirani, Koenig Maurer, Kamp Rao Vadhan Zuckerman]
- Affine set [BKSSW, Bourgain, Rao, Ben-Sasson Kopparty, Shaltiel]
- Our results: first extractors for circuit sources: local, $A C^{0}$ and for Turing-machine sources

Trevisan Vadhan; 2000

- Sources D with min-entropy k ($\left.\operatorname{Pr}[\mathrm{D}=\mathrm{a}]<2^{-k} \quad \forall a\right)$ sampled by small circuit $\mathrm{C}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ given random bits.
- Extractor \Rightarrow Lower bound for C (even 1 bit from $\mathrm{k}=\mathrm{n}-1$)
- Extractor $\Leftarrow \operatorname{Time}\left(2^{\mathrm{O}(\mathrm{n})}\right) \nsubseteq \exists \forall \exists \forall \exists$-circuit size $2^{\circ(\mathrm{n})}$

[V.]

Extractor \Leftrightarrow Sampling lower bound

(1 bit from $\mathrm{k}=\mathrm{n}-1$)
$\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\} \Longleftrightarrow$ small circuits cannot sample $\mathrm{f}^{-1}(0)$ (balanced) (uniformly, given random bits)
(lower bound we just saw \downarrow
extract 1 bit, error < 1, from entropy $k=n-1, O(1)$-local source)

Outline of talk

- Lower bound for sampling $W_{k}=$ uniform weight-k string
- Randomness extractors
- Local sources
- Bounded-depth circuit (AC ${ }^{0}$)
- Turing machine

Extractors for local functions

- $f:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ d-local : each output bit depends on d input
- Theorem[V.] From d-local n-bit source with min-entropy k:

Let T:=k poly(k/nd)
Extract T bits, $\operatorname{error} \exp (-T)$

- E.g. $T=k^{c}$ from $k=n^{1-c}, d=n^{c}$
- Note: always need k > d
- $\mathrm{d}=\mathrm{O}(1) \Rightarrow \mathrm{NC}^{0}$ source. Independently [De Watson]

High-level proof

- Theorem d-local n-bit min-entropy k source (T:=k poly(k/nd))

Is convex combination of bit-block source

 block-size $=d n / k$, entropy T, error $\exp (-T)$- Bit-block source with entropy T:
$\left(0,1, X_{1}, 1-X_{5}, X_{3}, X_{3}, 1-X_{2}, 0, X_{7}, 1-X_{8}, 1, X_{1}\right)$
$X_{1}, X_{2}, \ldots, X_{T} \in\{0,1\}$
$0<$ occurrences of $X_{i}<$ block-size $=d n / k$
- Special case of low-weight affine sources Use [Rao 09]

Proof

- d-local n-bit source min-entropy k: convex combo bit-block

- Output entropy $>k \Rightarrow \exists y_{i}$ with variance $>k / n$
- Isoperimetry $\Rightarrow \exists x_{j}$ with influence $>\mathrm{k} / \mathrm{nd}$
- Set uniformly $N\left(N\left(\mathbf{x}_{j}\right)\right) \backslash\left\{\mathbf{x}_{j}\right\}$
$(\mathrm{N}(\mathrm{v})=$ neighbors of v$)$ with prob. $>\mathrm{k} / \mathrm{nd}, \quad \mathrm{N}\left(\mathbf{x}_{\mathrm{j}}\right)$ non-constant block of size nd/k
- Repeat $k /\left|N\left(N\left(x_{j}\right)\right)\right|=k k / n d^{2}$ times, expect $k k^{2} / n^{2} d^{3}$ blocks

Open problem

- Does previous result hold for decision-tree sources?
- May use isoperimetric inequality for decision trees [O'Donnell Saks Schramm Servedio]

Outline of talk

- Lower bound for sampling $W_{k}=$ uniform weight- k string
- Randomness extractors
- Local sources
- Bounded-depth circuit $\left(\mathrm{AC}^{0}\right)$
- Turing machine

Bounded-depth circuits (AC^{0})

- Theorem [V.]

From $\mathrm{AC}^{0} \mathrm{n}$-bit source with min-entropy k : Extract k poly $\left(k / n^{1.001}\right)$ bits, error $1 / n \omega(1)$

High-level proof

- Apply random restriction [Furst Saxe Sipser, Ajtai, Yao, Hastad]
- Switching lemma: Circuit collapses to $\mathrm{d}=\mathrm{n}^{\varepsilon}$-local apply previous extractor for local sources
- Problem: fix 1-o(1) input variables, entropy?

The effect of restrictions on entropy

- Theorem $f:\{0,1\}^{*} \rightarrow\{0,1\}^{n}: f(X)$ has min-entropy k

Let R be random restriction with $\operatorname{Pr}[*]=p$
With high prob., $f \mathrm{I}_{\mathrm{R}}(\mathrm{X})$ has min-entropy pk

- Parameters: $k=\operatorname{poly}(\mathrm{n}), \mathrm{p}=1 / \sqrt{ } \mathrm{k}$

After restriction both circuit collapsed
and min-entropy $\mathrm{pk}=\sqrt{ } \mathrm{k}$ still poly(n)

The effect of restrictions on entropy

- Theorem $f:\{0,1\}^{*} \rightarrow\{0,1\}^{n}: f(X)$ has min-entropy k

Let R be random restriction with $\operatorname{Pr}\left[{ }^{*}\right]=p$
With high prob., $\left.f\right|_{R}(X)$ has min-entropy $p k$

- Proof: Builds on [Lovett V]
- Isoperimetric inequality for noise: $\forall A \subseteq\{0,1\}^{L}$ of density α random m, m ' obtained flipping bits $\mathrm{w} /$ probability p : $\alpha^{2} \leq \operatorname{Pr}\left[\right.$ both $\mathrm{m} \in \mathrm{A}$ and $\left.\mathrm{m}^{\prime} \in \mathrm{A}\right] \leq \alpha^{1+\mathrm{p}}$
- Bound collision probability $\operatorname{Pr}\left[\left.f\right|_{R}(X)=\left.f\right|_{R}(Y)\right]$

Bounded-depth circuits (AC^{0})

- Corollary to AC^{0} extractor

Explicit boolean f : AC^{0} cannot sample ($\mathrm{Y}, \mathrm{f}(\mathrm{Y})$)
$\mathrm{f}:=1$-bit affine extractor for min-entropy $\mathrm{k}=\mathrm{n}^{0.99}$

- Note: For k > 1/2, Inner Product 1-bit affine extractor, and AC ${ }^{0}$ can sample (Y , InnerProduct(Y)) [Impagliazzo Naor]
- Explains why affine extractors for $k<1 / 2$ more complicated

Open problem

- Theorem[V.] AC0 can generate (Y , majority $(\mathrm{Y}$)), error 2-|Y|
- Challenge: error 0 ?
- Related [Lovett V.] Does every bijection
$\{0,1\}^{n}=\bigcup \rightarrow \mathcal{Q}=\left\{x \in\{0,1\}^{n+1}: \sum x_{i} \geq n / 2\right\}$
have large expected hamming distortion?

Outline of talk

- Lower bound for sampling $W_{k}=$ uniform weight-k string
- Randomness extractors
- Local sources
- Bounded-depth circuit (AC ${ }^{0}$)
- Turing machine

Turing-machine source

- Machines start on blank (all-zero) tape
have "coin-toss" state: writes random bit on tape

- When computation is over, first n bits on tape are sample

Extractors

- Theorem [V.] From Turing-machine n-bit source running in time $\leq \mathrm{n}^{1.9}$ and with min-entropy $\mathrm{k} \geq \mathrm{n}^{0.9}$: Extract $n^{\Omega(1)}$ bits, $\operatorname{error} \exp \left(-n^{\Omega(1)}\right)$
- Proof: Variant of crossing-sequence technique Δ TM source = convex combo of independent-block source (no error)
Use e.g. [Kamp Rao Vadhan Zuckerman]

Extractors

- Corollary [V.] Turing-machine running in time $\leq \mathrm{n}^{1.9}$ cannot sample ($\mathrm{X}, \mathrm{Y}, \operatorname{InnerProduct(X,Y)}$) for $|X|=|Y|=n$
- Proof: As before, but use extractor in [Chor Goldreich]

Summary

- Complexity of distributions = uncharted research direction
- New connections to data structures, randomness extractors, and various combinatorial problems
- First sampling lower bounds and extractors for local, decision tree (not in this talk), $A C^{0}$
Turing machines

