The complexity of distributions

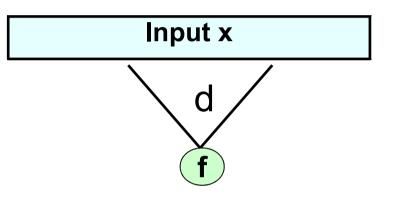
Emanuele Viola

Northeastern University

August 2010

Local functions

• $f: \{0,1\}^n \rightarrow \{0,1\}$ d-local : output depends on d input bits

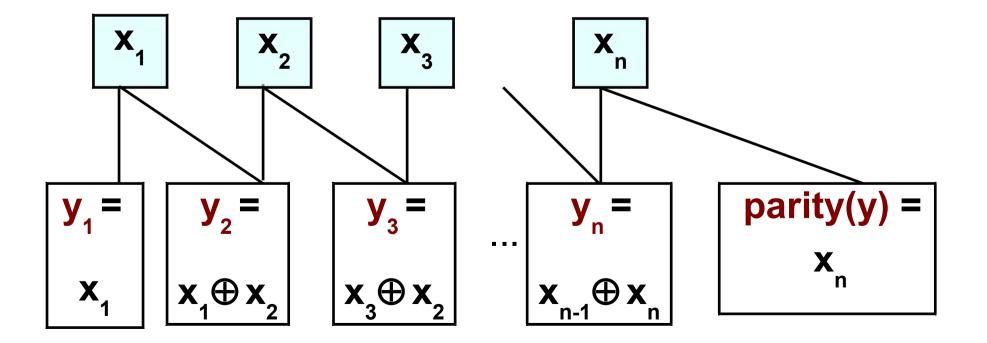


• Fact: Parity(x) = 1 $\Leftrightarrow \sum x_i = 1 \mod 2$ is not n-1 local

• Proof: Flip any input bit \Rightarrow output flips \blacklozenge

Local generation of (Y, parity(Y))

• Theorem [Babai '87; Boppana Lagarias '87] There is $f : \{0,1\}^n \rightarrow \{0,1\}^{n+1}$, each bit is 2-local Distribution $f(X) \equiv (Y, parity(Y))$ (X, $Y \in \{0,1\}^n$ uniform)



• Complexity theory of distributions (as opposed to functions)

How hard is it to generate distribution D given random bits ?

E.g., D = (Y, parity(Y)), D = W_k := uniform n-bit with k 1's

Rest of this talk

Connection with succinct data structures

• Lower bound for locally generating $W_{n/2} = n$ -bit with n/2 1's

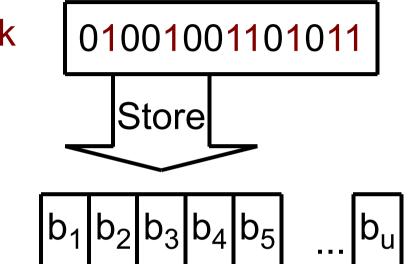
Decision tree model

• Bounded-depth circuit model (with Shachar Lovett)

Succinct data structures for sets

• Store $S \subseteq \{1, 2, ..., n\}$ of size |S| = k

In u bits $b_1, ..., b_u \in \{0, 1\}$



- Want: Small space u (optimal = ⌈lg₂ (n choose k)⌉)
 Answer "i ∈ S?" by probing few bits (optimal = 1)
- In combinatorics: Nešetřil Pultr, ..., Körner Monti

Previous results

• Store $S \subseteq \{1, 2, ..., n\}$, |S| = k, in bits, answer "i $\in S$?"

 [Minsky Papert '69, Buhrman Miltersen Radhakrishnan Venkatesh; Pagh; ...; Pătraşcu; V. '09]

Surprising upper bounds
 space = optimal + o(n), probe O(log n)

• No lower bounds for $k = n / 2^a$

General connection

 Claim: If store S ⊆ {1, 2, ..., n}, |S| = k in u = optimal + r bits answer "i ∈ S?" by (non-adaptively) probing d bits.

Then $\exists f : \{0,1\}^u \rightarrow \{0,1\}^n$, d-local Distance(f(X), W_k = uniform set of size k) < 1 - 2^{-r}

(Distance(A, B) := max_T | $Pr[A \in T] - Pr[B \in T]$)

• **Proof**: $f_i := "i \in S?"$

 $f(X) = W_k$ with probability (n choose k) / $2^u = 2^{-r}$

Our result

• Theorem[V.] f : {0,1}^{optimal + n^{o(1)} \rightarrow {0,1}ⁿ, (d < ϵ log n)-local. Distance(f(X), W_k = uniform set of size k= $\Theta(n)$) > 1 - n^{- $\Omega(1)$}}

• Tight up to $\Omega()$ if k = n/2: f(x) = x, (n choose n/2) =O(2ⁿ/ \sqrt{n})

 Corollary: To store S ⊆ {1, 2, ..., n}, |S| = k = n / 2^a answer "i ∈ S?" probing d < ε log(n) bits: Need space > optimal + Ω(log n)

Rest of this talk

Connection with succinct data structures

• Lower bound for locally generating $W_{n/2} = n$ -bit with n/2 1's

• Decision tree model

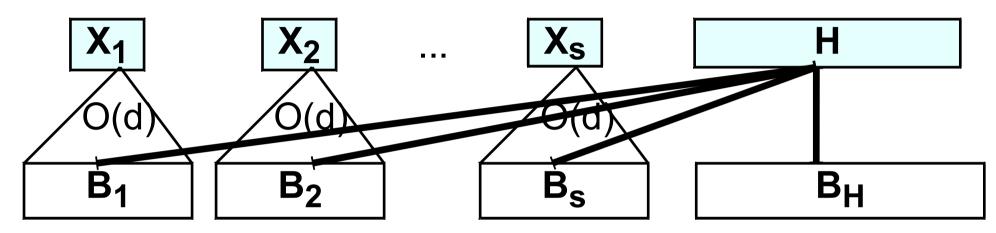
• Bounded-depth circuit model

Our result

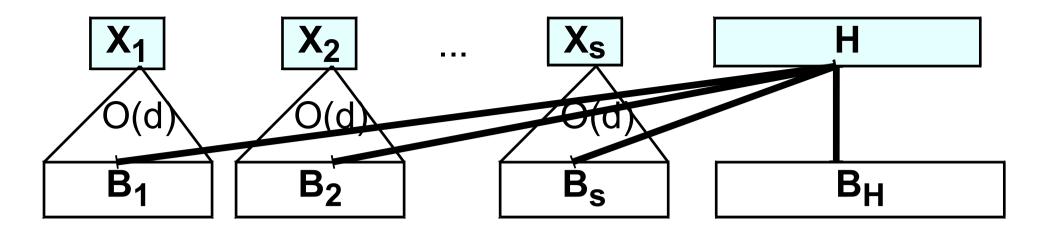
- Theorem[V.]: Let $f : \{0,1\}^n \to \{0,1\}^n : (d=O(1))$ -local. There is $T \subseteq \{0,1\}^n : | Pr[f(x) \in T] - Pr[W_{n/2} \in T] | \ge 1 - n^{-\Omega(1)}$
 - Warm-up scenarios:
 - f(x) = 000111 Low-entropy $T := \{ 000111 \}$ $Pr[f(x) \in T] - Pr[W_{n/2} \in T] = 1 - |T| / (n choose n/2)$
- f(x) = x "Anti-concentration" $T := \{ z : \sum_{i} z_{i} = n/2 \}$ $Pr[f(x) \in T] - Pr[W_{n/2} \in T] = 1/\sqrt{n - 1}$

Proof

• Partition input bits $X = (X_1, X_2, \dots, X_s, H)$



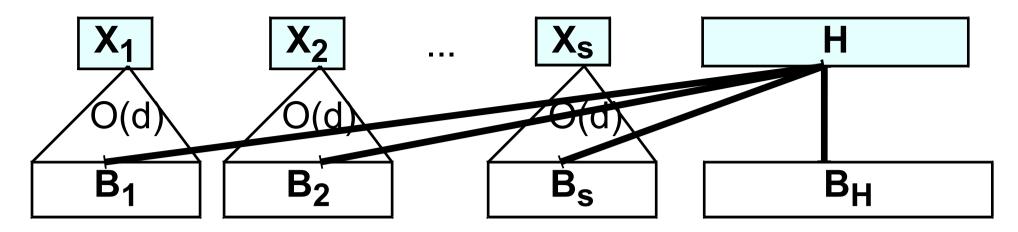
- Fix H. Output block B_i depends only on bit X_i
 - Many B_i constant ($B_i(0,H) = B_i(1,H)$) \Rightarrow low-entropy
 - Many B_i depend on X_i (B_i(0,H) ≠ B_i(1,H))
 Idea: Independent ⇒ anti-concentration: can't sum to n/2



• If many $B_i(0,H)$, $B_i(1,H)$ have different sum of bits, use

Anti-concentration Lemma [Littlewood Offord] For $a_1, a_2, ..., a_s \neq 0$, any c, $\Pr_{X \in \{0,1\}^s} \left[\sum_i a_i X_i = c \right] < 1/\sqrt{n}$

- Problem: $B_i(0,H) = 100$, $B_i(1,H) = 010$ high entropy but no anti-concentration
- Fix: want many blocks 000, so high entropy \Rightarrow different sum



• Test $T \subseteq \{0,1\}^n$: $\Pr[f(X_1,...,X_s,H) \in T] \approx 1$; $\Pr[W_{n/2} \in T] \approx 0$

$Z \in T \Leftrightarrow$

∃ H : ∃ X₁,...,X_s w/ many blocks B_i fixed : $f(X_1,...,X_s,H) = z$ OR Few blocks $z|_{B_i}$ are 000 OR $\sum_i z_i \neq n/2$

Rest of this talk

Connection with succinct data structures

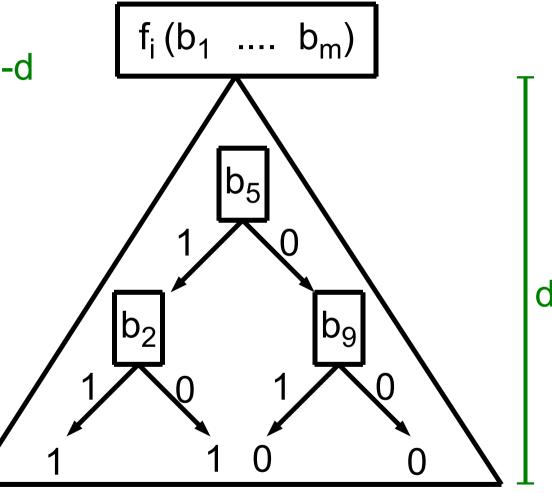
• Lower bound for locally generating $W_{n/2} = n$ -bit with n/2 1's

• Decision tree model

• Bounded-depth circuit model

Decision tree model

 f: {0,1}^m → {0,1}ⁿ depth-d each output bit f_i is depth-d decision tree



• Depth d $\subseteq 2^d$ local

Our result for decision trees

• Theorem[V.] $f: \{0,1\}^* \rightarrow \{0,1\}^n$: each bit depth < 0.1 log n Distance(f(X), W_{n/2})> n^{- $\Omega(1)$}

• Worse than 1 - $n^{-\Omega(1)}$ bound for O(1)-local functions

• Theorem[Czumaj Kanarek Lorys Kutyłowski, V.] $\exists f : \{0,1\}^* \rightarrow \{0,1\}^n : each bit depth O(log n)$ Distance(f(X), W_{n/2}) < 1/n

Tool for lower bound proof

• Central limit theorem:

$$x_1, x_2, ..., x_n$$
 independent $\Rightarrow \sum x_i \approx normal$

• Bounded-independence central limit theorem [Diakonikolas Gopalan Jaiswal Servedio V.] $x_1, x_2, ..., x_n$ k-wise independent $\Rightarrow \sum x_i \approx$ normal

Note: For next result, Paley–Zygmund inequality enough

Proof

- Theorem[V.] f: $\{0,1\}^* \rightarrow \{0,1\}^n$: each bit depth < 0.1 log n Distance(f(X), W_{n/2})> n^{-Ω(1)}
 - **Proof**: Is output distribution f(X) (**k** = 10)-wise independent?

 $NO \Rightarrow W_{n/2} \approx k$ -wise independent

Distance(those k bits, uniform on $\{0,1\}^k$) > 2^{-k(0.1 log n)} (granularity of decision tree probability)

YES ⇒ by prev. theorem $\sum f(X)_i \approx \text{ normal}$ so often $\sum f(X)_i \neq n/2$

Rest of this talk

Connection with succinct data structures

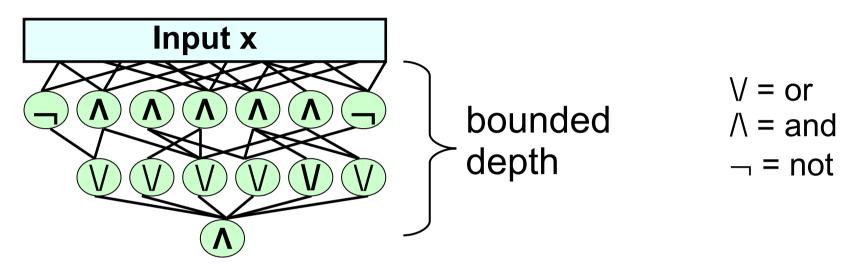
• Lower bound for locally generating $W_{n/2} = n$ -bit with n/2 1's

• Decision tree model

• Bounded-depth circuit model

Bounded-depth circuits

• More general model: small bounded-depth circuits (AC⁰)



- Challenge: ∃ explicit boolean f : cannot generate (Y, f(Y))?
- Theorem[Matias Vishkin, Hagerup, Czumaj Kanarek Lorys Kutyłowski, V.]
 Can generate (Y, majority(Y)) (exp. small error)
- Theorem [Lovett V.] Cannot generate error-correcting code

Lower bound for codes

• Code $C \subseteq \{0,1\}^n$ of size $|C| = 2^{k} = \Omega(n)$ $x \neq y \in C \implies x, y$ far : hamming distance $\Omega(n)$

• Theorem [Lovett V.] $f: \{0,1\}^* \rightarrow \{0,1\}^n$, $f \in AC^0$ Distance(f(X), uniform over C) > 1 - n^{- $\Omega(1)$}

 Consequences for data structures for codewords, complexity of pseudorand. generators against AC⁰ [Nisan]

Warm-up

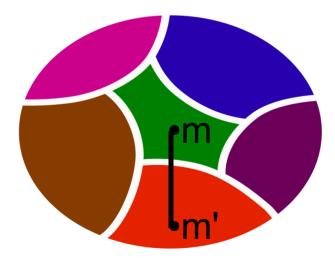
- Fact: $f: \{0,1\}^k \rightarrow \{0,1\}^n$, $f \in AC^0$ f cannot compute encoding function of C, mapping message $m \in \{0,1\}^k$ to codeword
- Proof:
- [Linial Mansour Nisan, Boppana] low sensitivity of AC⁰: m, m' random at hamming distance 1 ⇒ f(m), f(m') close in hamming distance.
- But $f(m) \neq f(m') \in C \implies$ far in hamming distance

Lower bound for codes

• Theorem [Lovett V.] $f: \{0,1\}^{L >> k} \rightarrow \{0,1\}^{n}$, $f \in AC^{0}$ Distance(f(X), uniform over C) > 1 - $n^{-\Omega(1)}$

Problem: f needs not compute encoding function. Input length >> message length

 Idea: Input {0,1}^L to f partitioned in |C| sets



Isoperimetric inequality [Harper, Hart]:
 Random m, m' at distance 1 often in ≠ sets ⇒ low sensitivity

Lower bound for codes

• Theorem [Lovett V.] $f: \{0,1\}^{L >> k} \rightarrow \{0,1\}^{n}$, $f \in AC^{0}$ Distance(f(X), uniform over C) > 1 - $n^{-\Omega(1)}$

• Note: to get -

Need isoperimetric inequality for m, m' at distance >> 1

Fact[thanks to Samorodnitsky] $\forall A \subseteq \{0,1\}^{L}$ of density α random m, m' obtained flipping bits w/ probability p :

 $\alpha^2 \leq \text{Pr[both } m \in A \text{ and } m' \in A] \leq \alpha^{1/(1-p)}$

Complexity of generators against AC⁰

- Pseudorandom generator against circuit of depth d (want: reduce randomness w/ minimum overhead)
- Direct implementation of Nisan's generator takes depth $\geq d$ (circuit + generator \rightarrow depth 2d)
- [Lovett V.] Generating output distribution of Nisan's generator takes depth ≥ d (for some choice of designs)
- [V.] Generator in depth 2 (circuit + generator → depth d+1) [Braverman] + [Guruswami Umans Vadhan]

Conclusion

• Complexity of distributions = uncharted territory

- Lower bound for generating W_k locally
 ⇒ lower bound for succinct data structures for storing sets of size n / 2^a
- Lower bound for decision trees
- Lower bound for bounded-depth circuits (AC⁰)

- ≠≈
- •
- Recall: edit style changes ALL settings.
- Click on "line" for just the one you highlight

More connections

- More uses of generating W_k := uniform n-bit string with k 1's
- McEliece cryptosystem
- Switching networks, ...

Previous results

- Store $S \subseteq \{1, 2, ..., n\}$, |S| = k, in bits, answer "i $\in S$?"
 - [Minsky Papert '69] Average-case study
 - [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh '00] Space O(optimal), probe O(1) when $k = \Theta(n)$

Lower bounds for $k < n^{1-\epsilon}$

- [..., Pagh, Pătraşcu] space = optimal + o(n), probe O(log n)
- [V. '09] lower bounds for $k = \Omega(n)$, except $k = n / 2^a$