The complexity of distributions

Emanuele Viola

Northeastern University

August 2010

Local functions

- $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ d-local : output depends on d input bits

- Fact: $\operatorname{Parity}(x)=1 \Leftrightarrow \sum x_{i}=1 \bmod 2$ is not $\mathrm{n}-1$ local
- Proof: Flip any input bit \Rightarrow output flips

Local generation of (Y, parity (Y))

- Theorem [Babai '87; Boppana Lagarias '87]

There is $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$, each bit is 2-local
Distribution $f(X) \equiv(Y$, parity $(Y)) \quad\left(X, Y \in\{0,1\}^{n}\right.$ uniform $)$

Message

- Complexity theory of distributions (as opposed to functions)

How hard is it to generate distribution D given random bits?
E.g., $D=(Y$, parity $(Y)), \quad D=W_{k}:=$ uniform n-bit with $k 1$'s

Rest of this talk

- Connection with succinct data structures
- Lower bound for locally generating $\mathrm{W}_{\mathrm{n} / 2}=\mathrm{n}$-bit with $\mathrm{n} / 21$'s
- Decision tree model
- Bounded-depth circuit model (with Shachar Lovett)

Succinct data structures for sets

- Store $S \subseteq\{1,2, \ldots, n\}$ of size $|S|=k$ In u bits $b_{1}, \ldots, b_{u} \in\{0,1\}$

- Want:

Small space u (optimal $=\left\lceil\lg _{2}(\mathrm{n}\right.$ choose k$\left.\left.)\right\rceil\right)$
Answer " $\mathrm{i} \in \mathrm{S}$?" by probing few bits (optimal = 1)

- In combinatorics: Nešetřil Pultr, ..., Körner Monti

Previous results

- Store $S \subseteq\{1,2, \ldots, n\},|S|=k$, in bits, answer " $i \in S$?"
- [Minsky Papert '69, Buhrman Miltersen Radhakrishnan

Venkatesh; Pagh; ...; Pătraşcu; V. '09]

- Surprising upper bounds space $=$ optimal $+o(n)$, probe $O(\log n)$
- No lower bounds for $k=n / 2^{a}$

General connection

- Claim: If store $S \subseteq\{1,2, \ldots, n\},|S|=k$ in $u=o p t i m a l+r$ bits answer " $\mathrm{i} \in \mathrm{S}$?" by (non-adaptively) probing d bits.

Then $\exists \mathrm{f}:\{0,1\}^{\mathrm{u}} \rightarrow\{0,1\}^{\mathrm{n}}$, d-local Distance($f(X), W_{k}=$ uniform set of size $\left.k\right)<1-2^{-r}$
$\left(\operatorname{Distance}(A, B):=\max _{T}|\operatorname{Pr}[A \in T]-\operatorname{Pr}[B \in T]|\right)$

- Proof: $f_{i}:=$ " $i \in S$?" $f(X)=W_{k}$ with probability (n choose k) $/ 2^{u}=2^{-r}$

Our result

- Theorem[V.] f : $\{0,1\}^{\circ}$ optimal $+n^{o(1)} \rightarrow\{0,1\}^{n},(d<\varepsilon \log n)$-local. Distance $\left(f(X), W_{k}=\right.$ uniform set of size $\left.k=\Theta(n)\right)>1-n^{-\Omega(1)}$
- Tight up to $\Omega()$ if $k=n / 2: f(x)=x,(n$ choose $n / 2)=O(2 n / \sqrt{n})$
- Corollary: To store $S \subseteq\{1,2, \ldots, n\},|S|=k=n / 2^{a}$ answer " $\mathrm{i} \in \mathrm{S}$?" probing $\mathrm{d}<\varepsilon \log (\mathrm{n})$ bits:
Need space > optimal $+\Omega(\log n)$

Rest of this talk

- Connection with succinct data structures
- Lower bound for locally generating $\mathrm{W}_{\mathrm{n} / 2}=\mathrm{n}$-bit with $\mathrm{n} / 21$'s
- Decision tree model
- Bounded-depth circuit model

Our result

- Theorem[V.]: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}:(\mathrm{d}=\mathrm{O}(1))$-local.

There is $\mathrm{T} \subseteq\{0,1\}^{\mathrm{n}}:\left|\operatorname{Pr}[\mathrm{f}(\mathrm{x}) \in \mathrm{T}]-\operatorname{Pr}\left[\mathrm{W}_{\mathrm{n} / 2} \in \mathrm{~T}\right]\right|>1-\mathrm{n}^{-\Omega(1)}$

- Warm-up scenarios:
- $f(x)=000111$ Low-entropy $T:=\{000111\}$

$$
\left|\operatorname{Pr}[f(x) \in T]-\operatorname{Pr}\left[W_{n / 2} \in T\right]\right|=|1-|T| /(n \text { choose } n / 2)|
$$

- $\mathrm{f}(\mathrm{x})=\mathrm{x}$ "Anti-concentration" $\mathrm{T}:=\left\{\mathrm{z}: \sum_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}=\mathrm{n} / 2\right\}$

$$
\left|\operatorname{Pr}[f(x) \in T]-\operatorname{Pr}\left[W_{n / 2} \in T\right]\right|=|1 / \sqrt{n}-1|
$$

Proof

- Partition input bits $\mathrm{X}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{s}}, \mathrm{H}\right)$

- Fix H. Output block B_{i} depends only on bit X_{i}
- Many B_{i} constant $\left(\mathrm{B}_{\mathrm{i}}(0, \mathrm{H})=\mathrm{B}_{\mathrm{i}}(1, \mathrm{H})\right) \Rightarrow$ low-entropy
- Many B_{i} depend on $\mathrm{X}_{\mathrm{i}}\left(\mathrm{B}_{\mathrm{i}}(0, \mathrm{H}) \neq \mathrm{B}_{\mathrm{i}}(1, \mathrm{H})\right.$) Idea: Independent \Rightarrow anti-concentration: can't sum to $\mathrm{n} / 2$

- If many $\mathrm{B}_{\mathrm{i}}(0, \mathrm{H}), \mathrm{B}_{\mathrm{i}}(1, \mathrm{H})$ have different sum of bits, use

Anti-concentration Lemma [Littlewood Offord]
For $a_{1}, a_{2}, \ldots, a_{s} \neq 0$, any $c, \operatorname{Pr}_{X \in\{0,1\}}\left[\sum_{i} a_{i} X_{i}=c\right]<1 / \sqrt{ } n$

- Problem: $\mathrm{B}_{\mathrm{i}}(0, \mathrm{H})=100, \mathrm{~B}_{\mathrm{i}}(1, \mathrm{H})=010$ high entropy but no anti-concentration
- Fix: want many blocks 000 , so high entropy \Rightarrow different sum

- Test $T \subseteq\{0,1\}^{\mathrm{n}}: \operatorname{Pr}\left[f\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{s}}, \mathrm{H}\right) \in \mathrm{T}\right] \approx 1 ; \operatorname{Pr}\left[\mathrm{W}_{\mathrm{n} / 2} \in \mathrm{~T}\right] \approx 0$
$z \in T \Leftrightarrow$
$\exists H: \exists X_{1}, \ldots, X_{s} w /$ many blocks B_{i} fixed : $f\left(X_{1}, \ldots, X_{s}, H\right)=z$ OR
Few blocks z $_{\mathrm{B}_{i}}$ are 000 OR
$\sum_{\mathrm{i}} \mathrm{z}_{\mathrm{i}} \neq \mathrm{n} / 2$

Rest of this talk

- Connection with succinct data structures
- Lower bound for locally generating $\mathrm{W}_{\mathrm{n} / 2}=\mathrm{n}$-bit with $\mathrm{n} / 21$'s
- Decision tree model
- Bounded-depth circuit model

Decision tree model

- $f:\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ depth-d each output bit f_{i} is depth-d decision tree

- Depth $d \subseteq 2^{\text {d }}$ local

Our result for decision trees

- Theorem[V.] $f:\{0,1\}^{*} \rightarrow\{0,1\}^{n}:$ each bit depth $<0.1 \log n$ Distance $\left(f(X), W_{n / 2}\right)>n^{-\Omega(1)}$
- Worse than $1-\mathrm{n}^{-\Omega(1)}$ bound for $\mathrm{O}(1)$-local functions
- Theorem[Czumaj Kanarek Lorys Kutyłowski, V.]
$\exists f:\{0,1\}^{*} \rightarrow\{0,1\}^{n}:$ each bit depth $O(\log n)$
Distance $\left(\mathrm{f}(\mathrm{X}), \mathrm{W}_{\mathrm{n} / 2}\right)<1 / \mathrm{n}$

Tool for lower bound proof

- Central limit theorem:
$\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ independent $\Rightarrow \sum \mathrm{x}_{\mathrm{i}} \approx$ normal

- Bounded-independence central limit theorem [Diakonikolas Gopalan Jaiswal Servedio V.] $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ k-wise independent $\Rightarrow \sum \mathrm{x}_{\mathrm{i}} \approx$ normal
- Note: For next result, Paley-Zygmund inequality enough

Proof

- Theorem[V.] $f:\{0,1\}^{*} \rightarrow\{0,1\}^{n}:$ each bit depth $<0.1 \log n$ Distance $\left(f(X), W_{n / 2}\right)>n^{-\Omega(1)}$
- Proof: Is output distribution $f(X)(k=10)$-wise independent?
$\mathrm{NO} \Rightarrow \mathrm{W}_{\mathrm{n} / 2} \approx \mathrm{k}$-wise independent
Distance(those k bits, uniform on $\left.\{0,1\}^{k}\right)>2^{-k}(0.1 \log n)$
(granularity of decision tree probability)

YES \Rightarrow by prev. theorem $\sum \mathrm{f}(\mathrm{X})_{\mathrm{i}} \approx$ normal so often $\sum \mathrm{f}(\mathrm{X})_{\mathrm{i}} \neq \mathrm{n} / 2$

Rest of this talk

- Connection with succinct data structures
- Lower bound for locally generating $\mathrm{W}_{\mathrm{n} / 2}=\mathrm{n}$-bit with $\mathrm{n} / 21$'s
- Decision tree model
- Bounded-depth circuit model

Bounded-depth circuits

- More general model: small bounded-depth circuits (AC^{0})

- Challenge: \exists explicit boolean $\mathrm{f}:$ cannot generate $(\mathrm{Y}, \mathrm{f}(\mathrm{Y})$) ?
- Theorem[Matias Vishkin, Hagerup, Czumaj Kanarek Lorys Kutyłowski, V.] Can generate (Y, majority(Y)) (exp. small error)
- Theorem [Lovett V.] Cannot generate error-correcting code

Lower bound for codes

- Code $C \subseteq\{0,1\}^{n}$ of size $|C|=2^{k=\Omega(n)}$
$x \neq y \in C \Rightarrow x, y$ far : hamming distance $\Omega(n)$
- Theorem [Lovett V.] $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{n}}, \mathrm{f} \in \mathrm{AC}{ }^{0}$ Distance $(f(X)$, uniform over $C)>1-n^{-\Omega(1)}$
- Consequences for data structures for codewords, complexity of pseudorand. generators against AC ${ }^{0}$ [Nisan]

Warm-up

- Fact: $\mathrm{f}:\{0,1\}^{k} \rightarrow\{0,1\}^{\mathrm{n}}, \mathrm{f} \in \mathrm{AC} \mathbf{C}^{0}$ f cannot compute encoding function of C , mapping message $m \in\{0,1\}^{k}$ to codeword
- Proof:
- [Linial Mansour Nisan, Boppana] low sensitivity of AC ${ }^{0}$: m, m random at hamming distance 1
$\Rightarrow f(m), f\left(m^{\prime}\right)$ close in hamming distance.
- But $f(m) \neq f\left(m^{\prime}\right) \in C \Rightarrow$ far in hamming distance

Lower bound for codes

- Theorem [Lovett V.] f: $\{0,1\}^{L \gg k} \rightarrow\{0,1\}^{\mathrm{n}}, \mathrm{f} \in \mathrm{AC}{ }^{0}$ Distance $(f(X)$, uniform over $C)>1-n^{-\Omega(1)}$

Problem: f needs not compute encoding function. Input length >> message length

- Idea: Input $\{0,1\}^{L}$ to f partitioned in |C| sets

- Isoperimetric inequality [Harper, Hart]: Random m, m ' at distance 1 often in \neq sets \Rightarrow low sensitivity

Lower bound for codes

- Theorem [Lovett V.] $\mathrm{f}:\{0,1\}^{\mathrm{L} \gg \mathrm{k}} \rightarrow\{0,1\}^{\mathrm{n}}, \mathrm{f} \in \mathrm{AC} \mathrm{C}^{0}$

Distance $(f(X)$, uniform over $C)>1-n^{-\Omega(1)}$

- Note: to get

Need isoperimetric inequality for m, m at distance >> 1

Fact[thanks to Samorodnitsky] $\forall \mathrm{A} \subseteq\{0,1\}^{\mathrm{L}}$ of density α random m , m ' obtained flipping bits $\mathrm{w} /$ probability p : $\alpha^{2} \leq \operatorname{Pr}\left[\right.$ both $m \in A$ and $\left.m^{\prime} \in \mathrm{A}\right] \leq \alpha^{1 /(1-\mathrm{p})}$

Complexity of generators against $A C^{0}$

- Pseudorandom generator against circuit of depth d (want: reduce randomness w/ minimum overhead)
- Direct implementation of Nisan's generator takes depth $\geq \mathrm{d}$ (circuit + generator \rightarrow depth 2 d)
- [Lovett V.] Generating output distribution of Nisan's generator takes depth $\geq \mathrm{d}$
(for some choice of designs)
- [V.] Generator in depth 2 (circuit + generator \rightarrow depth d+1) [Braverman] + [Guruswami Umans Vadhan]

Conclusion

- Complexity of distributions = uncharted territory
- Lower bound for generating W_{k} locally
\Rightarrow lower bound for succinct data structures for storing sets of size $n / 2^{\text {a }}$
- Lower bound for decision trees
- Lower bound for bounded-depth circuits (AC^{0})
- $\Sigma \Pi \vee \cap \notin \cup \supseteq \not \subset \subset \subseteq \in \Downarrow \Rightarrow \Uparrow \Leftarrow \Leftrightarrow \vee \wedge \geq \leq \forall \exists \Omega \alpha \beta \varepsilon \gamma \delta \rightarrow$
- $\neq \approx$
- Recall: edit style changes ALL settings.
- Click on "line" for just the one you highlight

More connections

- More uses of generating W_{k} := uniform n-bit string with k 1's
- McEliece cryptosystem
- Switching networks, ...

Previous results

- Store $S \subseteq\{1,2, \ldots, n\},|S|=k$, in bits, answer " $i \in S$?"
- [Minsky Papert '69] Average-case study
- [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh '00]

Space O (optimal), probe $O(1)$ when $k=\Theta(n)$
Lower bounds for $\mathrm{k}<\mathrm{n}^{1-\varepsilon}$

- [..., Pagh, Pătraşcu] space = optimal +o(n), probe O(log n)
- [V. '09] lower bounds for $k=\Omega(n)$, except $k=n / 2^{a}$

