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● f : {0,1}n → {0,1}  d-local :
output depends on d input bits

● Fact: Parity(x) = 1 ⇔ ∑ xi = 1 mod 2
is not n-1 local

● Proof: Flip any input bit ⇒ output flips ♦

Local functions
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● Theorem [Babai '87; Boppana Lagarias '87]
There is f : {0,1}n → {0,1}n+1 , each bit is 2-local 
Distribution f(X) ≡ ( Y, parity(Y) )     (X, Y ∈ {0,1}n  uniform)

Local generation of ( Y, parity(Y) )
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● Complexity theory of distributions  (as opposed to functions)

How hard is it to generate distribution D given random bits ?

E.g., D = ( Y, parity(Y) ),   D = Wk := uniform n-bit with k 1's

Message



  

● Connection with succinct data structures

● Lower bound for locally generating Wn/2  =  n-bit with n/2 1's

● Decision tree model

● Bounded-depth circuit model (with Shachar Lovett)

Rest of this talk



  

● Store S ⊆ {1, 2, …, n} of size |S| = k 

   In u bits b1, …, bu    ∈ {0,1}

● Want:
Small space u   (optimal = lg2 (n choose k))
Answer “i ∈ S?” by probing few bits (optimal = 1)

● In combinatorics: Nešetřil Pultr, …, Körner Monti

Succinct data structures for sets

01001001101011

b1 b2 b3 b4 b5 bu...

Store



  

● Store S ⊆ {1, 2, … , n}, |S| = k, in bits, answer “i ∈ S?” 

● [Minsky Papert '69, Buhrman Miltersen Radhakrishnan
 Venkatesh; Pagh; ...; Pătraşcu; V. '09]

● Surprising upper bounds
space = optimal + o(n), probe O(log n)

● No lower bounds for k = n / 2a 

Previous results



  

● Claim: If store S ⊆ {1, 2, …, n}, |S| = k  in u = optimal + r bits
answer “i ∈ S?” by (non-adaptively) probing d bits.

    
    Then ∃ f : {0,1}u  → {0,1}n  , d-local 

Distance( f(X), Wk = uniform set of size k) < 1 - 2-r  

     ( Distance(A, B) := maxT | Pr[A ∈ T] – Pr[B ∈ T] | )

● Proof: fi := “i ∈ S?”
f(X) = Wk   with probability (n choose k) / 2u = 2-r   ♦

General connection



  

● Theorem[V.] f : {0,1}optimal + nο(1)→{0,1}n , (d < ε log n)-local.

Distance(f(X), Wk = uniform set of size k= Θ(n)) > 1 - n-Ω(1) 

● Tight up to Ω() if k = n/2: f(x) = x, (n choose n/2) =O(2n/√n)

● Corollary: To store S ⊆ {1, 2, …, n}, |S| = k = n / 2a

     answer “i ∈ S?” probing d < ε log(n) bits:
Need space > optimal + Ω(log n)

Our result



  

● Connection with succinct data structures

● Lower bound for locally generating Wn/2 =   n-bit with n/2 1's

● Decision tree model

● Bounded-depth circuit model

Rest of this talk



  

● Theorem[V.]: Let f : {0,1}n → {0,1}n  : (d=O(1))-local.

There is T ⊆ {0,1}n  : | Pr[f(x)∈T] – Pr[Wn/2∈T] | > 1 - n-Ω(1) 

● Warm-up scenarios:

● f(x) = 000111    Low-entropy            T := { 000111 }      

  | Pr[ f(x) ∈ T] – Pr[Wn/2 ∈ T] | = |1  – |T| / (n choose n/2) |

● f(x) = x       “Anti-concentration”       T := { z : ∑i
 zi = n/2 }

                         | Pr[ f(x) ∈ T] – Pr[Wn/2 ∈ T] | = |1/√n  – 1 |

Our result



  

● Partition input bits X = (X1 , X2 , … , Xs , H)

● Fix H. Output block Bi depends only on bit Xi

● Many Bi constant ( Bi(0,H) = Bi(1,H) ) ⇒ low-entropy

● Many Bi  depend on Xi  ( Bi(0,H) ≠ Bi(1,H) )   
Idea: Independent ⇒ anti-concentration: can't sum to n/2

Proof
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● If many Bi(0,H) , Bi(1,H) have different sum of bits, use 

Anti-concentration Lemma [ Littlewood Offord ]

For a1, a2, ..., as  ≠ 0, any c, PrX∈{0,1}s [∑i
 ai Xi = c] < 1/√n

● Problem: Bi(0,H) = 100, Bi(1,H) = 010
high entropy but no anti-concentration

● Fix: want many blocks 000, so high entropy ⇒ different sum
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● Test T ⊆ {0,1}n  : Pr[f(X1,...,Xs,H)∈T] ≈ 1 ;  Pr[Wn/2∈T] ≈ 0

z ∈T ⇔

∃ H : ∃ X1,...,Xs w/ many blocks Bi fixed : f(X1,...,Xs,H) = z
   OR
Few blocks z|Bi are 000
  OR

∑i
 zi ≠ n/2
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● Connection with succinct data structures

● Lower bound for locally generating Wn/2 =   n-bit with n/2 1's

● Decision tree model

● Bounded-depth circuit model

Rest of this talk



  

● f : {0,1}m → {0,1}n  depth-d
each output bit fi  
is depth-d decision tree

Decision tree model

fi (b1   ....  bm)
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● Depth d  ⊆  2d local



  

● Theorem[V.]  f : {0,1}* → {0,1}n  : each bit depth < 0.1 log n

                      Distance( f(X), Wn/2 )> n-Ω(1) 

● Worse than 1 - n-Ω(1)  bound for O(1)-local functions

● Theorem[Czumaj Kanarek Lorys Kutyłowski, V.]

∃ f : {0,1}* → {0,1}n  : each bit depth O(log n)
Distance(f(X), Wn/2 ) < 1/n

Our result for decision trees



  

● Central limit theorem:

x
1 
, x

2 
, ..., x

n  
independent ⇒ ∑x

i 
≈ normal

● Bounded-independence central limit theorem
[Diakonikolas Gopalan Jaiswal Servedio V. ]

x
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, x

2 
, ..., x

n   
k-wise independent ⇒ ∑x

i   
≈  normal

● Note: For next result, Paley–Zygmund inequality enough

Tool for lower bound proof



  

● Theorem[V.]  f : {0,1}* → {0,1}n  : each bit depth < 0.1 log n

                     Distance( f(X), Wn/2 )> n-Ω(1) 

● Proof: Is output distribution f(X) (k = 10)-wise independent?

NO ⇒ Wn/2  ≈ k-wise independent 

       Distance(those k bits, uniform on {0,1}k) > 2-k(0.1 log n)

       (granularity of decision tree probability)

YES ⇒ by prev. theorem ∑f(X)
i  
≈  normal                             

          so often ∑f(X)
i 
≠ n/2                         ♦

Proof



  

● Connection with succinct data structures

● Lower bound for locally generating Wn/2 =   n-bit with n/2 1's

● Decision tree model

● Bounded-depth circuit model

Rest of this talk



  

● More general model: small bounded-depth circuits (AC0) 

● Challenge: ∃ explicit boolean f : cannot generate ( Y, f(Y) ) ?

● Theorem[Matias Vishkin, Hagerup, Czumaj Kanarek Lorys Kutyłowski, V.]

Can generate ( Y, majority(Y) )       (exp. small error)

● Theorem [Lovett V.] Cannot generate error-correcting code

Bounded-depth circuits
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● Code C ⊆ {0,1}n of size |C| = 2k =Ω(n)

          x ≠ y ∈ C ⇒  x, y far : hamming distance Ω(n)

● Theorem [Lovett V.]  f : {0,1}* → {0,1}n , f ∈ AC0

Distance(f(X), uniform over C) > 1 - n-Ω(1)

● Consequences for data structures for codewords, 
complexity of pseudorand. generators against AC0  [Nisan]

Lower bound for codes



  

● Fact: f : {0,1}k → {0,1}n , f ∈ AC0

f cannot compute encoding function of C,

mapping message m ∈ {0,1}k to codeword

● Proof:

● [Linial Mansour Nisan, Boppana] low sensitivity of AC0:
   m, m' random at hamming distance 1
   ⇒ f(m), f(m') close in hamming distance.

● But f(m) ≠ f(m') ∈ C ⇒  far in hamming distance     ♦

Warm-up



  

● Theorem [Lovett V.]  f : {0,1}L >> k → {0,1}n , f ∈ AC0

Distance(f(X), uniform over C) > 1 - n-Ω(1)

Problem: f needs not compute encoding function.
Input length >> message length

● Idea: Input {0,1}L  to f partitioned
                                    in |C| sets

● Isoperimetric inequality [Harper, Hart]:
Random m, m' at distance 1 often in ≠ sets ⇒ low sensitivity

Lower bound for codes

●m

●m'



  

● Theorem [Lovett V.]  f : {0,1}L >> k → {0,1}n , f ∈ AC0

Distance(f(X), uniform over C) > 1 - n-Ω(1)

● Note: to get 
Need isoperimetric inequality for m, m' at distance >> 1

Fact[thanks to Samorodnitsky] ∀ A ⊆ {0,1}L of density α
random m,  m' obtained flipping bits w/ probability p :

α2 ≤ Pr[both m ∈ A and m' ∈ A] ≤ α1/(1-p)

Lower bound for codes



  

● Pseudorandom generator against circuit of depth d
(want: reduce randomness w/ minimum overhead)

● Direct implementation of Nisan's generator takes depth ≥ d
                                            (circuit + generator → depth 2d)

● [Lovett V.] Generating output distribution of Nisan's           
                 generator takes depth ≥ d
                                                  (for some choice of designs)

● [V.] Generator in depth 2   (circuit + generator → depth d+1)
                 [Braverman] + [Guruswami Umans Vadhan]

Complexity of generators against AC0



  

● Complexity of distributions = uncharted territory

● Lower bound for generating Wk  locally
⇒ lower bound for succinct data structures for storing

    sets of size n / 2a

● Lower bound for decision trees

● Lower bound for bounded-depth circuits (AC0)

Conclusion



  

● ∑∏√∩∉∪⊃⊇⊄⊂⊆∈⇓⇒⇑⇐⇔∨∧≥≤∀∃Ωαβεγδ→
● ≠≈

●

● Recall: edit style changes ALL settings.
● Click on “line” for just the one you highlight



  

● More uses of generating Wk := uniform n-bit string with k 1's

● McEliece cryptosystem

● Switching networks, …

More connections



  

● Store S ⊆ {1, 2, … , n}, |S| = k, in bits, answer “i ∈ S?” 

● [Minsky Papert '69] Average-case study

● [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh  '00]

    Space O(optimal), probe O(1)    when k = Θ(n) 

    Lower bounds for k < n1-ε

● [..., Pagh, Pătraşcu] space = optimal + o(n), probe O(log n)

● [V. '09] lower bounds for k = Ω(n), except  k = n / 2a 

Previous results


