Correlation bounds for polynomials,

and the disproof of a conjecture on Gowers' norm using Ramsey theory

Emanuele Viola

Northeastern University

May 2011

Polynomials

Polynomials: degree d, n variables over F₂ = {0,1}

E.g.,
$$p = x_1 + x_5 + x_7$$
 degree d = 1
 $p = x_1 \cdot x_2 + x_3$ degree d = 2

- Computational model: p : {0,1}ⁿ → {0,1}
 Sum (+) = XOR, Product (·) = AND
 x² = x over F₂ ⇒ multilinear
- Complexity = degree

Importance of model

Coding theory

Hadamard, Reed-Muller codes based on polynomials

- Circuit lower bounds [Razborov '87; Smolensky '87]
 Lower bound on polynomials ⇒ circuit lower bound
- Pseudorandomness [Naor Naor '90, Bogdanov V.] Useful for algorithms, PCP, expanders, learning...

Outline

- Correlation bounds
- Gowers' norm
- Disproof of a conjecture using Ramsey theory

Lower bound

• Question: Are there explicit functions that cannot be computed by low-degree polynomials?

• Answer:

 $x_1 \cdot x_2 \cdots x_d$ requires degree d

 $\begin{aligned} \text{Majority}(x_1, \dots, x_n) &:= 1 \Leftrightarrow \sum x_i > n/2 \\ \text{requires degree } n/2 \end{aligned}$

Correlation bound

 Question: Which functions do not correlate with low-degree polynomials?

• Cor(f, degree d) :=
$$\max_{degree-d p} \operatorname{Bias}(f+p) \in [0,1]$$

Bias(f+p) := $|\operatorname{Pr}_{X} [f(X)=p(X)] - \operatorname{Pr}_{X} [f(X)\neq p(X)]|$

X distribution on {0,1}ⁿ; often uniform; won't specify

E.g. Cor(deg d, deg d) = 1; Cor(random f, deg. d) ~ 0

• More challenging. Surveyed in [V.]

A sample of correlation bounds

- Want: Explicit **f**: Cor(**f**, degree $n^{\Omega(1)}) \le \exp(-n^{\Omega(1)})$ Equivalent to long-standing circuit lower bounds
- Candidate **f**: sum of input bits **mod 3**
- [Babai Nisan Szegedy '92] [Bourgain] … [V.]
 Cor(f, degree d) ≤exp(-n/2^d) (good if d ≤0.9 log n)

- [Razborov '87] [Smolensky]: Cor(f, degree $n^{\Omega(1)}) \le 1/\sqrt{n}$
- Barrier: $Cor(f, degree \log n) \le 1/n$?

Exact correlation

- Exact bounds: find polynomial maximing correlation [Green '04]
- [Kreymer V.] ongoing computer search
 - E.g.: Up to n = 10, Cor(mod 3, degree 2) maximized by symmetric polynomial =

sum of elementary symmetric polynomials

$$S_1 := \sum_i x_i$$
 $S_2 := \sum_{i < j} x_i \cdot x_j$

• Challenge: prove it for every n

Outline

- Correlation bounds
- Gowers' norm
- Disproof of a conjecture using Ramsey theory

Gowers Norm [Gowers '98; Alon Kaufman Krivelevich Litsyn Ron '03]

- Measure correlation with degree-d polynomials: check if random d-th derivative is biased
- Derivative in direction $y \in \{0,1\}^n$: $D_y f(x) := f(x+y) f(x)$ - E.g. $D_{y_1 y_2 y_3}(x_1 x_2 + x_3) = y_1 x_2 + x_1 y_2 + y_1 y_2 + y_3$
- Norm $N_d(f) := E_{Y^1...Y^d \in \{0,1\}^n} \operatorname{Bias}_U[D_{Y^1...Y^d} f(U)] \in [0,1]$ (Bias [Z] := | Pr[Z = 0] - Pr[Z = 1] |)
 - $N_d(f) = 1 \Leftrightarrow f$ has degree d

Using Gowers norm

- Lemma [Babai Nisan Szegedy] [Gowers] [Green Tao]
 Cor(f, degree d) < N_d(f)^{1/2^d}
- Theorem [V.]

Cor(**mod 3**, degree d) < $exp(n/4^d)$ Explicit **f** : Cor(**f**, degree d) < $exp(n/2^d)$

Best-known bounds for d < 0.9 log n.
 Slight improvement over [Babai Nisan Szegedy] [Bourgain]

Outline

- Correlation bounds
- Gowers' norm
- Disproof of a conjecture using Ramsey theory

A conjecture on Gowers' norm

- Conjecture [Green Tao] [Samorodnitsky] '07: For every function **f**, $N_d(\mathbf{f}) = \Omega(1) \Leftrightarrow Cor(\mathbf{f}, degree d) = \Omega(1)$
- [GT] [Lovett Meshulam Samorodnitsky]
 False for d = 4

Counterexample: $\mathbf{f} = \mathbf{S}_4 := \sum_{h < i < j < k} \mathbf{x}_h \cdot \mathbf{x}_j \cdot \mathbf{x}_k$ $N_3(\mathbf{S}_4) = \Omega(1)$ (not difficult) $Cor(\mathbf{S}_4, \text{ degree 3}) = o(1)$ (complicated)

Developments

 Remark: An inverse conjecture can be saved going to non-classical polynomials [Green Tao]

• After announcement of counterexample, [GT] and [V.] noted simple proof of $Cor(S_4^{4}, degree 3) = o(1)$

using [Alon Beigel], in turn based on Ramsey Theory

Simple proof [Alon Beigel]

- Theorem $Cor(S_4, degree d=3) = o(1)$
- Proof for d = 2: Let p be degree-2 polynomial.
- Easy if $p = \text{Linear} + b \frac{S_2}{2}$ $b \in \{0,1\}$
- Reduce to this case:

Graph V := {1,2,...,n}, E := { {i,j} : $x_i \cdot x_j$ monomial of p }

Ramsey: \exists clique (or indep. set) of size $\Omega(\log n)$

Fix other variables arbitrarily.

Conclusion

- Model: degree-d polynomials over {0,1}
- Correlation bounds

Barrier: correlation 1/n for degree log n Computer search reveals symmetry [Kreymer V.]

• Gowers' norm

Gives best known correlation bounds d < 0.9 log n [V.] A false conjecture [Green Tao] [Lovett Meshulam Samorodnitsky] simple proof [GT] [V.] via Ramsey theory [Alon Beigel]

- $\Sigma\Pi\sqrt{\alpha\beta\epsilon\gamma\delta} \rightarrow \Rightarrow$
- **≠≈**ΤΑΘω
- ∈ ∉

- $\bullet \quad \Sigma\Pi \forall \cap \not\in \cup \supset \supseteq \not\subset \subseteq \in \Downarrow \Rightarrow \Uparrow \Leftarrow \lor \land \ge \le \forall \exists \Omega \alpha \beta \epsilon \gamma \delta \rightarrow$
- ≠≈TAΘ

- Recall: edit style changes ALL settings.
- Click on "line" for just the one you highlight