Correlation bounds for polynomials,

and the disproof of a conjecture on
 Gowers' norm using Ramsey theory

Emanuele Viola

Northeastern University
May 2011

Polynomials

- Polynomials: degree d, n variables over $F_{2}=\{0,1\}$

$$
\begin{array}{lll}
\text { E.g., } & p=x_{1}+x_{5}+x_{7} & \text { degree } d=1 \\
& p=x_{1} \cdot x_{2}+x_{3} & \text { degree } d=2
\end{array}
$$

- Computational model: $\mathrm{p}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$

Sum (+) = XOR, Product (\cdot) = AND
$x^{2}=x$ over $F_{2} \Rightarrow$ multilinear

- Complexity = degree

Importance of model

- Coding theory

Hadamard, Reed-Muller codes based on polynomials

- Circuit lower bounds [Razborov '87; Smolensky '87]

Lower bound on polynomials \Rightarrow circuit lower bound

- Pseudorandomness [Naor Naor ‘90, Bogdanov V.] Useful for algorithms, PCP, expanders, learning...

Outline

- Correlation bounds
- Gowers' norm
- Disproof of a conjecture using Ramsey theory

Lower bound

- Question: Are there explicit functions that cannot be computed by low-degree polynomials?
- Answer:
$\mathrm{X}_{1} \cdot \mathrm{X}_{2} \cdots \mathrm{X}_{\mathrm{d}}$ requires degree d
Majority $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right):=1 \Leftrightarrow \sum \mathrm{x}_{\mathrm{i}}>\mathrm{n} / 2$
requires degree $\mathrm{n} / 2$

Correlation bound

- Question: Which functions do not correlate with low-degree polynomials?
- $\operatorname{Cor}\left(f\right.$, degree d) $:=\max _{\text {degree-d } p} \operatorname{Bias}(f+p) \quad \in[0,1]$
$\operatorname{Bias}(f+p):=\left|\operatorname{Pr}_{x}[f(X)=p(X)]-\operatorname{Pr}_{x}[f(X) \neq p(X)]\right|$
X distribution on $\{0,1\}^{n}$; often uniform; won't specify
E.g. $\operatorname{Cor}(\operatorname{deg} d, \operatorname{deg} d)=1 ; \operatorname{Cor}($ random $f, \operatorname{deg} . d) \sim 0$
- More challenging. Surveyed in [V.]

A sample of correlation bounds

- Want: Explicit f: $\operatorname{Cor}\left(\mathbf{f}\right.$, degree $\left.\mathrm{n}^{\Omega(1)}\right) \leq \exp \left(-\mathrm{n}^{\Omega(1)}\right)$ Equivalent to long-standing circuit lower bounds
- Candidate f: sum of input bits mod 3
- [Babai Nisan Szegedy '92] [Bourgain] ... [V.] $\operatorname{Cor}(\mathbf{f}$, degree $d) \leq \exp \left(-n / 2^{d}\right) \quad(\operatorname{good}$ if $d \leq 0.9 \log n)$
- [Razborov '87] [Smolensky]: $\operatorname{Cor}\left(\mathbf{f}\right.$, degree $\left.\mathrm{n}^{\Omega(1)}\right) \leq 1 / \sqrt{ } \mathrm{n}$
- Barrier: $\operatorname{Cor}(f$, degree $\log n) \leq 1 / n$?

Exact correlation

- Exact bounds: find polynomial maximing correlation [Green '04]
- [Kreymer V.] ongoing computer search E.g.: Up to $n=10, \operatorname{Cor}(\bmod 3$, degree 2$)$ maximized by symmetric polynomial = sum of elementary symmetric polynomials

$$
S_{1}:=\sum_{i} x_{i} \quad S_{2}:=\sum_{i<j} x_{i} \cdot x_{j}
$$

- Challenge: prove it for every n

Outline

- Correlation bounds
- Gowers' norm
- Disproof of a conjecture using Ramsey theory

Gowers norm

[Gowers '98; Alon Kaufman Krivelevich Litsyn Ron ‘03]

- Measure correlation with degree-d polynomials: check if random d-th derivative is biased
- Derivative in direction $y \in\{0,1\}^{n}: D_{y} f(x):=f(x+y)-f(x)$
- E.g. $D_{y_{1} y_{2} y_{3}}\left(x_{1} x_{2}+x_{3}\right)=y_{1} x_{2}+x_{1} y_{2}+y_{1} y_{2}+y_{3}$
- $\operatorname{Norm} N_{d}(f):=E_{Y^{1} \ldots Y^{d} \in\{0,1\}^{n}} \operatorname{Bias}_{U}\left[D_{Y^{1} \ldots Y^{d}} f(U)\right] \in[0,1]$
(Bias [Z] :=|Pr[Z=0]-Pr[Z=1]|)
$N_{d}(f)=1 \Leftrightarrow f$ has degree d

Using Gowers norm

- Lemma [Babai Nisan Szegedy] [Gowers] [Green Tao] $\operatorname{Cor}(\mathbf{f}$, degree d$)<\mathrm{N}_{\mathrm{d}}(\mathbf{f})^{1 / 2^{\mathrm{d}}}$
- Theorem [V.]
$\operatorname{Cor}(\bmod 3$, degree $d)<\exp \left(n / 4^{d}\right)$
Explicit $\mathbf{f}: \operatorname{Cor}(\mathbf{f}$, degree d$)<\exp \left(\mathrm{n} / 2^{d}\right)$
- Best-known bounds for $\mathrm{d}<0.9 \log \mathrm{n}$. Slight improvement over [Babai Nisan Szegedy] [Bourgain]

Outline

- Correlation bounds
- Gowers' norm
- Disproof of a conjecture using Ramsey theory

A conjecture on Gowers' norm

- Conjecture [Green Tao] [Samorodnitsky] '07: For every function f,
$N_{d}(f)=\Omega(1) \Leftrightarrow \operatorname{Cor}(\mathbf{f}$, degree d$)=\Omega(1)$
- [GT] [Lovett Meshulam Samorodnitsky]

False for d = 4

Counterexample: $\mathbf{f}=\mathrm{S}_{4}:=\sum_{\mathrm{h}<\mathrm{i}<\mathrm{j}<\mathrm{k}} \mathrm{x}_{\mathrm{h}} \cdot \mathrm{x}_{\mathrm{i}} \cdot \mathrm{x}_{\mathrm{j}} \cdot \mathrm{x}_{\mathrm{k}}$
$\mathrm{N}_{3}\left(\mathrm{~S}_{4}\right)=\Omega(1)$
(not difficult)
$\operatorname{Cor}\left(\mathrm{S}_{4}\right.$, degree 3$)=\mathrm{o}(1) \quad($ complicated $)$

Developments

- Remark: An inverse conjecture can be saved going to non-classical polynomials [Green Tao]
- After announcement of counterexample, [GT] and [V.] noted simple proof of $\operatorname{Cor}\left(\mathrm{S}_{4}\right.$, degree 3$)=\mathrm{o}(1)$
using [Alon Beigel], in turn based on Ramsey Theory

Simple proof [Alon Beigel]

- Theorem $\operatorname{Cor}\left(\mathrm{S}_{4}\right.$, degree $\left.\mathrm{d}=3\right)=\mathrm{o}(1)$
- Proof for $d=2$: Let p be degree-2 polynomial.
- Easy if $p=$ Linear $+b S_{2} \quad b \in\{0,1\}$
- Reduce to this case:

Graph $V:=\{1,2, \ldots, n\}, E:=\left\{\{i, j\}: x_{i} \cdot x_{j}\right.$ monomial of $\left.p\right\}$
Ramsey: \exists clique (or indep. set) of size $\Omega(\log n$)
Fix other variables arbitrarily.

Conclusion

- Model: degree-d polynomials over $\{0,1\}$
- Correlation bounds

Barrier: correlation $1 / n$ for degree log n
Computer search reveals symmetry [Kreymer V.]

- Gowers' norm

Gives best known correlation bounds $\mathrm{d}<0.9 \log \mathrm{n}$ [V.]
A false conjecture [Green Tao] [Lovett Meshulam Samorodnitsky] simple proof [GT] [V.] via Ramsey theory [Alon Beigel]

- $\Sigma \Pi \sqrt{ } \nsubseteq \cup \supset \supseteq \not \subset \subset \subseteq \in \downarrow \Rightarrow \pi \Leftarrow \Leftrightarrow \vee \wedge \geq \leq \forall \exists \Omega \alpha \beta \varepsilon \gamma \delta \rightarrow \Rightarrow$
- $\not \approx \approx \mathrm{TA} \Theta \omega$
- $\in \notin$
- $\Sigma \Pi \vee \cap \notin \cup \supset \supseteq \not \subset \subset \subseteq \in \Downarrow \Rightarrow \Uparrow \Leftarrow \Leftrightarrow \vee \wedge \geq \leq \forall \exists \Omega \alpha \beta \varepsilon \gamma \delta \rightarrow$
- $\neq \approx \mathrm{TA} \Theta$
- Recall: edit style changes ALL settings.
- Click on "line" for just the one you highlight

