On the complexity of distributions

Emanuele Viola

Northeastern University

Laci Babai's 60th birthday conference March 2010

Local functions

• $f: \{0,1\}^n \rightarrow \{0,1\}$ d-local : output depends on d input bits

• Fact: Parity(x) = 1 $\Leftrightarrow \sum x_i = 1 \mod 2$ is not n-1 local

• Proof: Flip any input bit \Rightarrow output flips \blacklozenge

Local generation of (Y, parity(Y))

• Theorem [Babai '87]

There is f : $\{0,1\}^n \rightarrow \{0,1\}^{n+1}$, each bit is 2-local Distribution f(X) = (Y, parity(Y)) (X, Y \in \{0,1\}^n uniform)

• Complexity theory of distributions (as opposed to functions)

How hard is it to generate distribution D given random bits ?

E.g., D = (Y, parity(Y)), D = W_k := uniform n-bit with k 1's

Rest of this talk

Connection with succinct data structures

• Lower bound for generating $W_{n/2}$ = uniform n-bit with n/2 1's

• Other results and conclusion

Succinct data structures for sets

• Store $S \subseteq \{1, 2, ..., n\}$ of size |S| = k

In u bits $b_1, ..., b_u \in \{0, 1\}$

- Want: Small space u (optimal = [lg₂ (n choose k)])
 Answer "i ∈ S?" by probing few bits (optimal = 1)
- In combinatorics: Nešetřil Pultr, ..., Körner Monti

Previous results

• Store $S \subseteq \{1, 2, ..., n\}$, |S| = k, in bits, answer "i $\in S$?"

 [Minsky Papert '69, Buhrman Miltersen Radhakrishnan Venkatesh; Pagh; ...; Pătraşcu; V. '09]

Surprising upper bounds
 space = optimal + o(n), probe O(log n)

• No lower bounds for $k = n / 2^a$

General connection

 Claim: If store S ⊆ {1, 2, ..., n}, |S| = k in u = optimal + r bits answer "i ∈ S?" by (non-adaptively) probing d bits.

Then $\exists f : \{0,1\}^u \rightarrow \{0,1\}^n$, d-local Distance(f(X), W_k = uniform set of size k) < 1 - 2^{-r}

(distance(A, B) := max_T | $Pr[A \in T] - Pr[B \in T]$)

• **Proof**: $f_i := "i \in S?"$

 $f(X) = W_k$ with probability (n choose k) / $2^u = 2^{-r}$ \blacklozenge

Our result

• Theorem: f : {0,1}^{optimal + n^{o(1)} \rightarrow {0,1}ⁿ , (d < $\epsilon \log(n)$)-local. Distance(f(X), W_k = uniform set of size k= $\Theta(n)$) > 1 - n^{- $\Omega(1)$}}

• Tight up to $\Omega()$ if k = n/2: f(x) = x, (n choose n/2) =O(2ⁿ/ \sqrt{n})

 Corollary: To store S ⊆ {1, 2, ..., n}, |S| = k = n / 2^a answer "i ∈ S?" probing d < ε log(n) bits: Need space > optimal + Ω(log n)

Rest of this talk

Connection with succinct data structures

• Lower bound for generating $W_{n/2}$ = uniform n-bit with n/2 1's

• Other results and conclusion

Our result

- Theorem: Let $f : \{0,1\}^n \rightarrow \{0,1\}^n : (d=O(1))$ -local. There is $T \subseteq \{0,1\}^n : | Pr[f(x) \in T] - Pr[W_{n/2} \in T] | \ge 1 - n^{-\Omega(1)}$
 - Warm-up scenarios:
 - f(x) = 000111 Low-entropy $T := \{ 000111 \}$ $Pr[f(x) \in T] - Pr[W_{n/2} \in T] = 1 - |T| / (n choose n/2)$
- f(x) = x "Anti-concentration" $T := \{ z : \sum_{i} z_{i} = n/2 \}$ $Pr[f(x) \in T] - Pr[W_{n/2} \in T] = 1/\sqrt{n - 1}$

Proof

• Partition input bits $X = (X_1, X_2, \dots, X_s, H)$

- Fix H. Output block B_i depends only on bit X_i
 - Many B_i constant ($B_i(0,H) = B_i(1,H)$) \Rightarrow low-entropy
 - Many B_i depend on X_i (B_i(0,H) ≠ B_i(1,H))
 Intuitively, anti-concentration: output bits can't sum to n/2

• If many $B_i(0,H)$, $B_i(1,H)$ have different sum of bits, use

Anti-concentration Lemma [Littlewood Offord] For $a_1, a_2, ..., a_s \neq 0$, any c, $\Pr_{X \in \{0,1\}^s} \left[\sum_i a_i X_i = c \right] < 1/\sqrt{n}$

- Problem: $B_i(0,H) = 100$, $B_i(1,H) = 010$ high entropy but no anti-concentration
- Fix: want many blocks 000, so high entropy \Rightarrow different sum

Rest of this talk

Connection with succinct data structures

• Lower bound for generating $W_{n/2}$ = uniform n-bit with n/2 1's

• Other results and conclusion

Other directions and results

More general model: small bounded-depth circuits (AC⁰)

- Challenge: ∃ explicit boolean f : cannot generate (Y, f(Y))?
- Theorem[Matias Vishkin, Hagerup, Czumaj Kanarek Lorys Kutyłowski, V.]
 Can generate (Y, majority(Y)) (exp. small error)
- Theorem [Lovett V.] Cannot generate error-correcting code

Conclusion

• Complexity of distributions = uncharted territory

- Lower bound for generating W_k locally

 ⇒ lower bound for succinct data structures for storing sets of size n / 2^a

• ≠≈

More connections

- More uses of generating W_k := uniform n-bit string with k 1's
- McEliece cryptosystem
- Switching networks, ...

Previous results

- Store $S \subseteq \{1, 2, ..., n\}$, |S| = k, in bits, answer "i $\in S$?"
 - [Minsky Papert '69] Average-case study
 - [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh '00] Space O(optimal), probe O(1) when $k = \Theta(n)$

Lower bounds for $k < n^{1-\epsilon}$

- [..., Pagh, Pătraşcu] space = optimal + o(n), probe O(log n)
- [V. '09] lower bounds for $k = \Omega(n)$, except $k = n / 2^a$