On the complexity of distributions

Emanuele Viola

Northeastern University

Laci Babai's 60th birthday conference March 2010

Local functions

- $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ d-local : output depends on d input bits

- Fact: $\operatorname{Parity}(x)=1 \Leftrightarrow \sum x_{i}=1 \bmod 2$ is not $\mathrm{n}-1$ local
- Proof: Flip any input bit \Rightarrow output flips

Local generation of (Y, parity (Y))

- Theorem [Babai '87]

There is $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}+1}$, each bit is 2 -local
Distribution $f(X) \equiv(Y$, parity $(Y)) \quad\left(X, Y \in\{0,1\}^{n}\right.$ uniform $)$

Message

- Complexity theory of distributions (as opposed to functions)

How hard is it to generate distribution D given random bits?
E.g., $D=(Y$, parity $(Y)), \quad D=W_{k}:=$ uniform n-bit with $k 1$'s

Rest of this talk

- Connection with succinct data structures
- Lower bound for generating $\mathrm{W}_{\mathrm{n} / 2}=$ uniform n -bit with $\mathrm{n} / 21$'s
- Other results and conclusion

Succinct data structures for sets

- Store $S \subseteq\{1,2, \ldots, n\}$ of size $|S|=k$

In u bits $b_{1}, \ldots, b_{u} \in\{0,1\}$

- Want:

Small space u (optimal $=\left\lceil\lg _{2}(\mathrm{n}\right.$ choose k$\left.\left.)\right\rceil\right)$
Answer " $\mathrm{i} \in \mathrm{S}$?" by probing few bits (optimal = 1)

- In combinatorics: Nešetřil Pultr, ..., Körner Monti

Previous results

- Store $S \subseteq\{1,2, \ldots, n\},|S|=k$, in bits, answer " $i \in S$?"
- [Minsky Papert '69, Buhrman Miltersen Radhakrishnan

Venkatesh; Pagh; ...; Pătraşcu; V. '09]

- Surprising upper bounds space $=$ optimal $+o(n)$, probe $O(\log n)$
- No lower bounds for $k=n / 2^{a}$

General connection

- Claim: If store $S \subseteq\{1,2, \ldots, n\},|S|=k$ in $u=o p t i m a l+r$ bits answer " $i \in S$?" by (non-adaptively) probing d bits.

Then $\exists \mathrm{f}:\{0,1\}^{\mathrm{u}} \rightarrow\{0,1\}^{\mathrm{n}}$, d-local Distance($f(X), W_{k}=$ uniform set of size $\left.k\right)<1-2^{-r}$

$$
\left(\operatorname{distance}(A, B):=\max _{T}|\operatorname{Pr}[A \in T]-\operatorname{Pr}[B \in T]|\right)
$$

- Proof: $f_{i}:=$ " $i \in S$?" $f(X)=W_{k}$ with probability (n choose k) $/ 2^{u}=2^{-r}$

Our result

- Theorem: $\mathrm{f}:\{0,1\}$ optimal $+\mathrm{n}^{\mathrm{o}(1)} \rightarrow\{0,1\}^{\mathrm{n}},(\mathrm{d}<\varepsilon \log (\mathrm{n}))$-local. Distance $\left(f(X), W_{k}=\right.$ uniform set of size $\left.k=\Theta(n)\right)>1-n^{-\Omega(1)}$
- Tight up to $\Omega()$ if $k=n / 2: f(x)=x,(n$ choose $n / 2)=O(2 n / \sqrt{n})$
- Corollary: To store $S \subseteq\{1,2, \ldots, n\},|S|=k=n / 2^{a}$ answer " $\mathrm{i} \in \mathrm{S}$?" probing $\mathrm{d}<\varepsilon \log (\mathrm{n})$ bits:
Need space > optimal $+\Omega(\log n)$

Rest of this talk

- Connection with succinct data structures
- Lower bound for generating $\mathrm{W}_{\mathrm{n} / 2}=$ uniform n -bit with $\mathrm{n} / 21$ 1's
- Other results and conclusion

Our result

- Theorem: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}:(\mathrm{d}=\mathrm{O}(1))$-local.

There is $\mathrm{T} \subseteq\{0,1\}^{\mathrm{n}}:\left|\operatorname{Pr}[\mathrm{f}(\mathrm{x}) \in \mathrm{T}]-\operatorname{Pr}\left[\mathrm{W}_{\mathrm{n} / 2} \in \mathrm{~T}\right]\right|>1-\mathrm{n}^{-\Omega(1)}$

- Warm-up scenarios:
- $f(x)=000111$ Low-entropy $T:=\{000111\}$

$$
\left|\operatorname{Pr}[f(x) \in T]-\operatorname{Pr}\left[W_{n / 2} \in T\right]\right|=|1-|T| /(n \text { choose } n / 2)|
$$

- $\mathrm{f}(\mathrm{x})=\mathrm{x}$ "Anti-concentration" $\mathrm{T}:=\left\{\mathrm{z}: \sum_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}=\mathrm{n} / 2\right\}$

$$
\left|\operatorname{Pr}[f(x) \in T]-\operatorname{Pr}\left[W_{n / 2} \in T\right]\right|=|1 / \sqrt{ } n-1|
$$

Proof

- Partition input bits $\mathrm{X}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{s}}, \mathrm{H}\right)$

- Fix H. Output block B_{i} depends only on bit X_{i}
- Many B_{i} constant $\left(\mathrm{B}_{\mathrm{i}}(0, \mathrm{H})=\mathrm{B}_{\mathrm{i}}(1, \mathrm{H})\right) \Rightarrow$ low-entropy
- Many B_{i} depend on $X_{i}\left(B_{i}(0, H) \neq B_{i}(1, H)\right)$

Intuitively, anti-concentration: output bits can't sum to $\mathrm{n} / 2$

- If many $\mathrm{B}_{\mathrm{i}}(0, \mathrm{H}), \mathrm{B}_{\mathrm{i}}(1, \mathrm{H})$ have different sum of bits, use

Anti-concentration Lemma [Littlewood Offord]
For $a_{1}, a_{2}, \ldots, a_{s} \neq 0$, any $c, \operatorname{Pr}_{X \in\{0,1\}^{s}}\left[\sum_{i} a_{i} X_{i}=c\right]<1 / \sqrt{ } n$

- Problem: $\mathrm{B}_{\mathrm{i}}(0, \mathrm{H})=100, \mathrm{~B}_{\mathrm{i}}(1, \mathrm{H})=010$ high entropy but no anti-concentration
- Fix: want many blocks 000, so high entropy \Rightarrow different sum

Rest of this talk

- Connection with succinct data structures
- Lower bound for generating $\mathrm{W}_{\mathrm{n} / 2}=$ uniform n -bit with $\mathrm{n} / 21$'s
- Other results and conclusion

Other directions and results

- More general model: small bounded-depth circuits (AC^{0})

- Challenge: \exists explicit boolean $\mathrm{f}:$ cannot generate ($\mathrm{Y}, \mathrm{f}(\mathrm{Y})$) ?
- Theorem[Matias Vishkin, Hagerup, Czumaj Kanarek Lorys Kutyłowski, V.] Can generate (Y, majority(Y)) (exp. small error)
- Theorem [Lovett V.] Cannot generate error-correcting code

Conclusion

- Complexity of distributions = uncharted territory
- Lower bound for generating W_{k} locally
- \Rightarrow lower bound for succinct data structures for storing sets of size n / 2a
- $\Sigma \Pi \vee \cap \notin \cup \supset \supseteq \subset \subset \subseteq \in \Downarrow \Rightarrow \Uparrow \Leftarrow \Leftrightarrow \vee \wedge \geq \leq \forall \exists \Omega \alpha \beta \varepsilon \gamma \delta \rightarrow$
- $\neq \approx$

More connections

- More uses of generating W_{k} := uniform n-bit string with k 1's
- McEliece cryptosystem
- Switching networks, ...

Previous results

- Store $S \subseteq\{1,2, \ldots, n\},|S|=k$, in bits, answer " $i \in S$?"
- [Minsky Papert '69] Average-case study
- [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh '00]

Space O (optimal), probe $O(1)$ when $k=\Theta(n)$
Lower bounds for $\mathrm{k}<\mathrm{n}^{1-\varepsilon}$

- [..., Pagh, Pătraşcu] space = optimal +o(n), probe O(log n)
- [V. '09] lower bounds for $k=\Omega(n)$, except $k=n / 2^{a}$

