Hardness vs. Randomness within Alternating Time

Emanuele Viola Harvard University

July 2003

OVERVIEW

- Pseudorandom Generators (PRGs)
- Hardness vs. Randomness:

PRG constructions from complexity assumptions

• The problem we study:

Complexity of PRG constructions

• Our Results:

New tight upper and lower bounds on the complexity of PRG constructions

PSEUDORANDOM GENERATORS (PRGs)

$$\underbrace{01\dots00}_{u}\longrightarrow \boxed{\mathsf{PRG}}\longrightarrow \underbrace{01010010\dots010011010}_{n}$$

 $PRG(U_u), U_n$ computationally indistinguishable

TWO DIFFERENT KINDS OF PRGs

- Blum-Micali-Yao type [BM82,Y82]
 Based on one-way functions [HILL90]
- Nisan-Wigderson type [NW88] (our focus)
 Based on functions hard for circuits
 [BFNW,NW,I,IW,ACR,STV,ISW,SU,U,A,...]

Computational indistinguishability

 \forall circuit C of size n:

$$\left| \Pr[C(\mathsf{PRG}(U_u)) = 1] - \Pr[C(U_n) = 1] \right| \le \epsilon$$

DERANDOMIZATION

Save Randomness

Proof: If not, circuit

distinguishes $PRG(U_u)$ from U_n

"High-end" Derandomization

$$u = O(\log n) \Rightarrow BP \cdot P = P$$

HARDNESS vs. RANDOMNESS

PRGs based on Hard Functions

f hard for small circuits ψ PRG f

- Worst-case hard \forall small $C: C \neq f$
- Mildly average-case hard $\forall \operatorname{small} C : \Pr[C(U_l) \neq f(U_l)] \geq \frac{1}{\operatorname{poly}(l)}$
- •
- Strongly average-case hard $\forall \text{ small } C : \Pr[C(U_l) \neq f(U_l)] \approx \frac{1}{2}$

Want PRGs from worst-case hardness: Weakest and Clearest assumption

HARDNESS vs. RANDOMNESS cont.

THE PROBLEM WE STUDY

What is the complexity of building a PRG from a hard function?

Our main question

Starting from a hard function can you build a PRG in AC_{θ} ?

 $AC_0 = \text{constant depth circuits}$

TWO SEPARATE ISSUES

• PRG against AC_{θ} [AW,N,K,A,...] (in paper, not in talk)

$$U_u o egin{bmatrix} \mathsf{PRG} & o & \mathsf{C} \in AC_0 \\ U_n & o & \mathsf{C} \in AC_0 \end{bmatrix} o \end{bmatrix}$$
 Almost same acceptance probability

• PRG in AC_{θ} [IN,NR,CM,...] (in talk)

$$U_u o \boxed{\mathsf{PRG} \in AC_0} o \boxed{\mathsf{C}} o \boxed{\mathsf{Almost same}}$$
 acceptance probability

UNIFORMITY

Uniformity of C := complexity of describing <math>C

Problem: Slack uniformity \Rightarrow slack question

Solution: *DLOGTIME*-uniformity

Given indices to two gates can decide type and connection in linear time in index size

Right uniformity for AC_{θ} [BIS]

Our results hold under *DLOGTIME*-uniformity

MOTIVATIONS

Why build PRG in AC_0 ?

- Understand Hardness vs. Randomness
- Very efficient PRG
 - $-AC_{\theta} = \text{Constant parallel time}$
- Derandomization of probabilistic AC_{θ} $(BP \cdot AC_{\theta})$
 - Previous results [AW,N,K,A] do not hold under DLOGTIME-uniformity

OUR MAIN RESULTS

• Upper bounds

Mildly average-case hard f \downarrow PRG in AC_{θ}

- Lower Bounds for black-box constructions from worst-case hard functions
 - No PRG construction in AC_{θ}
 - No hardness amplification in AC_{θ}
- Our bounds match

MEANING OF OUR RESULTS

Consider the construction

Our results help understand its complexity

$$f$$
 worst-case hard \parallel

High complexity: $\not\in AC_0$
 \downarrow
 f' mildly average-case hard \parallel

Low complexity: $\in AC_0$
 \downarrow
 $PRG^{f'}$

LOWER BOUND FOR HARDNESS AMPLIFICATION

- Define black-box worst-case hardness amplification
- Define list-decodable codes
- Black-box worst-case hardness amplification yields list-decodable codes
- Prove lower bound for list-decodable codes

BLACK-BOX HARDNESS AMPLIFICATION

Most constructions black-box: Only use information theoretic properties

Formally, Amp is δ -black-box worst-case hardness amplification if for every f,A:

$$\Pr[A(U_l) \neq Amp^f(U_l)] \leq \delta,$$

 \exists small C such that $C^A = f$.

Note:

f worst-case hard $\Rightarrow Amp^f$ average-case hard

LIST-DECODABLE CODES

E is δ -list-decodable if $\forall A$ there are few f:

$$\Pr[A(U_l) \neq E^f(U_l)] \leq \delta$$

DEFINITIONS

• Amp is δ -black-box worst-case hardness amplification if for every f,A:

$$\Pr[A(U_l) \neq Amp^f(U_l)] \leq \delta,$$

 \exists small C such that $C^A = f$.

• E is δ -list-decodable if $\forall A$ there are few f:

$$\Pr[A(U_l) \neq E^f(U_l)] \leq \delta$$

HARDNESS AMPLIFICATION ⇒ CODE

Truth-table of f = message

Truth-table of Amp^f = codeword

Theorem (Following STV,TV).

Amp δ -black-box hardness amplification $\ \downarrow \ Amp$ δ -list-decodable

Proof:

- For every $f: \Pr[A(U_l) \neq Amp^f(U_l)] \leq \delta$ there is a small circuit $C: f = C^A$
- Only few small circuits \Rightarrow only few f

17

LOWER BOUND FOR LIST-DECODABLE CODES

Main tool Noise Sensitivity

Noise sensitivity of h is $\Pr[h(X) \neq h(X + \eta)]$ where X is random input, η random noise

Codes have high noise sensitivity

We show it

Constant depth circuits have low noise sensitivity

Theorem (LMN,B,O). C circuit of depth d and size s, η noise with parameter p:

$$\Pr_{X,\eta}[C(X) \neq C(X+\eta)] \leq p \log^d s$$

LOWER BOUND FOR LIST-DECODABLE CODES

Theorem. Let $E: \{0,1\}^n \to \{0,1\}^{\bar{n}}$ be $(\delta,2^m)$ -list-decodable and computable by a circuit of depth d and size s, then $\log^d s \geq n\delta/m$

Proof: η noise with parameter (m+1)/n

Consider
$$\Pr_{i,X,\eta}[E_i(X) \neq E_i(X+\eta)]$$

$$\forall$$
 fixed $x, a : \Pr_{\eta}[x + \eta = a] \leq \frac{1}{2^{m+1}}$

By list-decodability:

$$\Pr_{X,\eta} \left[\Pr_i[E_i(X) \neq E_i(X+\eta)] \leq \delta \right] \leq \frac{2^m}{2^{m+1}} = \frac{1}{2}$$

So:
$$\Pr_{i,X,\eta}[E_i(X) \neq E_i(X+\eta)] \geq \frac{\delta}{2}$$

By low sensitivity:

$$\Pr_{i,X,\eta}[E_i(X) \neq E_i(X+\eta)] \leq \frac{m \log^d s}{n}$$

HARDNESS AMPLIFICATION: CONCLUSION

Theorem. There is no black-box worst-case hardness amplification computable in AC_0 .

We show more: There is no black-box Amp:

- $f: \{0,1\}^l \to \{0,1\}$
- Amp in time $2^{o(l)}$ with O(1) alternations

Corollary. No black-box worst-case hardness amplification within polynomial-time hierarchy

We give matching upper bound

LOWER BOUND FOR PRG CONSTRUCTIONS

- Black-box PRG constructions yield extractors [T]
- Lower bound for extractors
 - Extractors have high noise sensitivityWe show it
 - Constant depth circuits have low noise sensitivity

[LMN,B,O]

CONCLUSION

- PRGs useful tool: Derandomization
- PRGs are built from hard functions
- We study the complexity of PRG constructions, and we show

ACKNOWLEDGEMENT

Many thanks to Salil Vadhan for encouragement, illuminating discussions, and suggesting the problem.