Polynomials over $\{0,1\}$

Emanuele Viola

Northeastern University
work done at Columbia, IAS, and Harvard

October 2008

Polynomials

- Polynomials: degree d, n variables over $F_{2}=\{0,1\}$

$$
\begin{array}{ll}
\text { E.g., } & p=x_{1}+x_{5}+x_{7} \\
p=x_{1} \cdot x_{2}+x_{3} & \text { degree } d=1 \\
& \text { degree } d=2
\end{array}
$$

- Computational model: $\mathrm{p}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ Sum (+) = XOR, Product $(\cdot)=$ AND $x^{2}=x$ over $F_{2} \Rightarrow$ Multilinear
- Complexity = degree

Motivation

- Coding theory Hadamard, Reed-Muller codes based on polynomials
- Circuit lower bounds [Razborov '87; Smolensky '87] Lower bound on polynomials \Rightarrow circuit lower bound
- Pseudorandomness [Naor \& Naor '90] Useful for algorithms, PCP, expanders, learning...

Outline

- Overview
- Correlation bounds
- Pseudorandom generators

Lower bound

- Question: Which functions cannot be computed by low-degree polynomials?
- Answer:
$x_{1} \cdot x_{2} \cdots x_{d}$ requires degree d
Majority $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right):=1 \Leftrightarrow \Sigma \mathrm{x}_{\mathrm{i}}>\mathrm{n} / 2$ requires degree $\mathrm{n} / 2$

Correlation bound

- Question: Which functions do not correlate with low-degree polynomials?
$\operatorname{Cor}\left(f\right.$, degree d) $:=\max _{\text {degree-d }} \operatorname{Bias}(f+p) \in[0,1]$ $\operatorname{Bias}(f+p):=\left|\operatorname{Pr}_{U \in\{0,1\}^{n}}[f(U)=p(U)]-\operatorname{Pr}_{U}[f(U) \neq p(U)]\right|$
E.g. $\operatorname{Cor}($ deg. d, deg. $d)=1 ; \operatorname{Cor}($ random f, deg. $d) \approx 0$
- Want: correlation small, degree large.
- Barrier: \exists explicit n-bit $f: \operatorname{Cor}\left(f\right.$, degree $\left.\log _{2} n\right) \leq 1 / n$?

A sample of correlation bounds

- [Babai, Nisan and Szegedy '92, Bourgain '05, Green Roy Straubing '05]: Explicit f: $\operatorname{Cor}(f$, degree $0.1 \log n) \leq \exp (-n)$
- [Razborov '87]: Explicit $\mathrm{f}: \operatorname{Cor}\left(\mathrm{f}\right.$, degree $\left.\mathrm{n}^{1 / 3}\right) \leq 1 / \sqrt{ } \mathrm{n}$
- Hardness amplification question:

Can amplify Razborov's bound to break the $" \operatorname{Cor}(f$, degree $\log n) \leq 1 / n "$ barrier?

Yao's XOR Iemma

- Generic way to boost correlation bound $M=$ computational model (e.g. $M=$ degree $\log n$)
- $f^{\oplus k}\left(x_{1}, \ldots, x_{k}\right):=f\left(x_{1}\right) \oplus \cdots \oplus f\left(x_{k}\right)$ Hope: $\operatorname{Cor}\left(\mathrm{f}^{\oplus \mathrm{k}}, \mathrm{M}\right) \leq \operatorname{Cor}(\mathrm{f}, \mathrm{M})^{\Omega(k)}$
- Theorem [Yao, Levin, Goldreich Nisan Wigderson, Impagliazzo,...] XOR lemma for $\mathrm{M}=$ circuits
- Question: [Razborov] bound for $\mathrm{f}+\mathrm{XOR}$ lemma \Rightarrow $\operatorname{Cor}\left(f\left(x_{1}\right) \oplus \ldots \oplus f\left(x_{k}\right)\right.$, degree $\left.\log n\right) \ll 1 / n ?$

XOR lemma proofs require majority

- XOR lemma proofs [L,GNW,I,...] are code-theoretic
- Theorem [Shaltiel V. '07]: Code-theoretic proofs of XOR lemma require model to compute majority
- Since polynomials cannot compute majority, no code-theoretic proof of XOR lemma for polynomials

[Shaltiel V. '07] + [Razborov Rudich] + [Naor Reingold]

"Lose-lose" reach of standard techniques:

Majority

Power of model

Cannot prove
XOR lemma [Shaltiel V.]

Cannot prove
Correlation bounds
[RR] + [NR]
"natural proofs barrier"
"You can only amplify the hardness you don't know"

Where we are

- Theorem[Shaltiel V. '07]: Code-theoretic proofs of XOR lemma do not work for polynomials
- Open: XOR lemma for degree log n
- Note: XOR lemma trivially true for degree 0,1
- Next[v. Wigderson]: XOR lemma for any constant degree Proof not code-theoretic

XOR lemma for constant degree

- Theorem[V. Wigderson]: XOR lemma for degree $\mathrm{O}(1)$
- Technique: Use norm $\mathrm{N}(\mathrm{f}) \approx[0,1]$:
(I) $\operatorname{Cor}(\mathrm{f}$, degree d$) \approx \mathrm{N}(\mathrm{f})$
(II) $\mathrm{N}\left(\mathrm{f}^{\oplus \mathrm{k}}\right)=\mathrm{N}(\mathrm{f})^{\mathrm{k}}$
- Proof of the XOR lemma:
$\operatorname{Cor}\left(f^{\oplus \mathrm{k}}\right.$, degree d$) \approx \mathrm{N}\left(\mathrm{f}^{\oplus \mathrm{k}}\right)=\mathrm{N}(\mathrm{f})^{\mathrm{k}} \approx \operatorname{Cor}(\mathrm{f}, \text { degree } \mathrm{d})^{\mathrm{k}}$
Q.e.d.

Gowers norm

[Gowers '98; Alon Kaufman Krivelevich Litsyn Ron '03]

- Measure correlation with degree-d polynomials: check if random d-th derivative is biased
- Derivative in direction $y \in\{0,1\}^{n}: D_{y} p(x):=p(x+y)-p(x)$ - E.g. $D_{y_{1} y_{2} y_{3}}\left(x_{1} x_{2}+x_{3}\right)=y_{1} x_{2}+x_{1} y_{2}+y_{1} y_{2}+y_{3}$
- $\operatorname{Norm} N_{d}(p):=E_{Y^{1} \ldots Y^{d} \in\{0,1\}^{n}} \operatorname{Bias}_{U}\left[D_{Y^{1}} \ldots Y^{d} p(U)\right] \in[0,1]$

$$
(\operatorname{Bias}[Z]:=|\operatorname{Pr}[Z=0]-\operatorname{Pr}[Z=1]|)
$$

$N_{d}(p)=1 \Leftrightarrow p$ has degree d

- From combinatorics [Gowers; Green Tao], to PCP [Samorodnitsky Trevisan], to correlation bounds [V. Wigderson]

Properties of norm

- $N_{d}(p):=E_{Y^{1}} \ldots Y^{d} \in\{0,1\}^{n} B_{i a s_{U}}\left[D_{Y^{1}} \ldots Y^{d} p(U)\right]$
(I) $\mathrm{N}_{\mathrm{d}}(\mathrm{f}) \approx \operatorname{Cor}(\mathrm{f}$, degree d$):$

Lemma[Gowers, Green Tao]:
$\operatorname{Cor}(\mathrm{f}$, degree d$) \leq \mathrm{N}_{\mathrm{d}}(\mathrm{f})^{1 / 2}{ }^{\mathrm{d}}$

Lemma[Alon Kaufman Krivelevich Litsyn Ron]:
(Gowers inverse conjecture, $\mathrm{N} \approx 1$ case)
$\operatorname{Cor}(\mathrm{f}$, degree d$) \leq 1 / 2 \Rightarrow N_{d}(\mathrm{f}) \leq 1-2-\mathrm{d}$
(II) $\mathrm{N}\left({ }^{\oplus} \oplus \mathrm{k}\right)=\mathrm{N}(\mathrm{f})^{\mathrm{k}}$

Follows from definition

Proof of XOR lemma

(I) $\mathrm{N}_{\mathrm{d}+1}(\mathrm{f}) \approx \operatorname{Cor}(\mathrm{f}, \mathrm{degree} \mathrm{d})$:

Lemma[G, GT]: Cor $(f$, degree $d) \leq N_{d}(f)^{1 / 2 d}$ Lemma[AKKLR]: $\operatorname{Cor}(f$, degree $d) \leq 1 / 2 \Rightarrow N_{d}(f) \leq 1-2-d$
(II) $\mathrm{N}\left(\mathrm{f}^{\mathrm{k}}\right)=\mathrm{N}(\mathrm{f})^{\mathrm{k}}$

- Theorem[V. Wigderson]:
$\operatorname{Cor}(f$, deg. d$) \leq 1 / 2 \Rightarrow \operatorname{Cor}\left(\oplus^{\oplus}\right.$, deg. $\left.d\right) \leq \exp \left(-k / 4^{\mathrm{d}}\right)$
- Proof:
$\operatorname{Cor}(f \oplus \in$, deg. $\left.d) \leq N_{d}(f \oplus k)\right)^{1 / 2^{d}}=N_{d}(f)^{k / 2^{d}} \leq\left(1-2^{-d}\right)^{k / 2^{d}}$ Q.e.d.
- More[VW]: Best known bound for degree $0.5 \log \mathrm{n}, \ldots$

Outline

- Overview
- Correlation bounds
- Pseudorandom generators

Pseudorandom generator

[Blum Micali; Yao; Nisan Wigderson]

- Efficient
- Short seed s(n) <<n
- Output "fools" degree-d polynomial p
$\left|\operatorname{Bias}_{X \in\{0,1\}^{\mathrm{s}}}[\mathrm{p}(\operatorname{Gen}(\mathrm{X}))]-\operatorname{Bias}_{\mathrm{U} \mathrm{\in}\{0,1\}^{\mathrm{n}}}[\mathrm{p}(\mathrm{U})]\right| \leq \varepsilon$

Previous results

- Th.[Naor Naor '90]: Fools linear, seed $=\mathrm{O}(\log n / \varepsilon)$
- Applications: derandomization, PCP, expanders, learning...
- Th.[Luby Velickovic Wigderson ‘93]: Fools constant degree, seed $=\exp (\sqrt{ } \log n / \varepsilon)$
- [V. '05] gives modular proof of more general result
- Th.[Bogdanov '05]: Any degree, but over large fields
- Over small fields such as $\{0,1\}$: no progress since 1993, even for degree $d=2$

Our results

- To fool degree d:

Let $L \in\{0,1\}^{n}$ fool linear polynomials [NN] bit-wise XOR d independent copies of L :

```
Generator := L' + +.. + L'd
```

- Theorem[Bogdanov V.]:
(I) Unconditionally: Fool degree $\mathrm{d}=2,3$
(II) Under "d vs. d-1 inverse conjecture": Any degree
- Optimal seed $s=O(\log n)$ for fixed degree and error

Recent developments after [BV]

- Th.[Lovett]: The sum of 2^{d} generators for degree 1 fools degree d, unconditionally.
- Recall [BV] sums d copies
- Progress on "d vs. d-1 inverse conjecture":
- Th.[Green Tao]: True when |F| > d Proof uses techniques from [BV] [BV] works when $|F|>d$ or $d=2,3$
- Th. [Green Tao], [Lovett Meshulam Samorodnitsky]: False when $F=\{0,1\}, d=4$

Our latest result

- Theorem[V.]:

The sum of d generators for degree 1 fools polynomials of degree d.
For every d and over any field.
(Despite the inverse conjecture being false)

- Improves on both [Bogdanov V.] and [Lovett]
- Also simpler proof

Proof idea

- Recall: want to show the sum of d generators for degree 1 fools degree-d polynomial p
- Induction: Fool degree $d \Rightarrow$ fool degree- $(d+1) p$ Inductive step: Case-analysis based on
$\operatorname{Bias}(p):=\left|\operatorname{Pr}_{U \in\{0,1\}^{n}}[p(\mathrm{U})=1]-\operatorname{Pr}_{U}[p(\mathrm{U})=0]\right|$
Cases:
- Bias(p) negligible \Rightarrow Fool p using extra copy of generator for degree 1
- $\operatorname{Bias}(\mathrm{p})$ noticeable \Rightarrow p close to degree-d polynomial \Rightarrow fool p by induction

Case Bias(p) negligible

- Hypothesis: L^{1}, \ldots, L^{d}, L over $\{0,1\}^{n}$ fool degree 1 $W:=L^{1}+\cdots+L^{d}$ fools degree d
- Goal: For degree- $(\mathrm{d}+1) \mathrm{p}: \operatorname{Bias}(\mathrm{p}(\mathrm{W}+\mathrm{L})) \approx \operatorname{Bias}(\mathrm{p}(\mathrm{U}))$
- Lemma[V]: Bias $(p(W+L)) \leq \operatorname{Bias}(p(U)) \approx 0$
- Proof: $\operatorname{Bias}_{\mathrm{W}, \mathrm{L}}[\mathrm{p}(\mathrm{W}+\mathrm{L})]^{2}=\mathrm{E}_{\mathrm{W}}\left[\operatorname{Bias}_{\mathrm{L}}(\mathrm{p}(\mathrm{W}+\mathrm{L}))\right]^{2}$

$$
\leq \mathrm{E}_{\mathrm{W}}[\operatorname{Bias}_{\mathrm{L}, \mathrm{~L}^{\prime}}(\underbrace{\mathrm{p}(\mathrm{~W}+\mathrm{L})+\mathrm{p}\left(\mathrm{~W}+\mathrm{L}^{\prime}\right)}_{\text {degree d in } \mathrm{W}})]
$$

$$
\approx \mathrm{E}_{\cup}\left[\operatorname{Bias}_{\mathrm{L}, \mathrm{~L}^{\prime}}\left(\mathrm{p}(\mathrm{U}+\mathrm{L})+\mathrm{p}\left(\mathrm{U}+\mathrm{L}^{\prime}\right)\right)\right] \approx \operatorname{Bias}_{\mathrm{U}}(\mathrm{p})^{2}
$$

Case Bias(p) noticeable

- $\operatorname{Bias}(p)$ noticeable; p has degree $d+1$
- p noticeably correlates with constant

Self-correction [Bogdanov V.]
This result used in [Green Tao]

- p highly correlates with (function of) degree-d polynomials
- Apply induction

Recent applications

- Fool width-2 read-d branching programs [Bogdanov Dvir Verbin Yehudayoff]
- Polynomial reconstruction problem [Gopalan Khot Saket]
- Degree bounds for annihilating polynomials Given p_{1}, \ldots, p_{t}, what is min. deg. of $q: q\left(p_{1}, \ldots, p_{t}\right)=0$?
formal [Dvir Gabizon Wigderson, Kayal] informal [Mossel Shpilka Trevisan, Shpilka] + [BV, L, V]

What we have seen

- Computational model: degree-d polynomials over F_{2} Arises in codes, lower bounds, pseudorandomness
- Correlation bounds

Standard XOR lemma does not work [Shaltiel V.] XOR lemma for constant degree
[V. Wigderson]

- Pseudorandom generators

Recent developments
[BV,L,GT,LMS]
Sum of d generators for degree 1 fools degree d [V.]

Open problems

[Nisan-Wigderson]
[Observation]

- Still open: Understand these connections

