
Reducing 3XOR to listing triangles, an exposition

Emanuele Viola

May 17, 2012

The 3SUM problem asks if there are three integers a, b, c summing to 0 in a given set
of n integers of magnitude poly(n). This problem can be easily solved in time Õ(n2).
(Throughout this note, Õ and Ω̃ hide subpolynomial factors no(1).) It seems natural to
believe that this problem also requires time Ω̃(n2), and this has been confirmed in some
restricted models.[Eri99, AC05] The importance of this belief was brought to the forefront
by Gajentaan and Overmars who show that the belief implies lower bounds for a number of
problems in computational geometry;[GO95] and the list of such reductions has grown ever
since. Recently, a series of exciting papers by Baran, Demaine, Pǎtraşcu, Vassilevska, and
Williams set the stage for, and establish, reductions from 3SUM to new types of problems
which are not defined in terms of summation.[BDP08, VW09, PW10, Pǎt10] In particular,
Pǎtraşcu reduces 3SUM to the problem of listing triangles of a graph.[Pǎt10]

In this note we present this reduction by Pǎtraşcu but for a variant of the 3SUM problem
which we call 3XOR. The problem 3XOR is like 3SUM except that integer summation is
replaced with bit-wise xor. So one can think of 3XOR as asking if a given n×O(lg n) matrix
over the field with two elements has a linear combination of length 3. This problem is likely
less relevant to computational geometry, but is otherwise quite natural. Similarly to 3SUM,
3XOR can be solved in time Õ(n2), and it seems natural to conjecture that 3XOR requires
time Ω̃(n2). We now state the reduction we present.

Theorem 1. Suppose that given the adjacency list of a graph with m edges and z triangles
(and O(m) nodes) one can list min{z,m} triangles in time m1.33̄−ε for a constant ε > 0.
Then one can solve 3XOR on a set of size n in time n2−ε′ with error 1% for a constant ε′ > 0.

To put the above theorem in context it is useful to discuss the difference between listing
all triangles in a graph and listing just m of them. For listing all triangles, the best we
can hope for is time Õ(m1.5), since the maximum number of triangles in graphs with m
edges is Θ(m1.5). There are algorithms that achieve time Õ(m1.5). (For example, we can
first list the ≤ O(m

√
m) triangles going through some node of degree ≤

√
m, and then the

≤ O(m/
√
m)3 = O(m1.5) triangles using nodes of degree >

√
m only.)

However, the assumption of the above Theorem 1 asks to list only≤ m triangles, for which
conceivably time Õ(m) suffices. In fact, to list m triangles Pagh (personal communication
2011) points out an algorithm achieving time Õ(m1.5−Ω(1)) and, assuming that the exponent
of matrix multiplication is 2, time Õ(m1.4).

1

The proof of Theorem 1 follows the one in [Pǎt10] for 3SUM, which builds on results in
[BDP08]. However the proof of Theorem 1 is a bit simpler. This is because it avoids some
steps in [BDP08, Pǎt10] which are mysterious to us. And because in our context we have
at our disposal hash functions that are linear, while over the integers one has to work with
“almost-linearity,” cf. [BDP08, Pǎt10].

This note is organized as follows. In §0.1 we cover some preliminaries and prove a
hashing lemma by [BDP08] that will be used later. The proof of the reduction in Theorem
1 is broken up in two stages. First, in §0.2 we reduce 3XOR to the problem C3XOR which
is a “convolution” version of 3XOR. Then in §0.3 we reduce C3XOR to listing triangles.

0.1 Hashing and preliminaries

We define next the standard hash function we will use.

Definition 2. For input length ` and output length r, the hash function h uses r `-bit keys
a := (a1, . . . , ar) and is defined as hā(x) := (〈a1, x〉, . . . , 〈ar, x〉), where 〈., .〉 denotes inner
product modulo 2.

We note that this hash function is linear: hā(x)+hā(y) = hā(x+y) for any x 6= y ∈ {0, 1}`,
where addition is bit-wise xor. Also, hā(0) = 0 for any ā, and Prā[hā(x) = hā(y)] ≤ 2−r for
any x 6= y.

Before discussing the reductions, we make some remarks on the problem 3XOR. First,
for simplicity we are going to assume that the input vectors are unique. It is easy to deal
separately with solutions involving repeated vectors. Next we argue that for our purposes the
length ` of the vectors in instances of 3XOR can be assumed to be (2−o(1)) lg n ≤ ` ≤ 3 lg n.
Indeed, if ` ≤ (2 − Ω(1)) lg n one can use the fast Walsh-Hadamard transform to solve
3XOR efficiently, just like one can use fast Fourier transform for 3SUM, cf. [CLRS01, Exercise
30.1-7]. For 3XOR one gets a running time of 2``O(1) + Õ(n`), where the first term comes
from the fast algorithms to compute the transform, see e.g. [MR97, §2.1]. (The second term
accounts for preprocessing the input.) When ` ≤ (2−Ω(1)) lg n, the running time is n2−Ω(1),
i.e., subquadratic.

Also, the length can be reduced to 3 lg n via hashing. Specifically, an instance v1, . . . , vn ∈
{0, 1}` of 3XOR is reduced to h(v1), . . . , h(vn) where h = ha is the hash function with
range of r = 3 lg n bits for a randomly chosen ā. Correctness follows because on the one
hand if vi + vj + vk = 0 then h(vi) + h(vj) + h(vk) = h(vi + vj + vk) = h(0) = 0 by
linearity of h and the fact that h(0) = 0 always; on the other hand if vi + vj + vk 6= 0 then
Pr[h(vi + vj + vk) = 0] = 1/2r since h maps uniformly in {0, 1}r any non-zero input. Hence
by a union bound over all ≤

(
n
3

)
choices for vectors such that vi+vj +vk 6= 0, the probability

of a false positive is
(
n
3

)
/n3 < 1/6.

For the proof we need to bound the number of elements x whose buckets Bh(x) := {y ∈
S : h(x) = h(y)} have unusually large load. If our hash function was 3-wise independent
the desired bound would follow from Chebyshev’s inequality. But our hash function is only

2

pairwise independent, and we do not see a better way than using a hashing lemma from
[BDP08] that in fact relies on a weaker property, cf. the discussion in [BDP08].

When hashing n elements to [R] = {1, 2, . . . , R}, the expected load of each bucket is
n/R. The lemma guarantees that the expected number of elements hashing to buckets with
a load ≥ 2n/R + k is ≤ n/k.

Lemma 3 ([BDP08]). Let h be a random function h : U → [R] such that for any x 6= y,
Prh[h(x) = h(y)] ≤ 1/R. Let S be a set of n elements, and denote Bh(x) = {y ∈ S : h(x) =
h(y)}. We have

Pr
h,x

[|Bh(x)| ≥ 2n/R + k] ≤ 1/k.

In particular, the expected number of elements from S with |Bh(x)| ≥ 2n/R + k is ≤ n/k.

The proof of the lemma uses the following fact, whose proof is an easy application of the
Cauchy-Schwarz inequality.

Fact 4. Let f : D → [R] be a function. Pick x, y independently and uniformly in D. Then
Prx,y[f(x) = f(y)] ≥ 1/R.

Proof:[of Lemma 3] Pick x, y uniformly and independently in S (x = y possible). For given
h, let

ph := Pr
x

[|B(x)| ≥ 2n/R + k],

qh := Pr
x,y

[h(x) = h(y)].

Note we aim to bound E[ph] ≤ 1/k, while by assumption

E[qh] = Pr
h,x,y

[h(x) = h(y)] ≤ 1/R + 1/n. (1)

Now let Lh := {x : |Bh(x)| < 2n/R + k}, and note |Lh| = (1− ph)n. Let us write

qh = Pr
x,y

[h(x) = h(y)|x ∈ Lh] Pr[x ∈ Lh] + Pr
x,y

[h(x) = h(y)|x 6∈ Lh] Pr[x 6∈ Lh].

The latter summand is ≥ ((2n/R + k)/n)ph = (2/R + k/n)ph.
For the first summand, note

Pr
x,y

[h(x) = h(y)|x ∈ Lh] Pr[x ∈ Lh] = Pr
x,y

[h(x) = h(y)|x ∧ y ∈ Lh] Pr[x ∧ y ∈ Lh]

because if y 6∈ Lh then there cannot be a collision with x ∈ Lh. The term Prx,y[h(x) =
h(y)|x ∧ y ∈ Lh] is ≥ 1/R by Fact 4. The term Pr[x ∧ y ∈ Lh] is (1− ph)2 ≥ 1− 2ph.

Overall,

qh ≥
1

R
(1− 2ph) + (2/R + k/n)ph = phk/n+ 1/R.

Taking expectations and recalling (1),

E[ph]k/n+ 1/R ≤ 1/R + 1/n,

as desired. �

3

0.2 Convolution 3XOR

Define the problem convolution 3XOR, denoted C3XOR, as: Given array A of n strings of
O(lg n) bits, determine if ∃i, j ≤ n : A[i] + A[j] = A[i+ j]. Again, sum is bit-wise xor.

Lemma 5. If C3XOR can be solved with error 1% in time t ≤ n2−Ω(1), then so can 3XOR.

Intuition. We are given an instance of 3XOR consisting of a set S of n vectors. Suppose
for any x ∈ S we define A[x] := x, and untouched elements of A[x] are set randomly so as
to never participate in a solution.

Now if x + y = z then A[x] + A[y] = A[z] = A[x + y]. Using again x + y = z we get
A[x]+A[y] = A[x+y]. Hence this solution will be found in C3XOR. Conversely a solution to
C3XOR corresponds to a 3XOR solution, since A is filled with elements with S (and random
otherwise).

This reduction is correct. But it is too slow because the size of A may be too large.
In our second attempt we try to do as above, but make sure the vector A is small.

Suppose we had a hash function h : S → [n] that was both 1-1 and linear.
Then we could let again A[h(x)] := x.
If x + y = z then A[h(x)] + A[h(y)] = A[h(z)] by definition. And using again x + y = z

and linearity, we get h(x + y) = h(x) + h(y) = h(z), and so we get A[h(x)] + A[h(y)] =
A[h(x) + h(y)] as desired.

But the problem is that there is no such hash function. (Using linear algebra one sees
that there is no hash function that shrinks and is both linear and 1-1.)

The solution is to implement the hash-function based solution, and handle the few colli-
sions separately.

Proof: Use the hash function h from Definition 2 mapping input elements of ` = O(lg n)
bits to r := (1 − α) lg n bits, for a constant α to be determined. So the range has size
R = 2r = n1−α. By Lemma 3, the expected number of elements falling into buckets with
more than t := 3n/R elements is ≤ R. For each of these elements, we can easily determine
in time Õ(n) if it participates to a solution. The time for this part is Õ(Rn) with high
probability, by a Markov bound.

It remains to look for solutions x+y+z = 0 where the three elements all are hashed to not-
overloaded buckets. For each i, j, k ∈ [t], we look for a solution where x, y, z are respectively
at positions i, j, k of their buckets. Specifically, fill an array A of size O(R) as follows: put the
ith (jth, kth) element x of bucket h(x) at position A[h(x)01] (A[h(x)10], A[h(x)11]), where
h(x)01 denotes the concatenation of the bit-strings h(x) and 01. The untouched elements of
A are set to a value large enough that it can be easily shown they cannot participate in a
solution. Run the algorithm for C3XOR on A.

If there is a solution x+ y+ z = 0, suppose x, y, z are the ith (jth, kth) elements of their
buckets. Then for that choice of i, j, k we have A[h(x)01] = x,A[h(y)10] = y, A[h(z)11] = z,
and so A[h(x)01] + A[h(y)10] = A[h(z)11]. By linearity of h, and the choice of the vectors
01, 10, 11, we get h(z)11 = h(x)01 + h(y)10. So this solution will be found.

Conversely, any solution found will be a valid solution for 3XOR, by construction of A.

4

The time for this part is as follows. We run over t3 = O(n3/R3) choices for the indices. For
each choice we run the C3XOR algorithm on an array of size O(R). If the time for the latter is
R2−ε, we can pick R = n1−α for a small enough α so that the time is Õ(n3αn(2−ε)(1−α)) = n2−ε′ .
(Here we first amplify the error of the C3XOR algorithm to 1/n3 by running it O(lg n) times
and taking majority.)

The first part only takes time O(Rn) = O(n2−α), so overall the time is n2−ε′′ . �

0.3 Reducing C3XOR to listing triangles

Lemma 6. Suppose that given the adjacency list of a graph with m edges and z triangles
(and O(m) nodes) one can list min{z,m} triangles in time m1.33̄−ε for a constant ε > 0.
Then one can solve C3XOR on a set of size n with error 1% in time n2−ε′ for a constant
ε′ > 0.

In fact, the hard graph instances will have n = m1−Ω(1) nodes.

Proof: We are given an array A and want to know if ∃a, b ≤ n : A[a] + A[b] = A[a + b].
It is convenient to work with the equivalent question of the existence of a, b such that
A[a+ bh] + A[a+ b`] = A[b], where bh, b` are each half the lg n bits of b.

We use again the linear hash function h. To prove Lemma 5 we hashed to R = n1−ε

elements. Now we pick R :=
√
n. By the paragraph after Definition 2, among the ≤ n2 pairs

a, b that do not constitute a solution (i.e., A[a + bh] + A[a + b`] 6= A[b]), we expect ≤ n2/R
of them to satisfy

h(A[a+ bh]) + h(A[a+ b`]) = h(A[b]) (?).

By a Markov argument, with constant probability there are ≤ 2n2/R = 2n1.5 pairs a, b
that do not constitute a solution but satisfy (?). The reduction works in that case. (One
can amplify the success probability by repetition.)

We set up a graph with m := 3n1.5 edges where triangles are in an easily-computable
1 − 1 correspondence with pairs a, b satisfying (?). We then run the algorithm for listing
triangles. For each triangle in the list, we check if it corresponds to a solution for C3XOR.
This works because if the triangle-listing algorithm returns as many as m triangles then, by
above, at least one triangle corresponds to a correct solution. Hence, if listing can be done
in time m4/3−ε then C3XOR can be solved in time (3n1.5)4/3−ε = n2−ε′ .

We now describe the graph. The graph is tripartite. One part has
√
n × R nodes of

the form (bh, x); another has
√
n × R nodes of the form (b`, y); and the last part has n

nodes of the form (a). Node (a) is connected to (bh, x) if h(A[a + bh]) = x, and to (b`, y) if
h(A[a+h`]) = y). Nodes (bh, x) and (b`, y) are connected if, letting b = bh+b`, h(A[b]) = x+y.

We now count the number of edges of the graph. Edges of the form (a) − (bh, x) (or
(a)− (b`, y)) number n1.5, since a, bh determine x. Edges (bh, x)− (b`, y) number again n1.5,
since for each b = bh + b` and x there is exactly one y yielding an edge.

The aforementioned 1-1 correspondence between solutions to C3XOR and triangles is
present by construction. �

5

Acknowledgments. I am very grateful to Rasmus Pagh and Virginia Vassilevska Williams
for answering my many questions on finding triangles in graphs. I also thank Siyao Guo for
pointing out that a step in a previous proof of Lemma 6 was useless.

References

[AC05] Nir Ailon and Bernard Chazelle. Lower bounds for linear degeneracy testing. J. ACM,
52(2):157–171, 2005.

[BDP08] Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. Subquadratic algorithms for 3sum.
Algorithmica, 50(4):584–596, 2008.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT Press, Cambridge, MA, second edition, 2001.

[Eri99] Jeff Erickson. Lower bounds for linear satisfiability problems. Chicago J. Theoret.
Comput. Sci., pages Article 8, 28 pp. (electronic), 1999.

[GO95] Anka Gajentaan and Mark H. Overmars. On a class of o(n2) problems in computational
geometry. Comput. Geom., 5:165–185, 1995.

[MR97] David K. Maslen and Daniel N. Rockmore. Generalized FFTs—a survey of some recent
results. In Groups and computation, II (New Brunswick, NJ, 1995), volume 28 of DI-
MACS Ser. Discrete Math. Theoret. Comput. Sci., pages 183–237. Amer. Math. Soc.,
Providence, RI, 1997.

[Pǎt10] Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Symposium
on the Theory of Computing (STOC), pages 603–610, 2010.

[PW10] Mihai Pǎtraşcu and Ryan Williams. On the possibility of faster sat algorithms. In
Symposium on Discrete Algorithms (SODA), pages 1065–1075, 2010.

[VW09] Virginia Vassilevska and Ryan Williams. Finding, minimizing, and counting weighted
subgraphs. In Symposium on the Theory of Computing (STOC), pages 455–464, 2009.

6

