
Bit-Probe Lower Bounds for Succinct Data Structures∗

Emanuele Viola†

Northeastern University

August 23, 2010

Abstract

We prove lower bounds on the redundancy necessary to represent a set S of ob-
jects using a number of bits close to the information-theoretic minimum log2 |S|, while
answering various queries by probing few bits. Our main results are:

• To represent n ternary values t ∈ {0, 1, 2}n in terms of u bits b ∈ {0, 1}u while
accessing a single value ti ∈ {0, 1, 2} by probing q bits of b, one needs

u ≥ (log2 3)n + n/2O(q).

This matches an exciting representation by Pǎtraşcu (FOCS 2008), later refined
with Dodis and Thorup (STOC 2010), where u ≤ (log2 3)n + n/2Ω(q). We also
note that results on logarithmic forms imply the lower bound u ≥ (log2 3)n +
n/ logO(1) n if we access ti by probing one cell of log n bits.

• To represent sets of size n/3 from a universe of n elements in terms of u bits
b ∈ {0, 1}u while answering membership queries by probing q bits of b, one needs

u ≥ log2

(
n

n/3

)
+ n/2O(q) − log n.

Both results above hold even if the probe locations are determined adaptively.
Ours are the first lower bounds for these fundamental problems; we obtain them

drawing on ideas used in a lower bound for locally decodable codes by Shaltiel and the
author (SIAM J. on Computing 2010).

∗An extended abstract of this work appeared in the Proceedings of the 41th Annual Symposium on the
Theory of Computing (STOC) [Vio09a].
†Supported by NSF grant CCF-0845003. Email: viola@ccs.neu.edu



1 Introduction

A succinct data structure is an encoding Enc : S → {0, 1}u of a set S of objects that
allows for efficient answers to various queries, while at the same time using space close to
the information-theoretic minimum: u = log2 |S| + r for a small redundancy r � log2 |S|.
There has been considerable interest and progress in exhibiting such data structures, see for
example [Mit01, Pag01a, GRRR06, Pǎt08] and the references therein. Less progress seems to
have been made on negative results, a.k.a. lower bounds, with a few notable exceptions, see
[Gol09] and the discussion therein. In this work, we prove new lower bounds for fundamental
problems of succinct data structures, in some cases matching the known upper bounds. We
now discuss a couple of problems and present our main results.

1.1 Representing ternary values using bits

Following Pǎtraşcu [Pǎt08], consider the problem of representing an array of n ternary values
t = (t1, . . . , tn) ∈ {0, 1, 2}n in terms of u bits b ∈ {0, 1}u. This is a fundamental problem,
since data is often arranged in tuples of elements from a domain that is not a power of 2
(e.g., students’ grades are in {A,B,C,D, F}). For representing t ∈ {0, 1, 2}n in {0, 1}u,
the information-theoretic minimum is u = d(log2 3)ne. We can match this minimum using
arithmetic coding: view t as an integer between 0 and 3n−1, and write down its u-bit binary
representation. The drawback is that to access a value ti ∈ {0, 1, 2} we have to read the
whole representation, i.e., probe u bits. At the other end of the spectrum, we can represent
each ternary value ti ∈ {0, 1, 2} using 2 bits. Here we access each ti by probing just 2 bits,
but use u = 2n� (log2 3)n bits of space.

A tradeoff between these two extremes is obtained by using arithmetic coding for each
block of k ternary values. Now, to access a value ti ∈ {0, 1, 2}, we probe the q := d(log2 3)ke
bits of the encoding of the block containing it, and the space used is

u = d(log2 3)ke · n/k = (log2 3)n+ n/kc, (1)

where c ≥ 1 is immediate, and we note that results on logarithmic forms discussed in §4 imply
that c is bounded from above by an absolute constant. So this approach gives a polynomial
tradeoff between the number q = Θ(k) of probes and the redundancy n/kc = n/qΘ(1) of the
structure.

An exciting work by Pǎtraşcu [Pǎt08], later refined with Dodis and Thorup [DPT10],
gives a better, exponential tradeoff between the number q of bits probed and the redundancy:

u ≤ (log2 3)n+ n/2Ω(q). (2)

See [Vio09c, Lecture 24] for an exposition of a data structure yielding (2).
In this work we prove the first lower bound for this problem, establishing that the above

exponential tradeoff (2) is optimal up to the constant in the “Ω(q).”

Theorem 1.1 (Lower bound for representing ternary values). To represent {0, 1, 2}n in
{0, 1}u supporting single-element access by probing q bits, one needs

u ≥ (log2 3)n+ n/26q+22.
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1.2 Representing sets using bits

The membership problem is another basic problem in data structures which asks to represent
a set of size ` from a universe of n elements in terms of u bits b ∈ {0, 1}u so that membership
queries can be answered efficiently. The classic work by Minsky and Papert [MP69] already
studies representation of sets where membership can be determined, on average, by probing
few bits. More recently, Buhrman, Miltersen, Radhakrishnan, and Venkatesh [BMRS02]
give a surprising, randomized representation whose space is within a constant factor of the
information-theoretic minimum log2

(
n
`

)
, and membership is determined, with high proba-

bility, by reading just one bit. Under the same space constraint, later Pagh [Pag01b] gives a
(deterministic) representation where membership can be determined by probing O(log(n/`))
bits, which is O(1) when n = O(`).

In terms of lower bounds, [BMRS02] proves that, to represent sets of size ` from a universe
of n elements in terms of u bits, answering membership queries by probing q bits, one needs(

n

`

)
≤ 2`·q ·

(
u

` · q

)
.

This lower bound is interesting when ` ≤ n1−Ω(1), but gives little information when ` = θ(n).
For example, it gives nothing for ` = n/3 and q = 3. In fact, no general lower bound seems
to have been known for this “close to capacity” regime ` = θ(n).

With a proof that is very similar to that of Theorem 1.1, in this work we prove the
following lower bound.

Theorem 1.2 (Lower bound for representing sets). For all sufficiently large n divisible by
3, to represent S := {x : x ∈ {0, 1}n,

∑
i xi = n/3} in {0, 1}u answering membership queries

by probing q bits, one needs

u ≥ log2 |S|+ n/26q+22 − log2 n.

1.3 Bit-probe vs. cell-probe

The model discussed until now is usually called bit-probe, because each probe in the data
structure returns a bit. Another popular model is the cell-probe model, where the memory
is divided in cells of Θ(log n) bits, and each probe returns the content of an entire cell (see
Miltersen’s survey [Mil99] for background). In this work we also prove that to represent n
ternary values in u bits while supporting single-element access by probing 1 cell of log n bits,
one needs space u ≥ (log2 3)n+ n/ logO(1) n, which for 1 cell probe is tight up to the “O(1)”
as follows from (1). This is obtained in §4 by drawing a connection between this problem
and logarithmic forms in number theory. Independently, Dodis, Pǎtraşcu, and Thorup give
[DPT10] a representation that uses space u = (log2 3)n + O(1) and supports single-element
access by probing O(1) cells of log n bits.

Turning to the membership problem, we note that, building on the results by Pagh
[Pag01a], Pǎtraşcu [Pǎt08] gives a representation of sets of size ` from a universe of n
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Figure 1: Lower bound for representing ternary values {0, 1, 2}n in {0, 1}u.

elements that uses space

u ≤ log2

(
n

`

)
+ n/ logc n, (3)

and where membership queries are answered by probing q cells of Θ(log n) bits each, where
q = q(c) depends only on c. For succinct representations of sets using bits, more work seems
necessary to bridge the gap between the known lower bounds in the bit-probe model and
the upper bounds in the cell-probe model. In particular, we are unaware of cell-probe lower
bounds when the set size is a constant fraction of the universe size.

However, for other problems, [Vio09b] obtains new cell-probe lower bounds building on
the techniques in this paper. See also [PV10].

1.4 Techniques

In this section we discuss the techniques we use to prove our lower bounds. We focus on
the problem of representing ternary values t ∈ {0, 1, 2}n in {0, 1}u (Theorem 1.1) because it
is clean; later we discuss how to obtain the lower bound for membership as well. We first
explain the proof under the assumption that the probe locations are non-adaptive, i.e., only
depend on the ternary value to be accessed but not on the results of previous probes. Later
we address adaptivity.

Intuitively, representing ternary values using bits is difficult because (?) ternary values
are not binary, in the sense that they have a number of combinations which is not a power of
2. Our proof formalizes precisely this intuition. We now explain our proof, and we refer the
reader to Figure 1 for an illustration of our reasoning. Suppose that we represent {0, 1, 2}n
in {0, 1}u were u = (log2 3)n+ r is very close to the information-theoretic minimum: r � n.
Let us choose t ∈ {0, 1, 2}n uniformly at random, and consider the encoding Enc(t) ∈ {0, 1}u
of t. The encoding is obviously one-to-one (since every ternary value can be recovered), thus
Enc(t) is uniformly distributed over 3n elements of {0, 1}u. Since 2u ≈ 3n, the entropy
of Enc(t) is very close to the maximum u. Therefore we can apply a relatively standard
information-theoretic Lemma 2.2 which states that the random variable b = Enc(t) ∈ {0, 1}u
is approximately uniform, in the sense that there is a large set of indices G ⊆ [u] such that
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for any q indices {i1, . . . , iq} ⊆ G, the distribution of (bi1 , . . . , biq) is essentially uniform over
{0, 1}q [Raz98, EIRS01, SV10].

Suppose now that we can decode a ternary value ti as a function di of q probes Qi :=
{i1, . . . , iq}:

ti = di(bi1 , . . . , biq). (4)

If the probes Qi = {i1, . . . , iq} are all in G, then di(bi1 , . . . , biq) is essentially distributed like
d(U) where U is uniform over {0, 1}q. Now we can return to the intuition at the beginning of
this section (?): A uniformly distributed ternary value ti ∈ {0, 1, 2} cannot equal a function
di of (essentially) uniformly distributed binary values (bi1 , . . . , biq) ∈ {0, 1}q. Specifically, for
a uniform U ∈ {0, 1}q we have∣∣∣∣ Pr

U∈{0,1}q
[di(U) = 1]− Pr[ti = 1]

∣∣∣∣ =

∣∣∣∣ |{x : di(x) = 1}|
2q

− 1

3

∣∣∣∣ ≥ 2−q/3, (5)

and thus, if we set the parameters so that (bi1 , . . . , biq) and U are (2−q/3)-close in statistical
distance, Equations (4) and (5) give a contradiction. This proves the theorem in the case
Qi ⊆ G. The tradeoff between number of probes and redundancy in the conclusion of
Theorem 1.1 corresponds, via the information-theoretic Lemma 2.2, to the tradeoff between
the entropy of Enc(t) in {0, 1}u and the closeness of the random variable b = Enc(t) ∈ {0, 1}u
to uniform.

However, it may not be possible to find an index i such that Qi ⊆ G. To circumvent
this obstacle, we reason as follows. At the beginning of the argument, before applying the
information-theoretic lemma, we identify a small set of heavy probes W ⊆ [u] that are in a
noticeable fraction of the sets Qi. We then fix the bits associated to the heavy probes to
their most likely value, so that we can still decode a large subset T ⊆ {0, 1, 2}n of arrays t.
Then we seek an index i such that both the following hold for a uniformly selected t ∈ T : (I)
the distribution of ti is close to uniform over {0, 1, 2}, and (II) the distribution of Enc(t)|Qi

is close to uniform over {0, 1}q. Once we have such an index i, we obtain a contradiction
by combining Equations (4) and (5), as explained above. To show the existence of such
an index i we argue that most indexes satisfy (I) and also most indexes satisfy (II), which
implies that some index will satisfy both. To show that most indexes satisfy (I), we again
apply the information-theoretic lemma, using the fact that T is large in {0, 1, 2}n. For (II),
we also apply the information-theoretic lemma as explained earlier. However, we can now
guarantee that most sets Qi will not intersect the complement of G. This is because this
complement is small and we have fixed the bits of all probes that belong to noticeably many
sets Qi. This concludes the overview of the proof of Theorem 1.1, assuming that the probe
locations are non-adaptive.

Comparisons with the arguments in [SV10] and [Vio06, Section 6.3]. The above
argument is somewhat similar to one in [SV10]. We mention the following alternative way
to circumvent the obstacle that it may not be possible to find an index i such that Qi ⊆ G.
One can observe that every Qi must intersect the complement of G. Since this complement
is small, one can fix the associated bits so that we still decode a large subset T ⊆ {0, 1, 2}n
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of arrays t, but using at least one fewer probe. One can then repeat the argument q times
to obtain a contradiction. The main results in this paper were initially obtained using this
latter argument, which is similar to one in [Vio06, Section 6.3]; but its inductive nature
makes working out the parameters somewhat longer.

Handling adaptive probes. To explain how we handle adaptive probes, we note that
the above argument holds for any decoder function di that satisfies Equation (5), and that
adaptive decoders do satisfy Equation (5). Specifically, we model an adaptive decoder di by
a decision tree of depth q in 2q variables – thus we make the sets Qi of probe locations expo-
nentially bigger than in the non-adaptive case. It turns out we can afford this exponential
increase in the size of the sets Qi at no cost (roughly speaking, this is because we already
needed statistical distance 2−q even for the non-adaptive case). At the same time, each path
of the decision tree is taken with probability 2−q, and thus di still satisfies Equation (5).
This concludes the overview of the proof of Theorem 1.1.

Since our arguments are similar to those in [SV10] and [Vio06, Section 6.3], one can ask
why here we can handle adaptive probes, whereas the results in [SV10, Vio06] are stated for
non-adaptive probes only. In fact, it can be shown that the results in [SV10, Vio06] hold for
adaptive probes as well, but only when q is relatively small. This range of q is good enough
for the results in this paper, some of which are in fact tight.

Extensions. It is clear at this point that the above argument applies to any other problem
whose query answers have a probability mass function that is not a multiple of 2−q. The
membership problem (Theorem 1.2) is an example. Also, Theorems 1.1 and 1.2 continue to
hold when replacing the constant 3 by any other constant c which is not a power of 2. When
c is a power of 2, no lower bound holds for representing arrays of elements from a universe of
size c, because of the trivial and optimal representation which uses log2 c bits per element.
For representing sets however, lower bounds may still hold when c is a power of 2. But since
the techniques in this paper apply to arrays as well, they seem unable to prove any. A recent
work [Vio10] suggests new techniques and obtains some lower bounds in this case.

Also, the probabilistic nature of our argument naturally applies to randomized repre-
sentations, i.e., those that map any object t to a random string in {0, 1}u that with high
probability represents t: by an averaging argument one can fix the randomness to obtain a
deterministic representation that works for a large subset T of objects, to which our technique
applies. We note that [BMRS02] considers a different kind of randomized data structure for
representing sets, namely one in which the probes, not the encoding, is chosen at random.
It is not clear to us whether the bounds in this paper extend to that setting too. This might
be an interesting research direction.

Finally, we mention that Theorem 1.1 immediately implies the same lower bound for
the problem of representing {0, 1, 2}n in {0, 1}n while answering prefix sums queries modulo
3, i.e., St(i) :=

∑
j≤i tj. Answering prefix sums in a group has been studied extensively;

see, e.g., [Mil99, PT07, Pǎt08]. Our lower bound applies here because one can reduce the
problem of representing {0, 1, 2}n in {0, 1}u to the prefix sum problem via the “telescoping”
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permutation
π(t1, t2, . . . , tn) := (t1,−t1 + t2,−t2 + t3, . . . ,−tn−1 + tn),

where all the arithmetic is modulo 3, which satisfies Sπ(t)(i) = ti for every t and i.

2 Lower bound for representing ternary values in bits

In this section we prove our lower bound for representing ternary values in bits, i.e., Theorem
1.1. We start with a formal definition of the problem, and then we restate the theorem for
the reader’s convenience. The reader may want to consult Figure 1, which shows some of
the relevant parameters, throughout this section.

We model an adaptive algorithm that decodes a ternary value ti by a binary decision
tree di of depth q. The internal nodes of the tree are labeled with one of 2q binary variables,
while the leaves are labeled with ternary values from {0, 1, 2}.

Definition 2.1 (Representing ternary values in bits). We say that we represent {0, 1, 2}n in
{0, 1}u supporting single-element access by probing q bits if there is a map Enc : {0, 1, 2}n →
{0, 1}u, n sets Q1, . . . , Qn ⊆ [u] of size 2q each, and n decision trees d1, . . . , dn : {0, 1}2q →
{0, 1, 2} of depth q such that for every t ∈ {0, 1, 2}n and every i ∈ [n]:

ti = di (Enc(t)|Qi
) ,

where Enc(t)|Qi
denotes the 2q bits of Enc(t) ∈ {0, 1}u indexed by Qi.

Theorem 1.1 (Lower bound for representing ternary values). (Restated.) To represent
{0, 1, 2}n in {0, 1}u supporting single-element access by probing q bits, one needs

u ≥ (log2 3)n+ n/26q+22.

In the rest of this section we prove Theorem 1.1. The proof makes use of the next lemma
which was proved by Raz [Raz98, Claim 5.1] and independently by Edmonds, Impagliazzo,
Rudich, and Sgall [EIRS01, Section 4]. The interested reader may also wish to look at
Holenstein’s formulation [Hol07, Lemma 5]. We use here a version of the lemma which
appears in [SV10] and, unlike the above references, explicitly considers subsets of q random
variables (see §A for an easy derivation of the next lemma from the results proved in [SV10]).
Before stating the lemma, let us recall some probability terminology. We say that two
random variables V,W over the same set S are η-close if for every event E ⊆ S, |Pr[V ∈
E]−Pr[W ∈ E]| ≤ η. Given a random variable V over a set S and an event E, we use (V |E)
to denote the probability distribution of V conditioned to E, that is for any event A ⊆ E,
Pr(V |E)[A] = Pr[V ∈ A|V ∈ E].

Lemma 2.2 ([Raz98, EIRS01, SV10]). Let V = (V1, . . . , Vn) be a collection of independent
random variables where each one of them is distributed over a finite set S and equals any
s ∈ S with a probability that is a rational number. Let E ⊆ Sn be an event such that
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Pr[V ∈ E] ≥ ε. Then for any η > 0 and integer q there exists a set G ⊆ [n] such that
|G| ≥ n− 16 · q · log(1/ε)/η2 and for any i1, . . . , iq ∈ G the distributions

(Vi1 , . . . , Viq |V ∈ E) and (Vi1 , . . . , Viq)

are η-close.

2.1 Proof of Theorem 1.1

Let u = (log2 3)n+ r, and assume for the sake of contradiction that

r < n/26q+22. (6)

Definition 2.3. A probe j ∈ [u] is heavy if Pri∈[n][j ∈ Qi] ≥ 1/ (r · 23q+11) =: τ .

Claim 2.3.1. There are at most 2q/τ = 24q+11 · r heavy probes j ∈ [u].

Proof. For a fixed j ∈ [u] and random i ∈ [n] consider the indicator random variable
Yj ∈ {0, 1} that is 1 if and only if j ∈ Qi. Then 2q = Ei∈[n][|Qi|] = Ei∈[n][

∑
j∈[u] Yj] =∑

j∈[u] Pri∈[n][j ∈ Qi] ≥ (# heavy probes) · τ.

Let W ⊆ [u] be the set of
|W | ≤ 24q+11 · r (7)

heavy probes. The choice of t ∈ {0, 1, 2}n induces at most 2|W | possibilities for the values
Enc(t)|W of the heavy probes. Let z ∈ {0, 1}|W | be the most common values for the heavy
probes. By definition of z, there is a set T ⊆ {0, 1, 2}n of size

|T | ≥ 3n/2|W | (8)

such that for every t ∈ T we have Enc(t)|W = z; i.e., the values of the heavy probes for any
t ∈ T is fixed to z. Since these values are fixed, we can modify our decoding as follows. For
every i define Q′i := Qi\W and also let d′i be di where the values of the probes corresponding
to variables in W have been fixed to the corresponding value in z. By renaming variables,
letting u′ := u− |W | and Enc ′ : {0, 1, 2}n → {0, 1}u′

be Enc restricted to the bits in [u] \W ,
we see that we are now representing T in {0, 1}u′

in the following sense: for every t ∈ T and
every i ∈ [n]:

ti = d′i
(
Enc ′(t)|Q′

i

)
; (9)

moreover, no probe j ∈ [u′] is heavy with respect to the sets Q′i.
The next claim relies on our assumption (6) that we made for the sake of contradiction.

Claim 2.3.2. There is an index i ∈ [n] such that, for a randomly selected t ∈ T , both the
following distributions are (η := 1/2q+3)-close to uniform: (I) the distribution ti ∈ {0, 1, 2},
and (II) the distribution Enc(t)|Q′

i
∈ {0, 1}2q

.
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Proof. We show that more than half the indexes i ∈ [n] satisfy (I), and at least half the
indexes i ∈ [n] satisfy (II), which implies the existence of the desired index i ∈ [n] that
satisfies both (I) and (II).

(I): Consider choosing t = (t1, . . . , tn) ∈ {0, 1, 2}n uniformly at random. Note that, using
Inequality (8),

Pr
t

[t ∈ T ] =
|T |
3n
≥ 1

2|W |
. (10)

So by Lemma 2.2 (where the parameter q in the lemma is set to 1) and Inequalities (10, 7,
6) there is a set H ⊆ [n] of size at least

|H| ≥ n− 16 · |W | · 22q+6 ≥ n− 16 · 24q+11 · r · 22q+6 = n− 26q+21 · r > n/2,

such that for every i ∈ H the distribution (ti|t ∈ T ) is (2−q−3)-close to uniform over {0, 1, 2},
i.e., it satisfies (I).

(II): Note that Enc is one-to-one – otherwise the hypothesis of the theorem is false –
and so Enc ′ is also one-to-one by construction. Let Enc ′(T ) := {Enc ′(t) : t ∈ T}. Consider
choosing b = (b1, . . . , bu′) ∈ {0, 1}u′

uniformly at random. Also using Inequality (8) and
recalling that u′ = u− |W | = (log2 3)n+ r − |W |, we see that

Pr
b

[b ∈ Enc ′(T )] =
|Enc′(T )|

2u′ =
|T |

2u−|W |
≥ 3n

2|W |+u−|W |
=

3n

2u
=

1

2r
. (11)

Therefore, by Lemma 2.2 (where the parameter q in the lemma is set to the current 2q) there
is a set G ⊆ [u′] of size

|G| ≥ u′ − 16 · 2q · r · 22q+6 = u′ − 23q+10 · r

such that for any 2q probes J = {j1, j2, . . . , j2q} ⊆ G, for a randomly selected b ∈ {0, 1}u′
the

distribution (b|J |b ∈ Enc ′(T )) is (2−q−3)-close to random over {0, 1}2q
. Note that, because

Enc ′ is one-to-one, the distribution (b|J |b ∈ Enc ′(T )) equals the distribution of Enc ′(t)|J for
a uniformly chosen t ∈ T . Thus, if Q′i ⊆ G, we can set J := Q′i to see that the index i
satisfies (II). To conclude, we make sure that Q′i ⊆ G for at least half of the indexes i ∈ [n].

Let Ḡ := [u′] \ G denote the complement of G. Take a random i ∈ [n]. The probability
that Q′i intersects Ḡ is

Pr
i

[∃j ∈ Ḡ : j ∈ Q′i] ≤
∑
j∈Ḡ

Pr
i

[j ∈ Q′i] ≤ |Ḡ| · τ ≤ 23q+10 · r · τ ≤ 1/2.

In this last derivation we are using the union bound, then the fact that, after restricting
to T , no probe is heavy, and thus is in at most a τ = 1/ (r · 23q+11) fraction of the sets Q′i
(cf. Definition 2.3). Note here we crucially exploit the independence of the threshold τ for
heaviness from the size of Ḡ.

Therefore Q′i ⊆ G for at least half of the indexes i ∈ [n]; any such index satisfies (II).

Claim 2.3.3. The conclusion of Claim 2.3.2 is false.
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Proof. We show that the conclusion of Claim 2.3.2 leads to a contradiction. First, observe
the following general fact: For any i and a uniformly distributed U ∈ {0, 1}2q

,∣∣∣∣ Pr
U∈{0,1}2q

[d′i(U) = 1]− 1/3

∣∣∣∣ ≥ 2−q/3. (12)

To see this we reason in two steps. First, let X ⊆ {0, 1}q be the collection of paths in d′i that
lead from a root to a leaf that is labeled with 1. Since any path is taken with probability
1/2q under U , we see that PrU∈{0,1}2q [d′i(U) = 1] = |X|/2q. Note here we rely on the fact
that the decision tree has depth q, although it is defined on 2q variables. Second, if Equation
(12) is false then ||X|/2q−1/3| < 2−q/3, which means |3 · |X|−2q| < 1, and thus 3 · |X| = 2q,
which is impossible since 3 does not divide 2q.

We now have:

2−q/8 ≥
∣∣∣∣Pr
t∈T

[ti = 1]− 1/3

∣∣∣∣ (By (I) in the conclusion of Claim 2.3.2.)

=

∣∣∣∣Pr
t∈T

[d′i
(
Enc ′(t)|Q′

i

)
= 1]− 1/3

∣∣∣∣ (By (9).)

≥
∣∣∣∣ Pr
U∈{0,1}2q

[d′i (U) = 1]− 1/3

∣∣∣∣− 2−q/8 (By (II) in the conclusion of Claim 2.3.2.)

≥ 2−q/3− 2−q/8, (By (12).)

which is a contradiction.

3 Lower bound for representing sets in bits

In this section we prove our lower bound for the membership problem, i.e., Theorem 1.2.
The proof is very similar to that of Theorem 1.1. We start with a formal definition of the
problem, and then we restate the theorem for the reader’s convenience.

Definition 3.1 (Representing sets in bits). We say that we represent S := {x : x ∈
{0, 1}n,

∑
i xi = n/3} in {0, 1}u answering membership queries by probing q bits if there

is a map Enc : {0, 1}n → {0, 1}u, n sets Q1, . . . , Qn ⊆ [u] of size 2q each, and n decision
trees d1, . . . , dn : {0, 1}2q → {0, 1} of depth q such that for every t ∈ S and every i ∈ [n]:

ti = di (Enc(t)|Qi
) ,

where Enc(t)|Qi
denotes the 2q bits of Enc(t) ∈ {0, 1}u indexed by Qi.

Theorem 1.2 (Lower bound for representing sets). (Restated.) For all sufficiently large
n divisible by 3, to represent S := {x : x ∈ {0, 1}n,

∑
i xi = n/3} in {0, 1}u answering

membership queries by probing q bits, one needs

u ≥ log2 |S|+ n/26q+22 − log2 n.

9



3.1 Proof sketch of Theorem 1.2

We closely follow the proof of Theorem 1.1. We again fix the bits of the heavy proves W
to their most likely values. We then consider the set T ⊆ S of sets whose representations
match the fixed bits. Similarly to Inequality (8), we have

|T | ≥ |S|
2|W |

.

We then modify Claim 2.3.2 as follows:

Claim 3.1.1. There is an index i ∈ [n] such that, for a randomly selected t ∈ T , both the
following are true: (I) the distribution ti ∈ {0, 1} is (1/2q+3)-close to the distribution that
puts weight 1/3 on 1, and (II) the distribution Enc(t)|Q′

i
is (1/2q+3)-close to uniform over

{0, 1}2q
.

Proof sketch of Claim 3.1.1. The argument for (II) is identical to that of Claim 2.3.2.
The argument for (I) is modified as follows. We choose t = (t1, . . . , tn) ∈ {0, 1}n where

the binary variables ti are independent and take value 1 with probability 1/3. Using that
each element in T has weight n/3, and then standard estimates [CT06, Lemma 17.5.1], we
obtain

Pr[t ∈ T ] ≥ |T |
2H(1/3)n

≥ |T |
|S| ·Θ(

√
n)
≥ 1

2|W | · n
for sufficiently large n. The application of Lemma 2.2 now yields a set H of size

n− 22q+10(|W |+ log n) ≥ n− 26q+21(r + log n)

which is strictly bigger than n/2 under the assumption that r < n/26q+22 − log n.

One can now complete the proof by showing that the conclusion of the above Claim 3.1.1
leads to a contradiction using the argument of Claim 2.3.3.

4 Logarithmic forms and cell probes

In this section we highlight a link between number theory and the problem of representing
ternary values in bits; we then discuss the relevance of this link to the challenge of proving
lower bounds in the cell-probe model. Let us start by recalling from §1.1 a simple block-wise
approach to represent an array of n ternary values t = (t1, . . . , tn) ∈ {0, 1, 2}n in terms of
u bits b ∈ {0, 1}u: We use arithmetic coding for each block of k ternary values; to access a
value ti ∈ {0, 1, 2}, we probe the q := d(log2 3)ke bits of the encoding of the block containing
it. The space used is

u = d(log2 3)ke · n/k = (log2 3)n+ ε · n/k, (13)

where
ε := d(log2 3)ke − (log2 3)k ∈ (0, 1] (14)

10



is the distance of (log2 3)k from the next integer.
We note that any lower bound on the redundancy of representations of ternary values in

bits implies a corresponding lower bound on ε; for example, our Theorem 1.1 implies a lower
bound of the form ε ≥ 1/2O(k). We also note that lower bounds on ε depending on k are
related to well-studied questions in number theory. In particular, the results on logarithmic
forms by A. Baker and N. I. Feldman, a special case of which is stated next, imply the
stronger bound ε ≥ 1/kO(1).

Theorem 4.1 (Theorem 3.1 in [Bak90]). There is an absolute constant c > 0 such that for
all positive integers k and ` we have

|` loge 2− k loge 3| ≥ 1/(max{`, k, 2})c.

In particular, there is an absolute constant c > 0 such that for every integer k ≥ 0 and
every integer ` ≥ c we have

|`− k log2 3| ≥ 1/`c.

Remark on the proof of Theorem 4.1. The proof of a generalization of the first claim in the
statement of Theorem 4.1 can be found in [Bak90, §3], while a more recent account of the
subject is in [BW07].

The “in particular” part is obtained as follows. We can assume without loss of generality
that k ≤ `, for else for sufficiently large ` we have |`− k log2 3| � 1 ≥ 1/` and the theorem
is proved. Dividing the inequality in the first part of the theorem by loge 2 ∈ (0, 1) we then
have

|`− k log2 3| ≥ (log2 e)/(max{`, k, 2})c ≥ 1/`c.

We now use Theorem 4.1 to obtain a lower bound for one cell probe. Recall that, in
the cell-probe model, the u bits of memory are divided in cells of log n bits, and each probe
returns the content of an entire cell.

Theorem 4.2. Let log2 n and u := n/ log2 n be sufficiently large integers. To represent
{0, 1, 2}n in {0, 1}u supporting single-element access by probing 1 cell of log n bits, one needs

u ≥ (log2 3)n+ n/ logO(1) n.

Proof. Let n = 2`. Let k be the maximum over all cells i of the number of ternary values
that probe i. Note that 3k ≤ n, and so k log2 3 ≤ `. By Theorem 4.1, there is an absolute
constant c > 0 such that k log2 3 ≤ `− 1/`c. Since each of the n ternary values must probe
one of the u/` cells, we have

n ≤ u

`
k ≤ u

` · log2 3

(
`− 1

`c

)
=

u

log2 3

(
1− 1

`c+1

)
.

Since (1− α)−1 ≥ 1 + α for every α ∈ [0, 1), we obtain

u ≥ n log2 3

(
1 +

1

`c+1

)
.
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[PT07] Mihai Pǎtraşcu and Corina E. Tarniţǎ. On dynamic bit-probe complexity. The-
oret. Comput. Sci., 380(1-2):127–142, 2007. 5
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variables (V1, . . . , Vn) by independent variables (W1, . . . ,Wn) uniformly distributed over a
set S ′ and a function f : S ′ → S so that f(Wi) is distributed like Vi. This is possible for a
sufficiently large S ′ because of our assumption that each variable Vi equals any s ∈ S with
a probability that is a rational number. Now apply the lemma to the uniformly distributed
(W1, . . . ,Wn) with respect to the event that (f(W1), . . . , f(Wn)) ∈ E. This gives a set
G ⊆ [n] such that |G| ≥ n− 16 · q · a/η2 and for any i1, . . . , iq ∈ G the distributions

(Wi1 , . . . ,Wiq |(f(W1), . . . , f(Wn)) ∈ E), and (Wi1 , . . . ,Wiq)

are η-close. This implies that the distributions

(f(Wi1), . . . , f(Wiq)|(f(W1), . . . , f(Wn)) ∈ E) = (Vi1 , . . . , Viq |(V1, . . . , Vn) ∈ E) and

(f(Wi1), . . . , f(Wiq)) = (Vi1 , . . . , Viq)

are η-close, as desired.
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