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Abstract
We highlight the special case of Valiant’s rigidity problem in which the low-rank

matrices are truth-tables of sparse polynomials. We show that progress on this special
case entails that Inner Product is not computable by small AC0 circuits with one layer
of parity gates close to the inputs. We then prove that the sign of any −1/1 polynomial
with ≤ s monomials in 2n variables disagrees with Inner Product in ≥ Ω(1/s) fraction
of inputs, a type of result that seems unknown in the rigidity setting.

Valiant’s rigidity problem [Val77] asks to build explicit matrixes that are far in Hamming
distance from low-rank matrixes. Valiant proved that if an N ×N matrix M has hamming
distance ≥ N1+Ω(1) from any matrix of rank R = (1−Ω(1))N , then the corresponding linear
transformation x 7→ Mx requires circuits of superlogarithmic depth or superlinear size.
Exhibiting an explicit such matrix remains a long-standing challenge. Despite significant
efforts, the best lower bounds are of the form (N2/R) lg(N/R) against matrixes of rank R.
The matrix corresponding to the inner product function IP has been conjectured to satisfy
better better bounds. We refer the reader to Lokam’s survey [Lok09] for more on rigidity.

In this note we highlight a special case of the rigidity problem, and we suggest that
attacks should be directed towards it. Recall that an N ×N matrix has rank R if and only
if it is the sum of R rank-1 matrixes, i.e., matrixes uiv

T
i , where ui, vi are N -entry column

vectors. We consider the special case of this problem where the rank-1 matrixes are the truth-
tables of monomials over the variables x1, . . . , xn, y1, . . . , yn, where N = 2n and the variables
range over {−1, 1}. For example, the truth-table of a monomial c

∏
i∈S xi

∏
i∈T yi, where

S, T ⊆ {1, . . . , n}, is the N ×N matrix whose entry indexed by (a, b) ∈ {−1, 1}n×{−1, 1}n
is c

∏
i∈S ai

∏
i∈T bi. This matrix can be written as uvT where the a-th entry of u is c

∏
i∈S ai

and the b-th entry of v is
∏

i∈T bi. This special case of the rigidity problem is stated without
direct reference to rank as follows.

Challenge 0.1 (Sparsity). Exhibit an explicit function f : {−1, 1}n × {−1, 1}n → {−1, 1}
such that for any real polynomial p with ≤ R monomials we have

Pr
x,y∈{−1,1}n

[f(x, y) 6= p(x, y)] ≥ ε,
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for as large ε as possible.

Again, ε = Ω(lg(2n/R)/R) follows from the rigidity bounds.
The concurrent work [RV12] raises a similar challenge for low-degree (as opposed to

sparse) polynomials.

Motivation: AC0 with parity gates. Besides hopefully paving the way for the original
rigidity question, a motivation for making progress on Challenge 0.1 is that stronger bounds
would yield new circuit lower bounds. Let AC0-⊕ denote the class of AC0 circuits augmented
with a bottom level (right before the input bits) of parity gates. To our knowledge, it is not
known whether the Inner Product function IP is computable by poly-size AC0-⊕ circuits:

Challenge 0.2. Show that IP cannot be computed by poly-size AC0-⊕ circuits.

Challenge 0.2 seems open even for AC0-⊕ circuits of depth 4, but it is known to be true
for AC0-⊕ circuits of depth 3, i.e. poly-size DNF-⊕ circuits. Indeed, it follows from Fact 8 in
[Jac97] that any function computable by such circuits has 1/poly correlation with parity on
some subset of the variables, but it is well-known that IP has exponentially small correlation
with parity on any subset of the variables.

Solving Challenge 0.2 is a step towards a more thorough understanding of AC0 with parity
gates. For example, no strong correlation bound is known for this class, see e.g. [SV10]. In
fact, this is not even known for AC0-⊕, and IP is a natural candidate.

Next we formally connect the two challenges.

Claim 0.3. Suppose that IP on 2n variables has AC0-⊕ circuits of polynomial size. Then
for any b there exists c and a polynomial p(x, y) with ≤ 2lgc n monomials such that

Pr
x,y

[p(x, y) 6= IP(x, y)] ≤ 2lgb n.

Proof. Let C be a depth-(d+1) AC0-⊕ circuit that computes IP over 2n input bits x1, . . . , xn,
y1, . . . , yn. Let N = poly(n) denote the number of parity gates at the leaves. Let C ′ be the
depth-d AC0 circuit obtained by replacing the i-th parity gate by a fresh input variable zi

(so C ′ is a circuit over N input bits z1, ..., zN).
Let D be the distribution over {−1, 1}N induced by drawing a uniform random input x

from {−1, 1}n and setting zi = the value of the i-th parity gate on x (the draw from D is the
string z ∈ {0, 1}N). Let ε := 1/2lgc n. Lemma 5.1 and Corollary 5.2 of [ABFR94] tell us that
there is a polynomial p(z1, . . . , zN) of degree (O(lg(n))2d that computes C ′(z) for a (1 − ε)
fraction of all inputs drawn from D. Since p has degree (O(lg n))2d it must have ≤ n(O(lg n))2d

monomials. Now let q(x1, ..., xn, y1, . . . , yn) be the polynomial obtained by substituting in
the i-th parity (monomial) for zi in p. q has no more monomials than p, and q computes IP
on (1− ε) fraction of all inputs drawn from {−1, 1}n.

We note that for Valiant’s connection to lower bounds, we need rank R = Ω(N), whereas
for sparsity much smaller rank R = poly lgN suffices. In both cases we need to go beyond
error 1/R.
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Sign-rank. The sign-rank of a−1, 1 matrix M is the minimum rank of a matrix that agrees
in sign with M in every entry. Forster proved [For02] that the N ×N matrix corresponding
to IP has sign-rank ≥

√
N .

For sparsity, we can prove a stronger type of bound where we also allow errors. As far
as we know such a result is not known for sign-rank. Perhaps this gives hope that progress
on Challenge 0.1 may be within reach.

Theorem 0.4. Let p be a polynomial in n variables with ≤ s monomials. Consider the
inner-product function IP(x, y) where |x| = |y| = n/2. Then

Pr
x,y

[sign(p(x, y)) 6= IP(x, y)] ≥ (1− s/2n/2) · (1/s) = Ω(1/s).

The proof of Theorem 0.4 relies on the following lemma.

Lemma 0.5. Let p be a −1/1 polynomial on n variables with ≤ s not monomials and not
containing the monomial (parity) t(x). Then sign(p(x)) disagrees with t(x) on at least 2n/s
points.

Proof of Theorem 0.4 assuming Lemma 0.5. Let p be a polynomial with ≤ s monomials over
variables x, y where |x| = |y| = n/2. A uniform random choice of y reduces IP to parity
over a uniform random subset of variables x1, . . . , xn/2. But fixing y does not change the set
of monomials of p in x (it merely changes the sign of the coefficients). So with probability
≥ 1− s/2n/2 a uniform random choice of y reduces to the setting of Lemma 0.5, in which p
is reduced to a polynomial with ≤ s monomials over n/2 x-variables and IP is reduced to a
parity over x-variables not contained in p. Hence the overall error probability over a random
choice of both x and y is ≥ (1− s/2n/2) · (1/s).

Before proving Lemma 0.5 in the next section we remark that it is essentially tight: for
s = 2k − 1, there is a polynomial p of sparsity s that does not contain the monomial t but
computes t exactly on all but 2n/(s + 1) inputs. We show next a construction for t = 1,
i.e. the parity on 0 variables, so p is not allowed to have a constant term. (Given such a
construction p then p · t is a construction for any monomial t.)

For sparsity s = 1 we take p = x1 and the error is 1/2 (p is wrong exactly when x1 = −1);
for sparsity s = 3 we take p = x1 +x2 · (1−x1) and the error is 1/4 (p is wrong exactly when
x1 = −1, x2 = −1); for sparsity s = 7 we take p = x1 + x2(1− x1) + x3(1− x1)(1− x2) and
the error is 1/8 (p is wrong exactly when x1 = −1, x2 = −1, x3 = −1); and so on.

0.1 Proof of Lemma 0.5

First, our polynomials are multi-linear without loss of generality. Recall that such a polyno-
mial p in n variables is syntactically zero if and only if p(x) = 0 for every x ∈ {−1, 1}n.[Sch80,
Zip79] The proof is by contradiction, so we suppose that the conclusion does not hold, i.e.
sign(p(x)) disagrees with t(x) on fewer than 2n/s points. (p(x) = 0 counts as a disagreement;
alternatively, we can assume that p(x) 6= 0 for every x without loss of generality.) We show
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below how to construct a non-zero polynomial g such that g(x) = 0 on the few (< 2n/s)
disagreement points, and moreover the monomials of p · g2 still do not contain t(x). Given
such a g we observe that the polynomial p · g2 is non-zero and always agrees in sign with t,
but on the other hand E[p · g2 · t] = 0. This is a contradiction.

The construction of g. We identify monomials with elements of {0, 1}n in the obvious
way. Note that product of monomials corresponds to bit-wise addition mod 2. Let B be the
set of monomials of p, so s = |B|. Let t be a monomial not present in B. We construct a set
M of size |M | ≥ 2n/|B| such that t 6∈M +M +B, where S + T := {s+ t : s ∈ S, t ∈ T}.

Then we define g to be a polynomial with the monomials in M . We set the coefficients
of the monomials in M so that g(x) = 0 for |M | − 1 inputs x, and still have g be a non-zero
polynomial. This is possible because we have a homogeneous system of |M | − 1 equations
in |M | variables.

The condition t 6∈ M + M + B translates to the condition that p · g2 does not contain
the monomial t.

The construction of M . Call a pair (M,G) good if for every g ∈ G, 2(M
⋃
g) + B does

not contain t. For simplicity here and below we write g for the set {g}.
The next two claims allow us to construct a pair (M,G) that is good and where |M | ≥

2n/|B|, as desired.

Claim 0.6. (∅, {0, 1}n) is good.

Proof. In this case 2(M
⋃
g) +B = g+ g+B = B, which does not contain t by assumption.

Claim 0.7. If (M,G) is good then for any g ∈ G, (M
⋃
g,G \ (B + t+ g)) is also good.

Proof. Suppose by contradiction that there is g′ ∈ G\(B+t+g) such that t ∈ 2(M
⋃
g

⋃
g′)+

B.
Recall t 6∈ 2(M

⋃
g) + B, and t 6∈ 2(M

⋃
g′) + B, because both g and g′ are in G, and

(M,G) is good.
Hence t ∈ 2(g

⋃
g′) +B.

Recall again that t 6∈ B by assumption.
Hence t ∈ g + g′ +B, but this contradicts the choice of g′.

We remark that the proof of Lemma 0.5 in this section may be viewed as a generalization
of an argument from [ABFR94]. In the latter the polynomial p has degree d, so B’s elements
are just strings in {0, 1}n of weight ≤ d, and one defines M to be the set of all strings of
weight less than (n− d)/2. Our proof employs a slightly more involved greedy construction.
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