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Abstract

We highlight the challenge of proving correlation bounds between boolean functions
and real-valued polynomials, where any non-boolean output counts against correlation.

We prove that real-valued polynomials of degree 1
2 lg2 lg2 n have correlation with

parity at most zero. Such a result is false for modular and threshold polynomials. Its
proof is based on a variant of an anti-concentration result by Costello, Tao, and Vu
(Duke Math. J. 2006).

1 Introduction

The polynomial method has been one of the most successful tools in theoretical computer
science. It has had many applications, for example, in complexity and learning theory. The
surveys [Bei93, Vio09, She08] provide starting points to learn more about this method.

As is well-known, however, there are several problems about polynomials which have
resisted decades of attacks. The purpose of this work is to highlight certain new basic
problems about polynomials which appear to stand in the way of further progress, making
some initial technical contributions along the way.

A challenge that we are interested in is that of proving correlation bounds. Specifically,
for two functions f, g : {0, 1}n → R, where R represents the set of real numbers, define their
“correlation” to be the quantity:

Corn(f, g)
def
= Px[f(x) = g(x)]− 1/2,

where x is uniformly distributed over {0, 1}n.
Most of the research has so far concentrated on the case in which both f and g are

boolean, and in order to incorporate into this framework arbitrary multivariate polynomials,
one clearly has to convert them to boolean functions b : {0, 1}n → {0, 1}. Historically,
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there have been two prominent methods of doing this. The first applies to polynomials with
integer coefficients and consists in declaring b(x) = 1 if p(x) is divisible by a prescribed
integer m, and 0 otherwise. We refer to these functions b as modular polynomials. The
second declares b(x) = 1 if p(x) > t for some prescribed threshold t, and 0 otherwise. (Here
the involved polynomials may be also assumed to have integer coefficients without loss of
generality [MTT61, Mur71].) We refer to these functions b as threshold polynomials.

It is an open problem to exhibit an explicit boolean function f : {0, 1}n → {0, 1} such that
Corn(b, f) = o(1/

√
n) for any modular polynomial b whose underlying polynomial has degree

lg2 n, cf. [Vio09]. Interestingly, the same problem is open even for threshold polynomials.
These parallel developments make it very natural (and hopefully instructive) to consider

the “universal”, “umbrella” model of real polynomials where we just view the polynomial
itself as computing a boolean function, and any output of the polynomial outside of {0, 1}
is counted as an error. As it appears, this generic setting was considered before, but in
a somewhat ad hoc way and mostly as a building block for other constructions (see e.g.
[ABFR94, Section 5]). We are not aware of any previous attempts to study it independently,
and, as a consequence, we are not aware of any lower bound techniques for real polynomials
that are not derivative from modular or threshold case. In particular we highlight the
following challenge:

Challenge 1.1. Exhibit an explicit boolean function f : {0, 1}n → {0, 1} such that Corn(p, f) ≤
o(1/
√
n) for any real polynomial p : {0, 1}n → R of degree lg2 n.

Another motivation for considering real correlation in its unprocessed form comes from
connections to matrix analysis. It is well-known that analogies between polynomial approx-
imations and matrix approximations are extremely important and influential in Theory and
other areas like Machine Learning (see e.g. [She08]). Viewed under this angle, our model
is a straightforward analogy of matrix rigidity [Val77] (cf. [SV12]) that remains one of the
greatest unresolved mysteries in Complexity Theory.

Note that the Parity function is a candidate for f in Challenge 1.1. We also note that
solving Challenge 1.1 is a pre-requisite for solving the corresponding problem for threshold
polynomials. Similarly, the special case of Challenge 1.1 when the polynomials have integer
coefficients is a pre-requisite for solving the corresponding problem for modular polynomials.

We do not know how to address Challenge 1.1. However, we can prove that the correlation
with parity is zero for low degrees.

Theorem 1.2. Corn(p, parity) ≤ 0 for every large enough n and every real polynomial
p : {0, 1}n → R of degree ≤ 1

2
lg2 lg2 n.

Theorem 1.2 follows easily from an anti-concentration result which is presented in §3 and
is our main technical contribution. The proof of Theorem 1.2 is at the end of §3.

We note that the “zero behavior” in Theorem 1.2 does not hold for the other models men-
tioned earlier. Specifically, for threshold polynomials it follows from the results [ABFR94]
of Aspnes, Beigel, Furst, and Rudich that increasing degree always increases correlation
with parity. For modular polynomials when the modulus is m = 3, it follows from Green’s
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result [Gre04] that quadratic polynomials have better correlation with parity than linear
polynomials. Thus, Theorem 1.2 appears to be the first authentic lower bound in our model.

Theorem 1.2 also raises the problem of determining the smallest degree for which the
correlation with parity becomes strictly positive. Using standard techniques we note an
O(
√
n) upper bound on this degree. In fact, the bound applies to any symmetric function,

i.e., a function whose value only depends on the Hamming weight of the input. The same
result obviously holds for threshold polynomials. The proof does not immediately apply to
polynomials modulo m, because the coefficients may have denominators divisible by m. But
a similar result for modular polynomials is obtained in Theorem 7 in [Vio09].

Fact 1.3. Let f : {0, 1}n → R be a real-valued, symmetric function. There exists a real
polynomial p : {0, 1}n → R of degree O(

√
n) such that Corn(p, f) ≥ 0.99.

Proof. We construct a polynomial that computes f exactly on inputs of Hamming weight
n/2−c

√
n, . . . , n/2+c

√
n. For a suitable constant c, this yields the result by, say, Chebyshev’s

bound.
Denote by h(w) the value of f on inputs of Hamming weight w. By interpolation, we can

compute h on inputs in the above range by a univariate polynomial p(w) of degree 2c
√
n.

The desired multivariate polynomial is then p(
∑

i xi).

2 Notation

We let [n]
def
= {1, 2, . . . , n}, and [n]≤k

def
= {S ⊆ [n] | |S| ≤ k}. In this paper, we are interested

in real-valued functions f : {0, 1}n −→ R. Every such function has a unique representation as
a multi-linear polynomial p(x1, . . . , xn) =

∑
S⊆[n] cSxS, where cS ∈ R and we have introduced

the natural abbreviation xS
def
=
∏

i∈S xi. Supp(p)
def
= {S ⊆ [n] | cS 6= 0} corresponds to the

set of non-zero coefficients.
Unless specifically noted otherwise, all probabilities and expectations in this paper are

calculated w.r.t. the uniform distribution.

3 An anti-concentration result

In [CTV06], Costello, Tao and Vu proved the following remarkable result.

Proposition 3.1. Let k be a fixed positive integer, and p(x1, . . . , xn) =
∑

S∈[n]≤k cSxS be
a multi-linear polynomial of degree ≤ k. Then for any real interval I of length 1 we have
P[p ∈ I] ≤ O(m−ak), where

m
def
=

1

nk−1
|
{
S ∈ [n]≤k | |cS| ≥ 1

}
| (1)

and
ak

def
= 2−(k2+k)/2. (2)

3



In this paper, we are mostly interested in the following corollary easily obtainable by an
indefinite scaling of the original polynomial.

Corollary 3.2. Under the same assumptions as in Proposition 3.1, for every fixed h ∈ R
we have the bound

P[p = h] ≤ O(s−ak),

where ak is again given by (2) and

s
def
=

1

nk−1
|Supp(p)|. (3)

Unfortunately, however, the size of the support does not behave well with respect to
restrictions and thus can be hardly used for our purposes.

We improve Corollary 3.2 by relaxing the density restriction to something more combi-
natorial, which makes our main technical contribution. Let us call the term xS significant if
|S| = k (i.e., it has the highest possible degree) and cS 6= 0. Choose a maximal possible set
{xS1 , . . . , xSr} of significant terms with mutually disjoint sets of variables. Then every term
xS with cS 6= 0 either has degree < k or contains at least one variable in common with one
of the terms xS1 , . . . , xSr which implies that |Supp(p)| ≤ kr

∑k−1
i=0

(
n
i

)
≤ O(rnk−1). Thus,

r ≥ Ω(s) (as given by (3)) and we are going to prove that the existence of a large set of
mutually disjoint significant terms is the only property necessary to derive the conclusion of
Corollary 3.2. As a small by-product, we slightly improve their numerical bound.

Theorem 3.3. Let p(x1, . . . , xn) =
∑

S∈[n]≤k cSxS be a multi-linear polynomial of degree
k, and assume that there exist r terms xS1 , . . . , xSr of degree k each and with mutually
disjoint sets of variables such that cSi

6= 0 (1 ≤ i ≤ r). Then for any real h we have
P[p = h] ≤ O(r−bk), where

bk
def
= (2k2k)−1. (4)

Proof. We first condition (in the least advantageous way) on the values of all variables
not appearing in the terms xS1 , . . . , xSr . Since these terms have maximal possible degree
k, substitutions of other variables do not produce any effect on the coefficients cS1 , . . . , cSr .
Thus, we may assume from the very beginning that our polynomial has precisely kr variables
indexed by S1

.
∪ . . .

.
∪ Sr. Renaming the variables, let, say

xSj
= x1jx2j . . . xkj,

where all variables xij (i ∈ [k], j ∈ [r]) are pairwise distinct.
Let us call a term t cross-term if it has degree k and, moreover, is of the form x1j1 . . . xkjk

for some function j : [k] −→ [r]. Cross-terms xSj
themselves (i.e., those for which the

function j is a constant) will be called principal. Our first task is to get rid of all terms
that are not cross-terms (and this is where we suffer the enormous loss in the exponent in
(4)); the proof is virtually identical to [CTV06] but we include it nonetheless for the sake of
completeness.
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Write p = p(X1, . . . , Xk), where

Xi
def
= {xij | j ∈ [r]} ,

introduce an isomorphic set of variables Y1, . . . , Yk and form the alternating sum

p̂(X1, . . . , Xk, Y1, . . . , Yk)
def
=

∑
a∈{0,1}k

(−1)
∑

i aip(W a1
1 , . . . ,W ak

k ), (5)

where W a
i

def
=

{
Xi if a = 0

Yi if a = 1.

The Decoupling lemma [CTV06, Lemma 6.3] implies that

P[p(X1, . . . , Xk) = h] ≤

P

 ∧
a∈{0,1}k

p(W a1
1 , . . . ,W ak

k ) = h

1/2k

≤ P[p̂(X1, . . . , Xk, Y1, . . . , Yk) = 0]1/2
k

, (6)

where Y1, . . . , Yk are picked from {0, 1}r uniformly and independently of X1, . . . , Xk.
On the other hand, (5) defines a linear mapping from the space of multi-linear polynomials

in kr variables, and on every term t = t1(X1) . . . tk(Xk) it produces (t1(X1)−t1(Y1))(t2(X2)−
t2(Y2)) . . . (tk(Xk)− tx(Yk)). Which implies that this mapping vanishes on all terms that are
not cross-terms (as for them there exists an i such that ti = 1), and on every cross-term the

mapping acts simply as the substitution xij 7→ zij
def
= xij − yij. Thus,

p̂(X1, . . . , Xk, Y1, . . . , Yk) = q(Z1, . . . , Zk),

where q is the polynomial p from which we have erased all terms that are not cross-
terms. Random variables zij are i.i.d, and for every individual variable zij, P[zij = 1] =
P[zij = −1] = 1/4, and P[zij = 0] = 1/2.

Definition 3.4. A polynomial q(Z1, . . . , Zk) (where Zj = {zj1, . . . , zjr}) is a (k, r)-polynomial
if it is multi-linear in Z1, . . . , Zk, meaning that every monomial appearing in q may contain
at most one variable from each of these groups, and, moreover, the coefficient in front of all
r principal terms is not zero.

It follows that a (k, r) polynomial has degree exactly k.
Note that q is a (k, r)-polynomial. Whereas q only contains terms of degree k, a (k, r)

polynomial is allowed to have terms of smaller degree (we will need this for induction).

Claim 3.5. For any (k, r)-polynomial q, P[q(Z1, . . . , Zk) = 0] ≤ C13
kr−1/(2k), where C1 > 0

is an absolute constant.

5



To complete the proof of Theorem 3.3, employ (6), and apply Claim 3.5 to our alternating
sum p̂(X1, . . . , Xk, Y1, . . . , Yk) = q(Z1, . . . , Zk).

Proof of Claim 3.5. The proof is by induction on k.
Base case k = 1 follows from the Littlewood-Offord lemma [LO43, Erd45]. We state it

here at the level of generality appropriate to our purposes.

Proposition 3.6 ([LO43, Erd45]). Let z1, . . . , zr be i.i.d. random variables such that P[zi = 1] =
P[zi = −1] = 1/4, P[zi = 0] = 1/2. Let c1, . . . , cr be non-zero. Then for every real h,

P[c1z1 + · · ·+ crzr = h] ≤ C0/
√
r,

for an universal constant C0.

Strictly speaking, this result is stated in [Erd45] only for Rademacher (that is, {±1}-
valued) random variables, but since every zi is a sum of two such variables, Proposition 3.6
follows.

Inductive step. Assume now that k ≥ 2, and that Claim 3.5 is already established for
(k − 1, r′)-polynomials, for arbitrary r′. Expand our (k, r)-polynomial q as

q(Z1, . . . , Zk) = q0(Z1, . . . , Zk) +
r∑
j=1

z1jz2j . . . z(k−1)jRj(Zk),

where terms in q0(Z1, . . . , Zk) are not divisible by any of z1jz2j . . . z(k−1)j, and

Rj(Zk) = cj1zk1 + · · ·+ cjrzkr + cj

is an affine form in the variables Zk such that cjj 6= 0.
What we need to prove for the inductive step is that after we assign Zk = {zk1, . . . , zkr}

at random (according to their distribution), then with high probability Rj(Zk) 6= 0 for many
j. Indeed, note that after we assign Ak to Zk we obtain a multi-variate polynomial of degree
k − 1, and the coefficient of the j-th principal term is Rj(Ak), because terms in q0 cannot
contribute to principal terms. Assigning further (in an arbitrary way) all those variables
zij (i ∈ [k− 1]) for which Rj(Ak) = 0, we arrive at (k− 1, r′)-polynomials, and we can apply
the inductive assumption. This last assignment may give rise to terms of degree < k − 1,
and this is precisely why we had to forsake homogeneity in Definition 3.4.

Set

s
def
=

1

20
r1/k,

and let us call the form Rj large if the number of indices j′ ∈ [r] such that cjj′ 6= 0 is ≥ s,
and small otherwise.

Case 1. At least r/2 forms are large. This case is analyzed similarly to [CTV06]. Assume
w.l.o.g. that the large forms are R1, . . . , Rr/2. For every large form Rj, Proposition 3.6
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implies that P[Rj(Zk) = 0] ≤ C0s
−1/2. Picking at random j ∈U [r/2], and applying Markov’s

inequality, we obtain

PZk

[
Pj∈U [r/2][Rj(Zk) = 0] ≥ 1/2

]
≤ 2C0s

−1/2.

For every individual assignment Ak to the variables Zk such that Pj∈U [r/2][Rj(Ak) = 0] < 1/2
(followed by additionally assigning the variables zij with i ∈ [k− 1] and Rj(Ak) = 0) we are
left with a (k − 1, r′)-polynomial for r′ ≥ r/4. Hence we have, by the inductive assumption:

P[q(Z1, . . . , Zk) = 0] ≤ 2C0s
−1/2 + C13

k−1(r/4)−1/(2k−2) ≤ C13
kr−1/(2k),

as long as the constant C1 is large enough relative to C0. The last inequality uses that
(r/4)−1/(2k−2) ≤ 2r−1/(2k) for k ≥ 2.

Case 2. At least r/2 forms are small. Again, assume w.l.o.g. that the small forms are
R1, . . . , Rr/2. Arrange coefficients cjj′ (j, j′ ∈ [r/2]) in the form of an r/2 × r/2 square
matrix C. Note the first row corresponds to the first small form, and every diagonal element
cjj of this matrix satisfies cjj 6= 0.

The total number of non-zero entries in C is ≤ sr/2. Hence, there are at most r/4
columns of C with more than 2s non-zero entries. So we have ≥ r/2 − r/4 = r/4 columns
with ≤ 2s non-zero entries. Let J be the corresponding indexes.

Now consider the following greedy procedure to select a subset J ′ ⊆ J of these columns.
While there are columns left, pick any column j. Exclude all other columns j′ 6= j such
that cjj′ or cj′j are non-zero. Note we exclude each time ≤ 2s + s = 3s columns. Hence we
can guarantee ≥ (r/2)/(3s) ≥ r/(6s) columns. Let J ′ be the corresponding indices; this set
defines a principal diagonal sub-matrix with non-zero diagonal entries.

Fix in the least advantageous way any variable that does not correspond to one of these
columns, i.e., zkj for any j 6∈ J ′.

We are left with ≥ r/(6s) forms Rj, j ∈ J ′, whose values, over the choice of the remaining
variables, are independent. Moreover, each form takes value 0 with probability ≤ 1/2 (recall
1/2 is the maximum probability that our variables take any value).

Applying Chernoff’s bound, we have that

PZk

[
|{j ∈ J ′ | Rj(Zk) 6= 0}| ≤ r

20s

]
≤ 2−εr/s

for a fixed constant ε > 0, and in the good (i.e., when |{j ∈ J ′ |Rj(Zk) 6= 0}| ≥ r
20s

) case
we, as before, are left with a (k− 1, r

20s
)-polynomial. Noting that r/(20s) = r1−1/k and that

r−(1−1/k)/(2k−2) = r−1/(2k), by inductive assumption we get

P[q(Z1, . . . , Zk) = 0] ≤ 2−εr/s + C13
k−1
( r

20s

)−1/(2k−2)

≤ C13
kr−1/(2k),

again, provided the constant C1 is large enough.
This completes the proof of Claim 3.5.
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Proof. [Of Theorem 1.2] Suppose the hypothesis of Theorem 3.3 is satisfied with r =
√
n.

Then the probability that the polynomial outputs a boolean value is

O
(

1/
√
n

1/(2k2k)
)
≤ 1/2

when k ≤ 1
2

lg2 lg2 n. This proves the theorem.
Otherwise, we can cover all the degree-k terms by ≤ k

√
n variables. Fix these variables

in the most disadvantageous way (this reduces the degree of the polynomial), and iterate.
After ≤ k iterations either the hypothesis of Theorem 3.3 is satisfied with r =

√
n,

in which case we reason as above, or else we end up with a polynomial of degree 0 but
n−
√
nk2 ≥ 1 unfixed variables, in which case the theorem is again true. In the latter step

we are using that any non-empty restriction of the parity function is again a parity function,
and hence takes any fixed value with probability ≤ 1/2.

4 Open Questions

Even if our bound (4) provides a slight improvement over the original bound (2) from
[CTV06], it still decays exponentially in k. It remains open whether this dependence can be
made (inverse) linear or polynomial. Such an improvement would immediately give rise to
better bounds in our main result, Theorem 1.2, although we believe that in order to attain
the logarithmic bound from Challenge 1.1, some essentially new ideas will be needed. Nguyen
and Vu [NV13] mildly conjecture that in Corollary 3.2 one can actually take ak = 1/2, so
that the only dependence on k will be hidden in the assumed multiplicative constant. While
this conjecture may look a bit bold, let us note that its partial case k = 2 has been verified
by Costello [Cos09].

The first version of our paper claimed the result analogous to Theorem 3.3 in the “small
ball” version (when anti-concentration is measured w.r.t. a unit interval, and the principal
coefficients cSi

are known to satisfy |cSi
| ≥ 1), but the proof contained a gap. Thus, the ques-

tion whether such a common generalization of Proposition 3.1 and Theorem 3.3 is possible
also remains open.
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