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Abstract

Alice receives a tuple (a1, . . . , at) of t elements from the group G = SL(2, q). Bob
similarly receives a tuple (b1, . . . , bt). They are promised that the interleaved product∏
i≤t aibi equals to either g and h, for two fixed elements g, h ∈ G. Their task is to

decide which is the case.
We show that for every t ≥ 2 communication Ω(t log |G|) is required, even for

randomized protocols achieving only an advantage ε = |G|−Ω(t) over random guessing.
This bound is tight, improves on the previous lower bound of Ω(t), and answers a
question of Miles and Viola (STOC 2013). An extension of our result to 8-party
number-on-forehead protocols would suffice for their intended application to leakage-
resilient circuits.

Our communication bound is equivalent to the assertion that if (a1, . . . , at) and
(b1, . . . , bt) are sampled uniformly from large subsets A and B of Gt then their inter-
leaved product is nearly uniform over G = SL(2, q). This extends results by Gowers
(Combinatorics, Probability & Computing, 2008) and by Babai, Nikolov, and Pyber
(SODA 2008) corresponding to the independent case where A and B are product sets.
We also obtain an alternative proof of their result that the product of three indepen-
dent, high-entropy elements of G is nearly uniform. Unlike the previous proofs, ours
does not rely on representation theory.
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1 Introduction and our results

Computing the iterated product
∏

i≤t gi of a given tuple (g1, . . . , gt) of elements from a group
G is a fundamental task. This is due to two reasons. First, depending on the group, this
task is complete for various complexity classes [KMR66, CM87, Bar89, BC92, IL95, Mil14].
For example, Barrington’s famous result [Bar89] shows that it is complete for NC1 whenever
the group is non-solvable; a result which disproved previous conjectures. Moreover, the
reduction in this result is very efficient: a projection. The second reason is that such group
products can be randomly self-reduced [Bab87, Kil88], again in a very efficient way. The
combination of completeness and self-reducibility makes group products extremely versatile,
see e.g. [FKN94, AIK06, GGH+08, MV13].

Still, some basic open questions remain regarding the complexity of iterated group prod-
ucts. Here we study a communication complexity [Yao79, KN97] question raised in [MV13].
First we give a definition.

Definition 1.1. Let G be a group, let t be a positive integer, and let a = (a1, a2, . . . , at) and
b = (b1, b2, . . . , bt) be elements of Gt. The interleaved product a • b of a and b is the element∏

i≤t aibi = a1b1a2b2 . . . atbt of G.

We consider the following promise [ESY84] problem. Alice receives a tuple a ∈ Gt, and
Bob similarly receives a tuple b ∈ Gt. They are guaranteed that the interleaved product a• b
is equal to either g or h, where g and h are two fixed elements in G. They wish to decide
which is the case.

A communication lower bound of Ω(t) over non-solvable groups follows by the lower
bound for inner product [CG88], because, again, inner product can be reduced to iterated
group product via [Bar89]. However, this bound is far from the (trivial) upper bound of
O(t log |G|), and it gives nothing when t = O(1).

The authors of [MV13] asked if a lower bound of ω(t), or ideally Ω(t log |G|), can be
established over any group. They arrived at this question through a study of leakage-resilient
circuits. Specifically, they proposed a construction of such circuits based on group products,
and showed that it resists leakage from various classes of circuits. (For recent progress,
see [Mil14]). They also showed that the same construction remains secure in the “only
computation leaks” model [MR04], if a lower bound of ω(t) holds for the extension of the
above problem to 8-party number-on-forehead [CFL83] protocols, discussed below.

In this work we answer their question affirmatively in the 2-party case. We give a tight
lower bound of Ω(t log |G|) when G = SL(2, q) is the special linear group of 2×2 matrices with
determinant 1 over the field Fq. The lower bound holds even against public-coin protocols
which achieve a small advantage over random guessing.

Theorem 1.2. Let G be the group SL(2, q). Let P : Gt × Gt → {0, 1} be a (randomized,
public-coin) c-bit communication protocol. For g in G denote by pg the probability that P (a, b)
outputs 1 over uniform tuples a and b such that a • b = g.

For any g, h ∈ G, |pg − ph| ≤ 2c|G|−Ω(t).
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In this paper Ω(t) denotes a function bounded below by ct for an absolute constant c. In
particular, c is independent of t and |G|. Similarly, O(t) denotes a function bounded above
by Ct for an absolute constant C.

We mention three variants of the problem in Theorem 1.2 that can be solved with O(1)
communication using the public-coin protocol for equality, cf. [KN97]. First, there is the
case in which the group is abelian. Thus, our theorem provides a strong separation between
interleaved group products over abelian groups and over SL(2, q). Second, there is the case
t = 1. Third, there is a generalization of the second case, where t = 2 but one element,
say a1, is fixed to the identity. To see the latter, note that the problem reduces to checking
whether a2 = b−1

1 gb−1
2 . Thus, the case t = 2 appears to be the simplest case that is hard.

We conjecture that ω(t log log |G|) bounds hold for any non-abelian simple group. (The
group SL(2, q) with odd q is not simple because it has a normal subgroup of size 2. This
is not an obstacle for our result and we believe it never is, but for simplicity we state the
conjecture for simple groups only.)

Conjecture 1.3. Let G be a non-abelian simple group. Define pg as in Theorem 1.2.
For any g, h ∈ G, |pg − ph| ≤ 2c(log |G|)−Ω(t).

The bound in Conjecture 1.3 cannot be improved for the (non-abelian, simple) alternating
group, see [MV13].

Multiparty protocols. We put forth several conjectures regarding extending our results
to the number-on-forehead communication model [CFL83]. We denote by Gt×k a t×k matrix
of elements in G. For a ∈ Gt×k we denote by ai,j the (i, j) entry. Consider the following
problem on input a ∈ Gt×k. There are k parties, where party i knows all the elements except
those in column i. They are guaranteed that the k-party t-tuple interleaved group product∏

i≤t

∏
j≤k

ai,j

is equal to either g or h, where g and h are two fixed elements in G. They wish to decide
which is the case.

Over any non-solvable group, a communication lower bound of t/2O(k) follows by re-
duction from the lower bound in [BNS92] for generalized inner product. We conjecture
that improvements corresponding to those in Theorem 1.2 and Conjecture 1.3 hold in the
multiparty setting:

Conjecture 1.4. Let P : Gt×k → {0, 1} be a c-bit k-party number-on-forehead communica-
tion protocol. For g ∈ G denote by pg the probability that P outputs 1 over a uniform input
(ai,j)i≤t,j≤k such that

∏
i≤t
∏

j≤k ai,j = g. Then, for any two g, h ∈ G:

1. |pg − ph| ≤ 2c|G|−t/2O(k)
if G = SL(2, q), and

2. |pg − ph| ≤ 2c(log |G|)−t/2O(k)
if G is non-abelian and simple.
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Conjecture 1.4.1 with k = 6 would show that the aforementioned construction of leakage-
resilient circuits in [MV13] tolerates a polynomial amount of leakage, as achieved by e.g. [GR12].
Conjecture 1.3 is the special case of Conjecture 1.4.2 with k = 2.

A central open problem in number-on-forehead communication complexity is to prove
lower bounds when then number of players is more than logarithmic in the input length,
cf. [KN97]. Moreover, there is a shortage of candidate hard functions, thanks to the many
clever protocols that have been obtained [Gro94, BGKL03, PRS97, Amb96, AL00, ACFN12,
CS14], which in some cases show that previous candidates are easy.

One candidate by Raz [Raz00] that still stands is the top-left entry of the multiplication
of k n× n matrices over GF(2). He proves [BNS92]-like bounds for it, and further believes
that this entry remains hard even for k much larger than log n. Our setting is different, for
example because we multiply more than k matrices and the matrices can be smaller.

We make the following conjecture. For concreteness we focus on the specific setting of
parameters of polylogarithmic parties and communication.

Conjecture 1.5. Let G be a non-abelian simple group, and let c > 0 be a constant. Then
there is no protocol for the k-party t-tuple interleaved group product over G with k = logc t
parties and communication logc t.

We note that this conjecture is interesting even for a group of constant size and for deter-
ministic protocols that compute the whole product (as opposed to protocols that distinguish
with some advantage tuples that multiply to g from those that multiply to h).

For context, we mention that the works [BGKL03, PRS97, Amb96, AL00] consider the
so-called generalized addressing function. Here, the first k − 1 parties receive an element gi
from a group G, and the last party receives a map f from G to {0, 1}. The goal is to output
f(g1·g2·. . .·gk−1). For any k ≥ 2, this task can be solved with communication log |G|+1. Note
that this is logarithmic in the input length to the function which is |G|+ (k− 1) log |G|. By
contrast, for interleaved products we prove and conjecture bounds that are linear in the input
length. The generalized addressing function is more interesting in restricted communication
models, which is the focus of those papers.

The bound in our main result, Theorem 1.2, is equivalent to a bound on the mixing
of interleaved distributions in groups, which is of independent interest. The next section
discusses this perspective.

1.1 Mixing in groups

We consider the following general setup. G is a group which, as in the previous section,
should be considered large. We have m distributions Xi over G, where each Xi has high
entropy. For this discussion, we can think of each Xi as being uniform over a constant
fraction of G. We will first consider the case where the Xi are independent, and later we
will throw in dependencies.

Our goal is to show that the distribution D :=
∏

i≤mXi (i.e., sample from each Xi and
output the product, a.k.a. convolution) mixes, i.e., is nearly uniform over G. We will focus
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on an L∞ bound. Specifically, we aim to show that D is equal to any fixed g ∈ G with
probability 1/|G| up to a multiplicative factor of (1 + ε) for a small |ε|:

|P[D = g]− 1/|G|| ≤ ε/|G|.

Such a bound guarantees that D is supported over the entire group. By summing over all
elements, we also infer that D is ε-close to uniform in statistical distance.

The above goal has many applications in group theory, see for example [Gow08, BNP08]
and the citations therein. As we mentioned, it is also closely related to problems in commu-
nication complexity.

As a warm-up, consider the case m = 2. That is, we have two distributions X and Y .
In this case, it is easy to see that XY does not mix, no matter which group is considered.
Indeed, let X be uniform over an arbitrary subset S of G of density 1/2, and let Y be
(uniform over) the set of the same density consisting of all the elements in G except the
inverses of the elements in S, i.e., Y := G \ S−1. It is easy to see that XY never equals 1G.

Now consider the case m = 3, so we have three distributions X, Y , and Z. Here the
answer depends on the group G. It is easy to see that if G has a large non-trivial subgroup
H then D := XY Z does not mix. Indeed, we can just let each distribution be uniform over
H. It is also easy to see that X+Y +Z do not mix over the abelian group Zp. For example,
if X = Y = Z are uniform over {0, 1, . . . , p/4} then X + Y + Z is never equal to p− 1.

However, for other groups it is possible to establish a good L∞ bound. This was shown by
Gowers [Gow08]. A sharper version of the result was proved by Babai, Nikolov, and Pyber,
who established the following inequality.

Theorem 1.6 ([BNP08]). Let G be a group, and let g be an element of G. Then

|P[XY Z = g]− 1/|G|| ≤ |X|2|Y |2|Z|2
√
|G|/d,

where d is the minimum dimension of a non-trivial representation of G.

In our example setting where each distribution is uniform over a constant fraction of G,
the right-hand side becomes

O(d−1/2)/|G|.

Note that the parameter ε in our goal above is equal to O(d−1/2). We mention that for
any non-abelian simple group we have d ≥

√
log |G|/2, whereas for G = SL(2, q) we have

d ≥ |G|1/3, cf. [Gow08]. In particular, for G = SL(2, q) we have that XY Z is ε-close to
uniform over the group, where ε = 1/|G|−Ω(1). Jumping ahead, one of our contributions is
to give an alternative proof of the latter bound which avoids representation theory.

Dependent distributions. We now consider the seemingly more difficult case where there
may be dependencies across the Xi. As a warm-up, consider three distributions A, Y , and A′,
where A and A′ may be dependent, but Y is independent from (A,A′). Does the distribution
AY A′ mix? It is not hard to see that the answer is negative. Indeed, let Y be uniform over
an arbitrary set S of density 1/2. Further let A be the uniform distribution over G. And
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define A′ conditioned on the value of A as A′ := G \ S−1A−1. It is easy to see that AY A′ is
never equal to 1G. (This example corresponds to one mentioned after Theorem 1.2.)

Our main result is that mixing does, however, occur for distributions of the form ABA′B′,
where A and A′ are dependent, and B and B′ are also dependent, but (A,A′) and (B,B′)
are independent. Moreover, the bound scales in the desired way with the length t of the
tuple.

Theorem 1.7. Let G = SL(2, q). Let A,B ⊆ Gt have densities α and β respectively. Let
g ∈ G. If a and b are selected uniformly from A and B we have

|P[a • b = g]− 1/|G|| ≤ (αβ)−1|G|−Ω(t)/|G|.

In particular, the distribution a • b has distance at most (αβ)−1|G|−Ω(t) from uniform in
statistical distance.

Mixing in three steps. As mentioned earlier, our results imply a special case of Theorem
1.6. Recall that the latter bounds the distance between XY Z and uniform. Our Theorem
1.7 with t = 2 immediately implies a similar result but with four distributions, i.e., a bound
on the distance of WXY Z from uniform. To obtain a result about three distributions like
Theorem 1.6 we make a simple and general observation that mixing in four steps implies
mixing in three, see §5.4. Thus we recover, up to polynomial factors, the bound in Theorem
1.6 for the special case of G = SL(2, q). This is of some interest because, unlike the original
proofs, ours avoids representation theory.

1.2 Overview of techniques

In this section we give an overview of our techniques. First, it is easy to see that our com-
munication bound, Theorem 1.2, and the mixing bound, Theorem 1.7, are both equivalent
to the following version of the mixing bound, which is what we will work with. Here and
elsewhere in the paper we identify sets with their characteristic functions.

Theorem 1.8. Let G = SL(2, q). Let A,B ⊆ Gt have densities α and β respectively. Let
g ∈ G. We have

|Ea•b=gA(a)B(b)− αβ| ≤ |G|−Ω(t),

where the expectation is over a and b such that a • b = g.

Claim 1.9. Theorems 1.2, 1.7, and 1.8 are equivalent.

Proof. The equivalence between the two versions of the mixing bound, theorems 1.7 and 1.8,
follows by Bayes’ equality:

P[a • b = g|a ∈ A, b ∈ B] =
P[a ∈ A, b ∈ B|a • b = g]

|G|αβ
.
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We now show that Theorem 1.8 implies the communication bound, Theorem 1.2. By
an averaging argument we can assume that the protocol P in Theorem 1.2 is deterministic.
Now write

P (a, b) =
∑
i≤C

Ri(a, b)

where C = 2c, the Ri are disjoint rectangles in (Gt)2, i.e., Ri = Si × Ti for some Si, Ti ⊆ Gt,
cf. [KN97], and we also write Ri for the characteristic function with output in {0, 1}. For
any g and h in G we then have, using the triangle inequality:

|pg − ph| =

∣∣∣∣∣∑
i≤C

(
Ea•b=gRi(a, b)− |Ri|/|G|2t + |Ri|/|G|2t − Ea•b=hRi(a, b)

)∣∣∣∣∣ ≤ 2C |G|−Ω(t).

To see the reverse direction, that Theorem 1.2 implies Theorem 1.8, suppose that we are
given sets A and B. Consider the constant-communication protocol P (a, b) := A(a)B(b),
and note that pg = Ea•b=gA(b)B(b) and that Ehph = αβ. So we have

|Ea•b=gA(a)B(b)− αβ| = |pg − Ehph| ≤ Eh|pg − ph| ≤ O(|G|−Ω(t)).

In the remainder of this section we explain the main ideas in the proof of Theorem 1.8.
This theorem is proved in a somewhat different manner depending on whether t = 2 or t is
large. Indeed, jumping ahead, for the case t = 2 we have two proofs, but we only know how
to extend one of them to the case of larger t. We now focus on the case t = 2 and later we
explain the case of larger t.

Our main technical lemma is the following result saying that the product of two typical
conjugacy classes in SL(2, q) is nearly uniform over the group. Recall that the conjugacy
class of an element g of a group G is the set of elements u−1gu for u ∈ G. We use the
notation C(g) to denote a uniform element from this set, i.e., U−1gU for a uniformly chosen
U in G. Different occurrences of C correspond to different, independent U .

Lemma 1.10. Let G = SL(2, q). With probability 1− 1/|G|Ω(1) over uniform a and b in G,
the distribution C(a)C(b) is 1/|G|Ω(1) close to uniform in statistical distance.

This lemma relies on the specific choice of the group G = SL(2, q). But other than this,
our proof applies to any group. So if a lemma like 1.10 can be established for other groups,
Theorem 1.8 with t = 2 would follow for those groups too.

As it may not be apparent, we sketch why Lemma 1.10 is sufficient to prove Theorem
1.8, and then we explain how we prove Lemma 1.10.

Lemma 1.10 implies Theorem 1.8 with t = 2. Note that the quantity to bound in
Theorem 1.8 can be written as

EbEa:a•b=1(A(a)− α)B(b).
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We can now use Cauchy-Schwarz and some simple manipulations to bound this from above
by

EbE2
a:a•b=1A(a)− α2,

up to polynomial factors. Since the inner expectation is squared, the whole expectation is
equivalent to choosing b and then two values for a, both subject to a • b = 1. Recalling
a • b = a1b1a2b2, and averaging over b2, we can rewrite the above expression as

Ea1b1a2=a′1b1a
′
2
A(a1, a2)A(a′1, a

′
2)− α2.

Note that if a1, a2, a
′
1, a
′
2 were uniform this difference would be 0.

The fact that the same variable b1 occurs on both sides of the equation a1b1a2 = a′1b1a
′
2

is what gives rise to conjugacy classes. Indeed, this equation can be rewritten as

a2 = b−1
1 (a−1

1 a′1)b1a
′
2 = C(a−1

1 a′1)a′2.

Changing names of variables, we see that we are considering the following random walk on
G2. Pick a uniformly in G2, and then move to ah, where h is the uniform distribution on
pairs (y, C(y)). We need to show that the probability that a lands in A and ah also lands in
A is close to α2. As a final step, we make a general observation, again proved via Cauchy-
Schwarz, that a result such as this follows from the result for a and ahh, cf. §5.1. The latter
is given by Lemma 1.10, because hh is the distribution (yz, C(y)C(z)).

Proof of Lemma 1.10. There is an extensive literature on the growth of products of
conjugacy classes in groups, see e.g. the book [AH85] and the papers citing it. However,
existing results appear to be insufficient to obtain Lemma 1.10. The main reason for this
is that papers in the literature mostly focus on the size of the support of C(a)C(b), while
we need to bound the distance from the uniform distribution. For the group G = SL(2, q)
the size of the support is analyzed in a paper by Adan-Bante and Harris [ABH12] that was
important for this work.

To prove Lemma 1.10 we begin with the observation that, for any a and b, the distribution
of C(a)C(b) is equal to the distribution of C(C(a)C(b)), i.e., we are allowed to take one extra
conjugation at the end “for free.” Now we critically rely on the structure of the conjugacy
classes of the group G = SL(2, q). Essentially, G is a group of size q3 with q classes of size
q2, cf. Lemma 3.1. In particular, except for a constant number of classes, every class in the
group has roughly the same size. Coupled with the above observation, this means that it
will be sufficient to show that C(a)C(b) lands in each of the roughly q conjugacy classes with
probability equal to 1/q up to a multiplicative factor (1 + ε) for |ε| ≤ 1/qΩ(1).

To show the latter, we rely on the fact that there is an approximately 1-1 correspondence
between the conjugacy class of an element g and its trace in Fq. This key fact is also central
to the aforementioned paper [ABH12] and to many other papers concerning conjugacy classes
in SL(2, q). Thus, it suffices to show that for typical a and b, the trace of C(a)C(b) is nearly
uniform over Fq. Because the traces of xy and yx are the same, the distribution of the trace
of C(a)C(b) is the same as the distribution of the trace of aC(b). To show that aC(b) is
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nearly uniform, we write this trace as a polynomial R whose variables are the four entries
of U in the expression aC(b) = aU−1bU . Our goal is to show that this polynomial R is
equidistributed over the field Fq, in the multiplicative sense above, cf. Lemma 4.1.

Whereas in some cases we can give an elementary proof of this equidistribution, in general
we have to rely on classical results in algebraic geometry, specifically the Lang-Weil [LW54]
multidimensional generalization of Weil’s bound. This result shows that if a polynomial is
absolutely irreducible, i.e., irreducible over any field extension, then it will take the value
0 with probability 1/q up to a multiplicative factor (1 + ε) for |ε| ≤ 1/qΩ(1). By showing
that for all but O(1) values D ∈ Fq the polynomial R − D is absolutely irreducible, we
conclude that the polynomial is close to uniformly distributed over Fq. This concludes the
proof sketch of Lemma 1.10.

Alternative proofs. As mentioned already, our proof avoids representation theory and
as such departs from the approach in [Gow08, BNP08]. We have however an alternative
proof of our main Theorem 1.8 for the case t = 2 which uses representation theory but
avoids Lang-Weil. In a nutshell, this alternative proof starts along the way described above.
However, one obtains a weaker equidistribution result, simply saying that aC(b) lands in any
fixed conjugacy class with probability O(1/q) (but possibly misses a constant fraction of the
classes). This weaker result, for which Schwartz-Zippel is sufficient, can then be boosted via
the representation-theory inequality in Theorem 1.6 to obtain Lemma 1.10.

Longer tuples. We now briefly explain the proof of Theorem 1.8 for larger t. Applying
Cauchy-Schwarz in a manner similar to that discussed in the above subsection “Lemma 1.10
implies Theorem 1.8,” we reduce the problem to that of understanding a random walk over
G that is obtained by alternating multiplication by a group element si and conjugation:

C(st . . . C(s2C(s1)) . . .).

We prove that with probability 1−1/|G|Ω(t) over the choice of the si, the resulting distribution
is 1/|G|Ω(t)-close to uniform in statistical distance. This in turn follows by the next result,
which shows that a constant number of steps in such a walk reduces the statistical distance
to uniform of any distribution by a factor 1/|G|Ω(1):

Lemma 1.11. Let D be a distribution over G = SL(2, q). With probability 1 − 1/|G|Ω(1)

over s1, s2 ∈ G, we have:

|C(s1C(s2C(D)))− U |1 ≤ |D − U |1/|G|Ω(1),

where U is the uniform distribution over G.

Organization. This paper is organized as follows. In §2 we exhibit a series of reductions,
valid in all groups, that show that a statement similar to Lemma 1.11 – Lemma 2.5 – is
sufficient to obtain the main mixing result, Theorem 1.8, in the case of large t. This lemma
is then proved appealing to specific properties of the group in sections 3 and 3.3. The case
t = 2 is then proved in §5. In §5.4 we explain how we recover a special case of Theorem 1.6.

8



2 Reductions of the theorem that are valid in all groups

In this section we shall give a sequence of reductions of what we need to prove until we end
up with a simple statement about products of conjugacy classes in SL(2, q).

2.1 Formulation in terms of quasirandom graphs

It turns out that what we are trying to prove is that a certain graph is quasirandom, in a
sense that goes back to important papers of Thomason and Chung, Graham and Wilson in
the 1980s [Tho87, CGW89]. Their main insight was that several properties of graphs, all of
which say that a graph is “random-like” in some sense, are approximately equivalent. One
of these properties is known as having low discrepancy. Given a graph Γ of density δ and
two subsets A,B of V (Γ) of densities α and β, we would expect the number of pairs (a, b)
with a ∈ A and b ∈ B to be approximately αβδ if Γ was random. The discrepancy of Γ is
the maximum over all subsets A and B of V (Γ), of the quantity

|Ex,y∈ΓΓ(x, y)A(x)B(y)− δαβ|,

where α and β are the densities of A and B and we are using the letter Γ for the adjacency
matrix of the graph as well as for the graph itself.

A very similar definition applies to bipartite graphs: the only difference is that this time
if Γ has vertex sets X and Y , then we define the density of Γ to be Ex∈X,y∈Y Γ(x, y) and to
define the discrepancy we take the maximum over all subsets A ⊂ X and B ⊂ Y .

If we now let G =SL(2, q) and g ∈ G as above, and define a bipartite graph Γ with two
copies X and Y of Gt as its vertex sets by joining x ∈ X to y ∈ Y if and only if x • y = g,
then the statement that

Ea•b=gA(a)B(b)− αβ
is small for any two sets A,B ⊂ Gt of densities α and β is precisely the statement that the
graph Γ has small discrepancy. Indeed, if we divide through by |G|, then the quantity we
wish to bound becomes

Ea,bΓ(a, b)A(a)B(b)− αβ|G|−1.

Since the density of Γ is |G|−1, this is of the right form, and our aim will be to prove that
the discrepancy of Γ is at most |G|−ct−1.

For convenience, we now state and prove the main (standard) fact about quasirandom
graphs that we shall need. Given a bipartite graph Γ with finite vertex sets X and Y , define
the 4-cycle density of Γ to be the quantity

Ex,x′,y,y′Γ(x, y)Γ(x, y′)Γ(x′, y)Γ(x′, y′).

This is the probability that the quadruple (x, y, x′, y′) forms a (possibly degenerate) 4-cycle
when x and x′ are chosen independently and uniformly from X and y and y′ are chosen
independently and uniformly from Y . More generally, define the 4-cycle norm ‖f‖� of a
function f : X × Y → R by the formula

‖f‖4
� = Ex,x′,y,y′f(x, y)f(x, y′)f(x′, y)f(x′, y′).
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It can be proved that this does indeed define a norm, though we shall not need that fact
here. In the next few results we define the L2 norm using expectations: that is, if f : X → R,
then ‖f‖2 = (Exf(x)2)1/2.

The following inequality tells us that a function with small 4-cycle norm has small cor-
relation with functions of the form (x, y) 7→ u(x)v(y).

Lemma 2.1. Let X and Y be finite sets, let u : X → R, let v : Y → R and let f : X×Y → R.
Then

|Ex,yf(x, y)u(x)v(y)| ≤ ‖f‖�‖u‖2‖v‖2.

Proof. The proof uses two applications of the Cauchy-Schwarz inequality. We have

(Ex,yf(x, y)u(x)v(y))4 = ((Exu(x)Eyf(x, y)v(y))2)2

≤ ((Exu(x)2)(Ex(Eyf(x, y)v(y))2)2

= ‖u‖4
2 (Ey,y′v(y)v(y′)Exf(x, y)f(x, y′))2

≤ ‖u‖4
2(Ey′y′v(y)2v(y′)2)(Ey,y′(Exf(x, y)f(x, y′))2

= ‖u‖4
2‖v‖4

2‖f‖4
�.

The result follows on taking fourth roots.

Lemma 2.2. Let Γ be a bipartite graph with finite vertex sets X and Y and density δ.
Suppose that every vertex in X has degree δ|Y | and every vertex in Y has degree δ|X|. For
each x ∈ X and y ∈ Y let f(x, y) = Γ(x, y)− δ. Then

‖f‖4
� = ‖Γ‖4

� − δ4.

Proof. We have Γ(x, y) = f(x, y) + δ for every x and y. If we make this substitution into
the expression

Ex,x′,y,y′Γ(x, y)Γ(x, y′)Γ(x′, y)Γ(x′, y′),

then we obtain 16 terms, of which two are

Ex,x′,y,y′f(x, y)f(x, y′)f(x′, y)f(x′, y′)

and δ4. All remaining terms involve at least one variable that occurs exactly once. Since
Eyf(x, y) = 0 for every x and Exf(x, y) = 0 for every y, all such terms are zero. The result
follows.

Armed with these two lemmas, we can now show that if Γ is a bipartite graph of density
δ that is regular in the sense of Lemma 2.2 (this assumption is not necessary, but it is
convenient, and holds for our application), and if the 4-cycle density is not much larger than
δ4, then Γ has small discrepancy.

Corollary 2.3. Let Γ be as in Lemma 2.2, let c > 0, and suppose that the 4-cycle density
of Γ is at most δ4(1 + c4). Then for any two sets A ⊂ X and B ⊂ Y of densities α and β,
respectively, we have the discrepancy estimate

|Ex,yΓ(x, y)A(x)B(y)− δαβ| ≤ cδ(αβ)1/2.

10



Proof. Let f(x, y) = Γ(x, y)− δ. Then by Lemma 2.2 we know that ‖f‖� ≤ c4δ4. Therefore,
by Lemma 2.1 we have

|Ex,yf(x, y)A(x)B(y)| ≤ cδ(αβ)1/2,

since ‖A‖2 = α1/2 and ‖B‖2 = β1/2. This is equivalent to the statement we wish to prove.

It will therefore be enough to prove that the 4-cycle density of Γ is at most |G|−4(1+|G|−ct)
for some positive absolute constant c.

A sufficient condition for this to hold is that for all but a proportion |G|−ct of pairs of
vertices a, a′, the intersection of the neighbourhoods of a and a′ has density within |G|−ct of
|G|−2, again for some absolute constant c > 0. (It is simple to show that the condition is
necessary as well, but we shall not need that fact.) To put this more analytically, we would
like to show that if a and a′ are chosen randomly from Gt, then

P[|EbΓ(a, b)Γ(a′, b)− |G|2| ≥ |G|−ct] ≤ |G|−ct,

where Γ(a, b) = 1 if and only if a • b = g for some specified element g.
Our next task will be to understand this condition in a little more detail.

2.2 Reduction to the very rapid mixing of a certain random walk

A simple preliminary remark is that it is enough to prove the result when g is the identity
e. Indeed, if we define φ : Gt → Gt by φ : (b1, . . . , bt) 7→ (b1, . . . , bt−1, btg

−1) and we let
B′ = φ(B), then B′ has the same density as B, and

Ea•b=gA(a)B(b) = Ea•φ(b)=eA(a)B(b) = Ea•b=eA(a)B(φ−1b) = Ea•b=eA(a)B′(b).

So from now on we shall restrict attention to the case g = e, which means that Γ is the
graph where ab is an edge if and only if a1b1a2b2 . . . atbt = e.

As explained in the last section, we wish to show that for almost all pairs a, a′ the
proportion of b such that a • b = a′ • b = e is approximately |G|−2. But this proportion is
|G|−1 times the proportion of (b1, . . . , bt−1) ∈ Gt−1 such that

a1b1a2b2 . . . at−1bt−1at = a′1b1a
′
2b2 . . . a

′
t−1bt−1a

′
t,

since for each such (b1, . . . , bt−1) there is a unique bt such that if b = (b1, . . . , bt), then
a • b = a′ • b = e.

Let us rearrange this equation as

a−1
t b−1

t−1a
−1
t−1 . . . b

−1
1 a−1

1 a′1b1a
′
2b2 . . . a

′
t−1bt−1a

′
t = e.

We are regarding a and a′ as fixed, and b1, . . . , bt−1 as independent elements of G, chosen
uniformly. So the left-hand side of the above equation is obtained as follows. We begin
with the identity. Then we premultiply by a−1

1 and postmultiply by a′1, obtaining an element
u1. Next, we conjugate it by a random element of G to obtain an element v1. Then we
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premultiply by a−1
2 and postmultiply by a′2 to obtain an element u2, and pick a random

conjugate v2 of u2, and so on.
Let us define ci to be a′ia

−1
i for each i. Then for each i we know that ui = a−1

i vi−1a
′
i

is conjugate to a′ia
−1
i vi−1 = civi−1. Therefore, a random conjugate of ui has the same

distribution as a random conjugate of civi−1.
It follows that we can consider a slightly simpler process instead. We have a fixed sequence

(c1, . . . , ct−1) and two elements at and a′t. We begin with the identity and alternately multiply
by the next ci and take a random conjugate. After the (t − 1)st stage of this process, we
premultiply by a−1

t and postmultiply by a′t. And we would like to prove that for almost
all choices of c1, . . . , ct−1, at, a

′
t, the probability that the resulting element is the identity is

within |G|−ct of |G|−1, where “almost all” means all but a proportion at most |G|−ct.
Clearly, if we want to show that the final element has a probability very close to |G|−1

of being the identity, it is sufficient to show that it is almost exactly uniformly distributed
(in an L∞ sense). And this will be the case if and only if it is the case before the final
premultiplication by a−1

t and postmultiplication by a′t.
Given an element c ∈ G, define a linear map Tc : RG → RG that corresponds to the

process of multiplying by c and taking a random conjugate. That is, writing ∼ for “is
conjugate to”,

Tcf(g) = Ech∼gf(h).

If f is a probability distribution over G, then Tcf is the probability distribution obtained
by picking a random element according to the distribution f , multiplying it by c (it doesn’t
matter on which side), and taking a random conjugate. In particular, Tgδe is the uniform
distribution on the conjugacy class of g.

It is therefore sufficient to prove the following result.

Theorem 2.4. Let c1, . . . , ct−1 be chosen independently and uniformly from G. Then with
probability at least 1− |G|−ct, we have

‖Tct−1 . . . Tc2Tc1δe − u‖∞ ≤ |G|−ct,

where c > 0 is an absolute constant, δe is the point distribution at the identity, and u is the
uniform distribution on G.

2.3 Reduction to the case t = 3

It is straightforward to show that Theorem 2.4 for sufficiently large t follows from a slightly
stronger statement for t = 3. In this short section we prove this further reduction.

Lemma 2.5. Suppose that there exists an absolute constant c > 0 such that if c1, c2, c3 are
chosen uniformly at random from G, then with probability at least 1 − |G|−c we have the
bound

‖Tc3Tc2Tc1δg − u‖1 ≤ |G|−c

for every g ∈ G, where δg is the point distribution at g. Then Theorem 2.4 holds.
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Proof. Let f : G→ R be a function with
∑

x f(x) = 0. Then

f =
∑
g∈G

f(g)δg =
∑
g∈G

f(g)(δg − u).

Let us call (c1, c2, c3) good if the bound in the statement of the theorem holds, and let us
call the operator Tc3Tc2Tc1 good if and only if the triple (c1, c2, c3) is good. (Whether or not
a triple is good does not depend on c1, but that will not concern us too much.)

Since Tcu = u for every c, it follows that for every good triple (c1, c2, c3) and every
function f that sums to zero,

‖Tc3Tc2Tc1f‖1 ≤
∑
g∈G

|f(g)|‖Tc3Tc2Tc1δg − u‖1 ≤ |G|−c‖f‖1.

That is, if we put the `1 norm on the space of functions that sum to zero, then the operator
norm of Tc3Tc2Tc1 is at most |G|−c for every good triple (c1, c2, c3).

We also have that

‖Tcf‖1 =
∑
g

|Ech∼gf(h)| ≤
∑
g

Ech∼g|f(h)| =
∑
h

|f(h)|Eg∼ch1 = ‖f‖1

for every c ∈ G and every function f : G→ R.
Now let t = 3m + 1 be sufficiently large, and let c1, . . . , ct be chosen uniformly and

independently from G. We can write the operator Tct−1Tct−2 . . . Tc2Tc1 as a composition of
m operators Si = Tc3i

Tc3i−1
Tc3i−2

, which each have a probability at least 1 − |G|−c of being
good, these events being independent.

The probability that at least half of the operators Si are bad is at most 2m|G|−cm, which
is at most |G|−c′t for some absolute constant c′ > 0. If the number of bad Si is less than
m/2, then for every function f that sums to zero,

‖SmSm−1 . . . S1f‖1 ≤ |G|−c(t−1)/3‖f‖1,

which is again at most |G|−c′t for some absolute constant c′ > 0. Setting f = δe − u and
using the fact that Siu = u for every i, we can deduce that

‖Tct−1 . . . Tc2Tc1δe − u‖1 ≤ |G|−c
′t.

Since the `∞ norm is at most the `1 norm, this implies the conclusion of Theorem 2.4.

Lemma 2.5 is therefore sufficient to prove our main result, Theorem 1.8, when t is suf-
ficiently large. This means that our remaining tasks are to prove Lemma 2.5 and to prove
Theorem 1.8 when t = 2. (It is straightforward to prove that the bound does not get worse
as t gets larger: we shall give the simple argument after proving the t = 2 case.)

13



3 Reductions that involve properties of the group

In order to reduce our problem (for large t) to Lemma 2.5, we have not needed to use the
fact that we are working in the group G =SL(2, q). It is now, when we wish to prove the
lemma, that particular properties of the group G become important. The main properties
of SL(2, q) that we shall use are contained in the following two lemmas, the first of which
is standard and the second of which is newer but related to work that has been done on
products of conjugacy classes. In this section we shall explain why the given properties are
sufficient, and then in the next section we shall prove the second lemma.

Lemma 3.1. Let G =SL(2, q). Then

1. |G| = q3(1 +O(q−1)).

2. G has q(1 +O(q−1)) conjugacy classes.

3. If g is chosen uniformly at random from G, then with probability 1− O(q−1) the con-
jugacy class of g has size q2(1 +O(q−1)).

Lemma 3.1 is a special case of results on SL(2, q) that go back to Schur [Sch07]. For
a more recent account see theorems 38.1 and 38.2 in [Dor71]. The case of even q is also
discussed on pages 444-445 of [LS01].

It will be convenient to use the following notation.

Definition 3.2. If g is an element of a group G, let C(g) denote the conjugacy class of g.
If we write (a.e.x) P (x) or say that P (x) holds for almost every x, then this will mean that
if x is chosen uniformly at random, then the probability that P (x) holds is 1−O(q−1).

Lemma 3.3. Let G =SL(2, q). Then

(a.e. g) (a.e. h) ‖ThTgδe − u‖1 = O(q−1/2).

Claim 3.4. Lemmas 3.1 and 3.3 imply the assumption of Lemma 2.5.

Proof. Let us call a conjugacy class C(g) good if it has size q2(1 +O(q−1)) and if

(a.e. h) ‖ThTgδe − u‖1 = O(q−1/2).

The first condition holds for almost every g, since this is Property 3, and the second condition
also holds for almost every g, by Lemma 3.3. Thus, for almost every g, the conjugacy class
C(g) is good.

Now let (c1, c2, c3) ∈ G3 and let us find a sufficient condition for ‖Tc3Tc2Tc1δg − u‖1 to
be small for every g. The probability distribution Tc3Tc2Tc1δg can be defined as follows. We
pick an element uniformly at random from the conjugacy class C(c1g), multiply it on the
left by c2, take a random conjugate of that, multiply on the left by c3, and take a random
conjugate of that.
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Suppose first that C(c1g) is a good conjugacy class. Then for almost every c2 we have
that ‖Tc2Tc1gδe − u‖1 = O(q−1/2). But Tc1gδe = Tc1δg. Also, Tc3u = u and Tc3 does not
increase `1 norms. It follows that ‖Tc3Tc2Tc1δg − u‖1 = O(q−1/2).

Now suppose that C(c1g) is a bad conjugacy class. Since the union B of all bad conjugacy
classes has size O(q2), if we choose c2 uniformly at random, the expected size of c2C(c1g)∩B
is O(q−1)|c2C(c1g)|. Therefore, by Markov’s inequality, the probability that c2C(c1g) ∩ B
has size greater than q−1/2|c2C(c1g)| is O(q−1/2).

If c2 does not have this property, and h is a random element of C(c1g), then c2h belongs
to a good conjugacy class with probability 1−O(q−1/2). But then the proof in the first case
gives us that with probability 1 − O(q−1), ‖Tc3Tc2δh − u‖1 = O(q−1/2). If c2h belongs to a
bad conjugacy class, we still have that ‖Tc3Tc2h− u‖1 ≤ 2.

Therefore, ‖Tc3Tc2Tc1δg − u‖1 = O(q−1/2) when C(c1g) is a bad conjugacy class too.

4 Proof of Lemma 3.3

When it comes to proving Lemma 3.3, a key observation, which is also central to the argument
of Adan-Bante and Harris [ABH12] (and for many other papers concerning conjugacy classes
in SL(2, q)), is that there is an approximate one-to-one correspondence between conjugacy
classes and the traces of the matrices in the conjugacy class. In one direction this is trivial,
since the trace is a conjugacy invariant. For the other, note that a matrix of determinant 1
can have any of the q possible traces, and recall from Lemma 3.1 that the group has q+O(1)
conjugacy classes.

Thus, if we want to prove that some distribution over SL(2, q) is approximately close to
uniform, it is enough to prove that the trace of a random matrix from that distribution is
approximately uniformly distributed. In the case of Lemma 3.3 this means showing that
for almost every g and almost every h, the trace of hugu−1 is approximately uniformly
distributed for uniform u. Moreover, for every h and g the distribution of the trace of
hugu−1 for uniform u is the same as the distribution of the trace of h′ug′u−1 for uniform u,
for any h′ that is conjugate to h and for any g′ that is conjugate to g. This is true because if
g = xg′x−1 and h = yh′y−1 then by the cyclic-shift property of the trace function we have

Tr yh′y−1uxg′x−1u−1 = Trh′y−1uxg′x−1u−1y,

and the latter has the same distribution of the trace of h′ug′u−1 for uniform u. Hence, we
can work with representatives of our choosing, as done in the next key lemma. Recall that
we use C to stand for “the conjugacy class of”.

Lemma 4.1. Let G = SL(2, q). Then the distribution of Tr

((
0 1
1 w

)
C

(
v 1
1 0

))
is

1/qΩ(1) close to uniform in statistical distance if either (i) q is even, or (ii) q is odd and
(v2, w2) 6= (−4,−4) and (v, w) 6= (0, 0).

In the proof that follows, if we use a letter such as a to refer to an element of G, we shall

refer to its entries as a1, . . . , a4. More precisely, we shall take a to be the matrix

(
a1 a2

a3 a4

)
.
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We begin with working out a simple expression for the trace.

Claim 4.2. Let a, u and g be 2× 2 matrices in SL(2, q). Then

Tr(augu−1) = (a1u1 + a2u3)(g1u4 − g2u3) + (a1u2 + a2u4)(g3u4 − g4u3)

+ (a3u1 + a4u3)(−g1u2 + g2u1) + (a3u2 + a4u4)(−g3u2 + g4u1).

Proof. Note that

(
u1 u2

u3 u4

)−1

=

(
u4 −u2

−u3 u1

)
. Now

au =

(
a1 a2

a3 a4

)(
u1 u2

u3 u4

)
=

(
a1u1 + a2u3 a1u2 + a2u4

a3u1 + a4u3 a3u2 + a4u4

)
and

gu−1 =

(
g1 g2

g3 g4

)(
u4 −u2

−u3 u1

)
=

(
g1u4 − g2u3 −g1u2 + g2u1

g3u4 − g4u3 −g3u2 + g4u1

)
.

The result follows.

Our proof of Lemma 4.1 uses the following well-known theorem from arithmetic geometry,
due to Lang and Weil [LW54]. It can also be found as Theorem 5A, page 210, of [Sch04].

Theorem 4.3. For every positive integer d there is a constant cd such that the following
holds: if f(x1, . . . , xn) is any absolutely irreducible polynomial over Fq of total degree d, with
N zeros in F n

q , then

|N − qn−1| ≤ cdq
n−3/2.

The rest of the section is devoted to the proof of Lemma 4.1. First we remark that the
calculation below for the trace in the case v = w = 0 shows that the condition (v, w) 6= (0, 0)
is necessary over odd characteristic.

From Claim 4.2 we obtain the following expression for the trace.

f ′′ := u3(vu4 − u3) + u4u4 + (u1 + wu3)(−vu2 + u1) + (u2 + wu4)(−u2)

= vu3u4 − u2
3 + u2

4 − vu1u2 + u2
1 − vwu2u3 + wu1u3 − u2

2 − wu2u4.

We shall show that for all but O(1) choices for s, the number of solutions to the system
f ′′ = −s and u1u4 − u2u3 = 1 has distance es from q2 where |es| ≤ q2−Ω(1). And for the
other O(1) choices of s the number of solutions is O(q2). This will show that the trace has
statistical distance 1/qΩ(1) from uniform. Indeed, using that |G| = q3−q, the contribution to
this distance of each of the aforementioned q−O(1) values of s is |(q2 + es)/(q

3− q)−1/q| =
|(1 + es)/(q

3 − q)| ≤ 1/q1+Ω(1) because |es| ≤ q2−Ω(1). These add up to a contribution of
1/qΩ(1), while for each of the others the contribution is at most O(1/q).

First we consider the case when q is even and v = w = 0. In this case the trace becomes

(u1 − u2 − u3 + u4)2.
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Now note that the map

(
u1 u2

u3 u4

)
→
(

u1 u2

u3 + u1 u4 + u2

)
is a permutation on G. If we

apply it, the expression of the trace simplifies to (−u3 + u4)2 which is close to uniform,
because squaring in characteristic 2 is a permutation, and u4−u3 is approximately uniform.

As a next step we count the solutions with u1 = 0. In this case the trace plus s is

vu3u4 − u2
3 + u2

4 − vwu2u3 − u2
2 − wu2u4 + s.

The equation u1u4− u2u3 = 1 gives us that u3 = −1/u2. For any choice of u2, the above
becomes a univariate polynomial in u4 which is non-zero because of the u2

4 term. Hence the
total number of solutions with u1 = 0 is O(q). This amount does not affect the result, so
from now on we count the solutions with u1 6= 0.

We can now eliminate u4 = (1 + u2u3)/u1 in f ′. Renaming u1, u2, and u3 as x, y, z,
respectively, we get the expression

f ′ := vz(1 + yz)/x− z2 + (1 + yz)2/x2 − vxy + x2 − vwyz + wxz − y2 − wy(1 + yz)/x.

First we note an upper bound of O(q2) on the number of solutions to f ′ = s, for any s.
Indeed, after we pick x and y we are left with a quadratic polynomial in z which is not zero
because of the z2 term. Hence, this polynomial has at most two solutions.

Next we show the stronger bound for all but O(1) values of s. Letting f(x, y, z) :=
x2(f ′ + s) and expanding and rearranging, we get the expression

f := x4 − x2y2 − x2z2 + y2z2 + 2yz + 1

+ v(−x3y + xz + xyz2) + w(−xy − xy2z + x3z)− vwx2yz + sx2.

We shall show that if f is not absolutely irreducible, then s takes one of O(1) values. So
if s is not one of those values, then we can apply Theorem 4.3. This will give the desired
bound of q2 + es on the number of roots with x, y, z ∈ F. We actually just wanted to count
the roots with x 6= 0. However, if x = 0 then f simplifies to (1 + yz)2 which has q− 1 roots.
So the bound is correct even if we insist that x 6= 0.

Note that f is a polynomial of degree 4 in three variables. Suppose that it can be
factorized as f = PQ. Note first that both P and Q must have a constant term because f
has it. Also, neither P nor Q can have a power of y as a term, because f does not have it
(but such a term would arise in the product between the highest-power such term in P and
in Q, one of which could be the constant term). Similarly, neither can have a power of z as
a term.

If f = PQ, then the sum of the degrees of P and Q is at most 4. If P has degree 3 then
Q has degree 1. By the above, Q would be of the form ax + b. However in this case there
would be no way to produce the term y2z2.

So both P and Q have degree at most 2, and we can write

P = axy + byz + cxz + dx2 + ex+ f,

Q = a′xy + b′yz + c′xz + d′x2 + e′x+ f ′.
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Equating coefficients gives the systems of equations

xy2z → ab′ + a′b = −w
x2yz → ac′ + a′c+ bd′ + b′d = −vw
x3y → ad′ + a′d = −v
x2y → ae′ + a′e = 0

xy → af ′ + a′f = −w
xyz2 → bc′ + b′c = v

xyz → be′ + b′e = 0

yz → bf ′ + b′f = 2

x3z → cd′ + c′d = w

x2z → ce′ + c′e = 0

xz → cf ′ + c′f = v

x3 → de′ + d′e = 0

x2 → df ′ + f ′d+ ee′ = s

x→ ef ′ + e′f = 0

and

x2y2 → aa′ = −1

y2z2 → bb′ = 1

x2z2 → cc′ = −1

x4 → dd′ = 1

1→ ff ′ = 1.

Multiplying by bf the yz equation and using that bb′ = ff ′ = 1, we find that

b2ff ′ + bb′f 2 = b2 + f 2 = 2bf.

Therefore, (b− f)2 = 0 and so b = f . Since bb′ = ff ′ = 1, we also get that b′ = f ′.
Now we claim that e′ = 0. Assume for a contradiction that e′ 6= 0. Multiplying by

appropriate variables, the equations with right-hand side equal to zero become:

x2y → a2e′ − e = 0

xyz → b2e′ + e = 0

x2z → c2e′ − e = 0

x3 → d2e′ + e = 0.

Summing the first two gives us that (a2 + b2)e′ = 0, which implies that a2 + b2 = 0 because
e′ 6= 0. Repeating this argument we obtain that

a2 + b2 = a2 + d2 = b2 + c2 = c2 + d2 = 0.
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Now multiplying the xy2z equation by ab we get that a2 − b2 = 2a2 = −wab. Dividing by
ab 6= 0 we obtain that 2a/b = −w. Because a2/b2 = −1, squaring we obtain that w2 = −4.
Similarly, multiplying the x3y equation by ad we get that a2 − d2 = 2a2 = vad and we get
that v2 = −4 as well. For odd q, this contradicts our assumption that (v2, w2) 6= (−4,−4).
For even q we have 4 = 0 and so v = w = 0 which we were also excluding. Therefore e′ = 0.
(From the equation for xyz we get that e = 0 as well, but we will not use this.)

We can now simplify some of the equations as follows:

x2yz → ac′ + a′c+ s = −vw
x2 → db′ + d′b = s.

Now we handle the case of even q where exactly one of v or w is 0. If w = 0, then
multiplying the xy2z equation by ab we find that a2− b2 = 0. So a = b and the x3y equation
has the same left-hand side as the x2 equation, which implies that s = v. Similarly, if v = 0,
then the x3y equation gives us that a = d. Now the xy2z and the x2 equation have the same
left-hand side, giving us that s = w.

Now we continue the analysis for any q. Multiplying equations by appropriate quantities
we get:

xy2z → a2 − b2 = −wab
x3y → a2 − d2 = −vad
xyz2 → −b2 + c2 = vbc

x3z → c2 − d2 = wcd.

The first minus the second gives −b2 + d2 = a(vd−wb); the third minus the fourth gives
−b2 + d2 = c(vb− wd). And so

a(vd− wb) = c(vb− wd).

Now assume that vd− wb 6= 0. Then by dividing by it and by c 6= 0 we get

a

c
=
vb− wd
vd− wb

.

So we have that

a

c
+
c

a
=

(vb− wd)2 + (vd− wb)2

(vd− wb)(vb− wd)
=

(b2 + d2)(v2 + w2)− 4vwbd

−vw(b2 + d2) + (w2 + v2)bd

=
(b2 + d2)(v2 + w2 − 4vw/s)

(b2 + d2)(−vw + (w2 + v2)/s)
=
s(v2 + w2)− 4vw

−svw + w2 + v2
.

Here we used the x2 equation multiplied by bd, which is bds = b2 + d2, and then divided
by s. So we are assuming that s 6= 0.
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Now if we plug this expression into the x2yz equation, which, using the fact that aa′ =
cc′ = −1, can be transformed into the equation −a/c− c/a+ s = −vw, we obtain that

s(v2 + w2)− 4vw

−svw + w2 + v2
+ s = −vw.

This expression can be satisfied by only a constant number of s. Indeed, taking the
right-hand side to the left and multiplying by the denominator we obtain the equation

2s(v2 + w2)− 4vw − s2vw − sv2w2 + vw(w2 + v2) = 0.

Now, if q is odd and if exactly one of v and w is 0 then all the terms vanish except the
first one, yielding that s = 0. Together with our assumptions and previous analysis, we can
now assume that vw 6= 0. In this case we obtain a quadratic polynomial in s which is not
zero because of the −s2vw term. This polynomial has at most two roots.

The case we left out is when vd− wb = 0. In that case d = bw/v. From the x2 equation
and the fact that bb′ = dd′ = 1 we get that

v/w + w/v = s.

Altogether, we have shown that if the polynomial is not irreducible then s takes one of at
most six possible values. These values are 0, v, w, v/w + w/v, and the at most two roots of
the quadratic polynomial above. Although it does not affect the result, we recall that these
values of s correspond to values of −s for the traces.

5 The case t = 2

In this section we prove that if A,B are subsets of G2 of density α and β, respectively, then

|Ea1b1a2b2=eA(a)B(b)− αβ| ≤ |G|−c

for some absolute constant c > 0. Unfortunately, we cannot use Theorem 2.4 here, because
that would require us to prove that with high probability ‖Tgδe − u‖∞ ≤ |G|−c when g is
chosen randomly from G. Since Tgδe is the uniform distribution over the conjugacy class of
g, this is clearly false.

5.1 Proving low discrepancy using 8-cycles

To get round this, we prove a variant of Lemma 2.1.

Lemma 5.1. Let X and Y be finite sets, let u : X → R, let v : Y → R and let f : X×Y → R.
Let g : X ×X → R be defined by g(x, x′) = Eyf(x, y)f(x′, y). Then

|Ex,yf(x, y)u(x)v(y)| ≤ ‖g‖1/2
� ‖u‖2‖v‖2.
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Proof. Note that up to normalization, g is just ffT . So the lemma is saying that if we do
not have a bound for ‖f‖� we can still get a discrepancy bound by bounding ‖ffT‖�.

To prove it, we begin more or less as we began the proof of Lemma 2.1.

(Ex,yf(x, y)u(x)v(y))2 = (Eyv(y)Exf(x, y)u(x))2

≤ (Eyv(y)2)(Ey(Exf(x, y)u(x))2

= ‖v‖2
2 Ex,x′(Eyf(x, y)f(x′, y))u(x)u(x′).

= ‖v‖2
2 Ex,x′g(x, x′)u(x)u(x′).

But by Lemma 2.1 this is at most ‖v‖2
2‖g‖�‖u‖2

2, which proves the lemma.

We also need a slight generalization of Lemma 2.2.

Lemma 5.2. Let X and Y be finite sets and let F : X×Y → R. Suppose that EyF (x, y) = δ
for every x and ExF (x, y) = δ for every y. For each x ∈ X and y ∈ Y let f(x, y) =
F (x, y)− δ. Then ‖f‖4

� = ‖F‖4
� − δ4.

Proof. The proof is identical to that of Lemma 2.2 except that Γ is replaced by F .

Suppose now that Γ is a bipartite graph with finite vertex sets X and Y such that each
vertex in X has degree δ|Y | and each vertex in Y has degree δ|X|. Let f = Γ− δ. Then for
every x, x′ ∈ X we have

Eyf(x, y)f(x′, y) = Ey(Γ(x, y)− δ)(Γ(x′, y)− δ) = EyΓ(x, y)Γ(x′, y)− δ2,

since EyΓ(x, y) = δ for every x and ExΓ(x, y) = δ for every y.
Let ∆(x, x′) = EyΓ(x, y)Γ(x, y′) for every x, x′ ∈ X. We also have that for each x,

Ex′∆(x, x′) = Ex′,yΓ(x, y)Γ(x′, y) = EyΓ(x, y)Ex′Γ(x′, y) = δ2.

By symmetry, Ex∆(x, x′) = δ2 for every x′ as well.
It follows from these observations that we can apply Lemma 5.2 with F replaced by ∆,

δ replaced by δ2, and f replaced by g (where g is as in Lemma 5.1), to deduce that

‖g‖4
� = ‖∆‖4

� − δ8.

5.2 Application to interleaved products

Let Γ be the bipartite graph that has vertex sets equal to G2, where (a1, a2) is joined to
(b1, b2) if and only if a1b1a2b2 = e. Then the density of Γ is |G|−1, so what we want to prove
is equivalent to the estimate

|Ea,bΓ(a, b)A(a)B(b)− αβ|G|−1| ≤ |G|−(1+c),

which in turn is equivalent to the estimate

|Ea,bf(a, b)A(a)B(b)| ≤ |G|−(1+c).
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For this it is sufficient, by Lemma 5.1 to prove that ‖g‖� ≤ |G|−(2+c). Since ‖g‖4
� = ‖∆‖4

�−δ8

and in our case δ = |G|−1, it is enough to show that ‖∆‖4
� ≤ |G|−8(1 + |G|−c). That is,

‖∆‖� must be within a factor 1+ |G|−c of the smallest possible value it can take. (Note that
in this discussion c > 0 is an absolute constant that can change from line to line.)

Now
‖∆‖4

� = Ex,x′(Ez∆(x, z)∆(z, x′))2,

so our aim is to find an upper bound for the variance of Ez∆(x, z)∆(z, x′). But

Ez∆(x, z)∆(z, x′) = Ez,y,y′Γ(x, y)Γ(z, y)Γ(z, y′)Γ(x′, y′),

which is the probability, for a randomly chosen z, y, y′ that

x1y1x2y2 = z1y1z2y2 = z1y
′
1z2y

′
2 = x′1y

′
1x
′
2y
′
2 = e,

which is |G|−2 times the probability that x1y1x2 = z1y1z2 and z1y
′
1z2 = x′1y

′
1x
′
2.

These last two equations can be rewritten as y−1
1 z−1

1 x1y1 = z2x
−1
2 and y′−1

1 x′−1
1 z1y

′
1 =

x′2z
−1
2 . Let us introduce variables u1 = z−1

1 x1, u2 = z2x
−1
2 , v1 = x′−1

1 z1 and v2 = x′2z
−1
2 .

Then the constraints on the ui and vi are that v1u1 = x′−1
1 x1 and v2u2 = x′2x

−1
2 , and they

are uniformly distributed subject to those constraints (as z varies with x and x′ fixed).
Therefore, the probability that y−1

1 z−1
1 x1y1 = z2x

−1
2 and y′−1

1 x′−1
1 z1y

′
1 = x′2z

−1
2 is equal to

P[y−1
1 u1y1 = u2 ∧ y′−1

1 v1y
′
1 = v2 | v1u1 = x′−1

1 x1 ∧ v2u2 = x′2x
−1
2 ].

The two events in the above conditional probability both have probability |G|−2, so by
Bayes’s theorem we can rewrite this conditional probability as

P[v1u1 = x′−1
1 x1 ∧ v2u2 = x′2x

−1
2 | y−1

1 u1y1 = u2 ∧ y′−1
1 v1y

′
1 = v2].

In words, we pick u1 and v1 uniformly and then let u2 and v2 be random conjugates of
u1 and v1, respectively. We then want to estimate the probability that v1u1 = x′−1

1 x1 and
v2u2 = x′2x

−1
2 .

For the variance mentioned earlier to be small, we need this probability to be close to
|G|−2 for almost all x and x′. In other words, the information that u2 is a conjugate of u1

and v2 is a conjugate of v1 should make almost no difference to the distribution of the pair
(v1u1, v2u2).

Our question can therefore be rephrased as follows. We are given some x ∈ G. We then
randomly choose u and v such that uv = x, and we randomly choose conjugates gug−1 and
hvh−1 of u and v. What can we say about the distribution of gug−1hvh−1?

The work we have done in previous sections quickly answers this question. First, ob-
serve that gug−1hvh−1 = gu(g−1h)v(g−1h)−1g−1 and that the pair (g, g−1h) is uniformly
distributed over G2. Therefore, another way of describing the distribution is that we choose
v randomly, then take a random conjugate of v, then multiply it on the left by u (which
is equal to xv−1) and take a random conjugate again. For each given u and v this is pre-
cisely the distribution TuTvδe, where Tu and Tv are as defined just before the statement of
Theorem 2.4.
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By Lemma 3.3, with probability 1 − O(q−1) we have that TuTvδe is within O(q−1/2) of
uniform.

Since for an arbitrary v we also know that TuTvδe is within 2 of uniform, we obtain that

Ex,x′|Ez∆(x, z)∆(x′, z)− |G|−4| = O(|G|−4q−1/2).

For the same reason, we know that Ez∆(x, z)∆(x′, z) = O(|G|−4) for every x, x′. It follows
that

Ex,x′(Ez∆(x, z)∆(x′, z)− |G|−4)2 = O(|G|−8q−1/2).

This proves that ‖∆‖4
� ≤ |G|−8(1 +O(|G|−1/6)). Combining this with our previous calcula-

tions, we have the following lemma.

Lemma 5.3. Let G be the group SL(2, q) and let Γ : G2 × G2 → R be defined by setting
Γ(a, b) = 1 if a1b1a2b2 = e and 0 otherwise. Let f(a, b) = Γ(a, b) − |G|−1 and let g(a, a′) =
Ebf(a, b)f(a′, b). Then ‖g‖� = O(|G|−2−1/24).

Proof. At the end of the previous section we proved that ‖g‖4
� = ‖∆‖4

� − δ8, where δ =
Ea,bΓ(a, b), which in this case is |G|−1. The result therefore follows from the estimate we
have just given for ‖∆‖4

�.

Applying this result and Lemma 5.1 with u and v the characteristic functions of sets A
and B, we obtain the following result.

Theorem 5.4. Let G be the group SL(2, q), and let A,B ⊂ G2 be subsets of density α and
β, respectively. Then for every g ∈ G,

|Ea1b1a2b2=gA(a)B(b)− αβ| = O(|G|−1/48)(αβ)1/2.

As we noted for the general case, we can use Bayes’s theorem to reformulate this statement
in a useful way. We have

Ea1b1a2b2=gA(a)B(b) = P[a ∈ A, b ∈ B | a1b1a2b2 = g]

= αβ|G|P[a1b1a2b2 = g | a ∈ A, b ∈ B].

Therefore, Theorem 5.4 is telling us that

P[a1b1a2b2 = g | a ∈ A, b ∈ B]− |G|−1| ≤ (αβ)−1/2|G|−49/48.

5.3 A generalization to arbitrary distributions

In this section we state and quickly prove the following generalization of Theorem 5.4.

Theorem 5.5. Let u and v be two probability distributions on G2 and let U be the uniform
distribution on G2. Then∑

a1b1a2b2=e

u(a1, a2)v(b1, b2) = n−1 +O(n1−1/48)‖u‖2‖v‖2.
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Proof. From Lemmas 5.1 and 5.3 we obtain the result that

|Ea,b(Γ(a, b)− n−1)u(a)v(b)| = O(n−1−1/48)(Eau(a)2)1/2(Ebv(b)2)1/2,

where Γ(a, b) = 1 if a1b1a2b2 = e and 0 otherwise. Multiplying both sides by n4, we deduce
that

|
∑

a1b1a2b2=e

u(a1, a2)v(b1, b2)− n−1‖u‖1‖v‖1| = O(n1−1/48)‖u‖2‖v‖2,

which is what we wanted.

We remark that the value of Ea,b(Γ(a, b)−n−1)u(a)v(b) is unchanged if a constant is added
to either u or v, so we can if we wish improve the bound to O(n1−1/48)‖u− U‖2‖v − U‖2.

We sketch an alternative proof of Theorem 5.5 that relies only on Theorem 5.4. First,
note that any distribution u is a convex combination of distributions ui which are uniform
on at least 1/(2‖u‖2) points, if ‖u‖2 is at most 1/2. This is because the `2 upper bound
implies an `∞ upper bound, and the distributions ui are the vertexes of the polytopes of
distributions with that `∞ bound. The extra factor of two on the number of points accounts
for the possibility that ‖u‖2 is not an integer. Given this, we can fix distributions ui and vi
that maximize the probability that we are trying to bound, and invoke Theorem 5.4.

5.4 Proof that G is quasirandom

An immediate consequence of Theorem 5.4 is that the group SL(2, q) has the property that
the product of any four dense sets is almost uniformly distributed. More precisely, we have
the following result.

Theorem 5.6. Let G be the group SL(2, q), and let A,B,C,D ⊂ G be subsets of density
α, β, γ and δ, respectively. Then for every g ∈ G,

|Eabcd=gA(a)B(b)C(c)D(d)− αβγδ| = O(|G|−c)

and
|P[abcd = g|a ∈ A, b ∈ B, c ∈ C, d ∈ D]− |G|−1| = (αβγδ)−1O(|G|−(1+c)).

Proof. For the first statement we simply apply Theorem 5.4 with A replaced by A× C and
B replaced by B ×D. For the second, we apply the equivalent version stated just after the
proof of Theorem 5.4.

It turns out that from this result for four sets follows the same result for three sets. This
is of some interest, because it gives the first proof that G is quasirandom, in the sense of
[Gow08], that does not use representation theory.

Corollary 5.7. Let G be the group SL(2, q), and let A,B,C ⊂ G be subsets of density α, β
and γ, respectively. Then for every g ∈ G,

|Eabc=gA(a)B(b)C(c)− αβγ| = O(|G|−c)

and
|P[abc = g|a ∈ A, b ∈ B, c ∈ C]− |G|−1| = (αβγ)−1O(|G|−(1+c).
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Proof. For each a, let f(a) = A(a)− α. Then

Eabc=gA(a)B(b)C(c) = αEabc=gB(b)C(c) + Eabc=gf(a)B(b)C(c)

= αβγ + Eabc=gf(a)B(b)C(c).

But

(Eabc=gf(a)B(b)C(c))2 ≤ (EcC(c)2)(Ec(Eab=gc−1f(a)B(b))2)

= γEcEab=a′b′=gc−1f(a)B(b)f(a′)B(b′)

= γEabb′−1a−1=e(A(a)− α)B(b)B(b′)(A(a′)− α).

There are four terms that make up the expectation. Each term that involves at least one
α is equal to ±α2β2, with two minus signs and one plus sign. The remaining term is
α2β2 + O(|G|−c), by Theorem 5.6. The first statement follows. Once again, the second
statement is equivalent to it by a simple application of Bayes’s theorem, together with the
observation that Eabc=gA(a)B(b)C(c) = P[a ∈ A, b ∈ B, c ∈ C | abc = g].
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