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Abstract

We initiate a systematic study of mixing in non-quasirandom groups. Let A and
B be two independent, high-entropy distributions over a group G. We show that the
product distribution AB is statistically close to the distribution F (AB) for several
choices of G and F , including:

(1) G is the affine group of 2 × 2 matrices, and F sets the top-right matrix entry
to a uniform value,

(2) G is the lamplighter group, that is the wreath product of Z2 and Zn, and F is
multiplication by a certain subgroup,

(3) G is Hn where H is non-abelian, and F selects a uniform coordinate and takes
a uniform conjugate of it.

The obtained bounds for (1) and (2) are tight.
This work is motivated by and applied to problems in communication complexity.

We consider the 3-party communication problem of deciding if the product of three
group elements multiplies to the identity. We prove lower bounds for the groups above,
which are tight for the affine and the lamplighter groups.
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1 Introduction and our results

Computing the product of elements from a group is a fundamental problem in theoretical
computer science that arises and has been studied in a variety of works including [KMR66,
Mix89, BC92, IL95, BGKL03, PRS97, Amb96, AL00, Raz00, MV13, Mil14, GV19, Sha16],
some of which are discussed more below. In this work we study this problem in the model of
communication complexity [Yao79, KN97, RY19]. Previous work in this area [MV13, GV19]
has found applications in cryptography, specifically to the construction of leakage-resilient
circuits [MV13], and mathematics [Sha16].

We consider the following basic communication problem. Each of several parties receives
an element from a finite group G. The parties need to decide if the product of their elements
is equal to 1G. They have access to public randomness, and can err with constant probability
say 1/100. For two parties, this is the equality problem (because ab = 1G iff a = b−1) and
can be solved with constant communication. Thus the first interesting case is for 3 parties.

Definition 1. We denote by R3(G) the randomized 3-party communication complexity of
deciding if abc = 1G, where the first party receives a, the second b, and the third c.

The simplest efficient protocol is over G = Zn2 . The parties use the public randomness to
select a linear hash function fS : Zn2 → Z2 defined as fS(x) =

∑
i∈S xi mod 2. The parties

then send fS(a), fS(b), fS(c) and compute fS(a) +fS(b) +fS(c) = fS(a+ b+ c). The latter is
always 0 if a+b+c = 0, while it is 0 with probability 1/2 over the choice of S if a+b+c 6= 0.
By repeating the test a bounded number of times, one can make the failure probability less
than 1%. This shows R3(Zn2 ) = O(1). Throughout this paper O(.) and Ω(.) denote absolute
constants.

The communication is also constant over the cyclic group Zn of integers modulo n:
R3(Zn) = O(1) [Vio14]. But this is a bit more involved, because linear hash functions (with
small range) do not exist. One can use instead a hash function which is almost linear. Such
a hash function was analyzed in the work [DHKP97] and has found many other applications,
for example to the study of the 3SUM problem [BDP08, Pǎt10].

The above raises the following natural question: For which groups G is R3(G) small?
It is fairly straightforward to prove lower bounds on R3(G) when G is quasirandom

[Gow08], a type of group that is discussed more in detail below. Such lower bounds for
R3(G) appear in the survey [Vio19] and also follow from the results in this paper (using
what we later call the kernel method).

In this paper we prove lower bounds for groups to which the results for quasirandom
groups do not apply. The groups we consider are natural, and they were considered before
in the computer science literature, for example in the context of expander graphs [Wig10,
LMR15, Zha17] and low-distortion embeddings [LNP09, ANV10]. We also complement the
lower bounds with some new upper bounds. These results are closely related to the study of
mixing in groups. We discuss these two perspectives in turn.

1.1 Communication complexity

To set the stage, we begin by discussing upper bounds on R3(G). We show that for any
abelian group G we have R3(G) = O(1). This result generalizes the results for Zn2 and Zn
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mentioned earlier. More generally we can prove upper bounds for groups which contain large
abelian subgroups, or that have irreps of bounded dimension. Here and throughout, irrep
is short for irreducible representation. Representation theory plays a key role in this paper
and is reviewed later.

Theorem 2. We have the following upper bounds on R3(G):
(1) Suppose G is abelian. Then R3(G) = O(1)
(2) Suppose H is a subgroup of G. Then R3(G) ≤ O(|G|/|H|+R3(H)).
(3) Suppose every irrep of G has dimension ≤ c. Then R3(G) ≤ c′ where c′ depends only

on c.

Our main results are lower bounds. We show that for several groups that are “slightly
less abelian” than those covered in Theorem 2 the value R3 is large. First, we prove tight
bounds for the affine group.

Definition 3. The affine group over the field Fq with q elements is denoted by Aff(q). This
is the group of invertible affine transformations x → ax + b where a, b ∈ Fq and a 6= 0.

Equivalently, it is the group of matrices

(
a b
0 1

)
where a 6= 0. Note |Aff(q)| = q(q − 1).

Theorem 4. R3(Aff(q)) = Θ(log |Aff(q)|).

The upper bound is trivial since for any group G the input length is O(log |G|).
Then we consider the so-called finite lamplighter group. This group is obtained from Zn2

by adding a “shift” of the coordinates, formally by taking the wreath product o of Z2 and Zn.

Definition 5. The finite lamplighter group is Ln := Z2 o Zn. Elements of Ln can be writ-
ten as (x0, x1, . . . , xn−1; s) where xi ∈ Z2 and s ∈ Zn and we have (x0, x1, . . . , xn−1; s) ·
(x′0, x

′
1, . . . , x

′
n−1; s′) = (x0 + x′0+s, x1 + x′1+s, . . . , xn−1 + x′n−1+s; s + s′) where addition is

modulo n. For (x; s) ∈ Ln we call x the Zn2 part and s the Zn part. Note |Ln| = 2n · n.

In other words, when multiplying (x; s) and (x′; s′) we first shift x′ by s, and then we
sum component-wise. We prove a tight communication bound for R3(Ln).

Theorem 6. R3(Ln) = Θ(log log |Ln|).

The upper bound is as follows. The parties can first communicate the Zn parts. This
takes O(log n) = O(log log |Ln|) communication. Then the parties can shift their Zn2 parts
privately, and finally use the constant-communication protocol for Zn2 .

We then move to groups of the form Hn. An interesting setting is when |H| is small
compared to n, say H has constant size.

Theorem 7. Let H be a non-abelian group. Then R3(Hn) = Ω(log n).

It is an interesting open question whether a bound of Ω(n) holds. We note that for the
corresponding 4-party problem of deciding if abcd = 1G such an Ω(n) bound can be estab-
lished by a reduction from lower bounds for disjointness. The proof proceeds by encoding the
And of two bits by a group product of length four, see [Vio19]. However, those techniques
do not seem to apply to the three-party problem, and appear unrelated to mixing.
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1.2 Mixing in groups

At a high level, mixing refers to the general phenomenon that when we have several in-
dependent, high-entropy distributions over a group and we combine them in natural ways,
for example by multiplying, the resulting random variable becomes closer to the uniform
distribution, closer than the original distributions are. Our notion of (non) entropy of a
distribution A is the collision probability P[A = A′] where A and A′ are independent and
identically distributed. We define next a scaled version which is more convenient.

Definition 8. The scaled collision probability of a distribution A overG isN(A) := |G|P[A =
A′], where A and A′ are independent and identically distributed. Equivalently, N(A) =
(|G| ‖A‖2)2 where ‖A‖2 is the L2 norm

√
ExP[A = x]2.

To illustrate the normalization, note that, for any distribution A, N(A) ≤ |G| and it
can be shown N(A) ≥ 1. If A is uniform over a set of size δ|G| we have N(A) = δ−1. The
uniform distribution has δ = 1 and N = 1, the distribution concentrated on a single point
has δ = 1/|G| and N = |G|. Distributions that are uniform on a constant fraction of the
elements have N ≤ O(1); in the latter setting the main ideas in this paper are already at
work, so one can focus on it while reading the paper.

To measure the distance between distributions we use total variation distance.

Definition 9. The total variation distance between distributions A and B is ∆(A,B) =∑
x |P[A = x] − P[B = x]|. Equivalently, ∆(A,B) is the `1 norm

∑
x |f(x)| of the function

f(x) = P[A = x]− P[B = x].

We can now illustrate a basic result about mixing. Suppose that A and B are independent
random variables over a group G such that N(A) and N(B) are O(1). We would like to show
that the random variable AB is close to the uniform distribution U over G. This is false for
example over the group Zn2 . Indeed, A and B could each be the uniform distribution where
the first coordinate is 0, and then AB would be the same as A, which has ∆(A,U) ≥ Ω(1).

Remarkably, however, for other groups one can show that ∆(AB,U) is small. We state
this fundamental result next.

Theorem 10. Let A and B be two independent random variables over G. We have

∆(AB,U) ≤
√
N(A)N(B)

d
,

where d is the minimum dimension of a non-trivial irrep of G.

This theorem appears in equivalent form as Lemma 3.2 in [Gow08]. The formulation
above appears in [BNP08]. Other proofs were discovered later, and the result is now consid-
ered folklore. The importance of this result is that for several groups the value d is large, and
so the theorem shows that AB is close to U . In particular, for non-abelian simple groups
we have that d grows with the size of the group, and for the special-linear group SL2(q) d
is polynomial in the size of the group. For more discussion and pointers, we refer the reader
to Section 13 in [Gow17] and to the original paper [Gow08]. The latter calls quasirandom
the groups that have a large d.
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In this work we consider several groups for which one cannot prove a good bound on
∆(AB,U) for every two independent distributions with small N . In particular, the group
has an irrep of small dimension. The question arises of what type of mixing result, if any,
makes sense.

Our approach to mixing Our approach is to show that even though ∆(AB,U) might
be large, nevertheless AB acquires some “invariance property” of U which the distributions
A and B in isolation may not have. One natural property of U is that it is invariant under
multiplication by a fixed element: for any y ∈ G we have that yU and U are the same
distribution. So a first attempt is to say that G mixes if there exists a non-identity element
y such that ∆(AB, yAB) is small, for any independent A and B with small N .

We show that this is indeed the case for the affine and the lamplighter group.
However, for groups like Hn this notion cannot be met: for any fixed y 6= 1G, one can

define A and B which fix one coordinate i where yi 6= 1H and are uniform on the others;
these distributions have small N but ∆(AB, yAB) is large. To overcome this obstacle we
will use randomness in our definition of the invariance property.

In the special case that H does not have irreps of dimension one, we show that AB is
almost invariant under selecting a uniform coordinate and replacing that coordinate with
a uniform element. In other words, if Y is the uniform distribution over Hn obtained by
setting a uniformly selected coordinate to a uniform element in H and the others to 1 then
∆(AB, Y AB) is small. For general non-abelian H, which might have a unidimensional irrep,
this does not work. For example, if H = H ′ × Z2 we cannot change the Z2 part. Rather
than replacing a coordinate with a uniform element, we take a uniform conjugate. That is,
we show that ∆(AB, Y ABY −1) is small where Y is as before.

To capture these various possibilities, we say that the group mixes if there exists a
distribution F on functions from G to G such that ∆(AB,F (AB)) is small. For example,
F could be the (fixed, deterministic) function F (x) = yx corresponding to multiplication
by a fixed element y. Over a group of the form Hn, F could be the random function
F (x) = Y xY −1 which selects a uniform coordinate and takes a uniform conjugate of that
coordinate.

Intuitively, in all these cases AB becomes somewhat uniform in the sense that it doesn’t
change much if we apply F to it. Of course for this to be of any use we need that F (AB) 6=
AB often. We have arrived to the following definition.

Definition 11. A group G is (ε, β)-mixing for (scaled collision probability) N ≤ η if there
exists a distribution F on functions from G to G such that for every distributions A and B
with N(A), N(B) ≤ η we have:

(1) ∆(AB,F (AB)) ≤ ε, and
(2) P[F (AB) = AB] ≤ β.
We also say that G mixes via F .

Another important motivation for this definition is given by the following result which
links our notion of mixing to communication lower bounds.

Lemma 12. Suppose a group G is (ε, 0.99)-mixing for N ≤ 1/ε. Then R3(G) ≥ Ω(log(1/ε)).
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The communication lower bounds in the previous section are obtained by establishing
mixing results and then using this Lemma 12. We also use this lemma in the contrapositive:
by the communication upper bounds from Theorem 2 we obtain non-mixing results. As
evident from the statement of the lemma, for the application to communication complexity
the setting ε = η in Definition 11 suffices, but below we state the more general tradeoff.

The above definition of mixing can be considered “least-useful.” It is a bare-minimum
notion that in particular suffices for the communication lower bounds. It is also natural
to try to prove a “most-general” mixing result by identifying F such that F (x) has the
largest possible entropy. In several cases, our results also identify such F . This also gives
additional information in the communication lower bounds. As the proofs will show, the
communication lower bounds will establish that the parties, on input a, b, c ∈ G, cannot
distinguish c = (ab)−1 from c = F ((ab)−1). Thus understanding via what functions F the
group mixes is useful in understanding what information about the product abc the parties
can compute.

We now state our mixing results. First we obtain a mixing result for the affine group.

Theorem 13. The affine group Aff(q) is (O(s/
√
q), 0) mixing for N ≤s via

F (x) :=

(
1 u
0 1

)
· x

for any u 6= 0.

The error parameter O(s/
√
q) is tight up to polynomials, as the size of the group is

q(q − 1). Specifically, Aff(q) is not (s/qc, 0.99)-mixing for N ≤ s for some constant c. This

result also achieves a “most general” mixing in terms of F . Note that the matrices

(
1 u
0 1

)
with u ∈ Fq form a subgroup H of Aff(q), in fact the additive group of Fq. In particular the
theorem gives (O(s/

√
q), 1/q)-mixing via F (x) := Hx, where Hx stands for multiplying x

by a uniform element from H, and the 1/q is to account for the probability that u = 0. In
turn, note that for any a, b ∈ Fq we have

H

(
a b
0 1

)
=

(
a U
0 1

)
where U is the uniform distribution over Fq. Thus, the theorem is saying that for any high-
entropy distributions A and B, the distribution AB is close to the distribution obtained
from AB by replacing the top-right entry with a uniform element in Fq. This result is the
strongest possible in the sense that the top-left entry of AB cannot be changed by F with
noticeable probability. This is because that entry is the multiplicative group of Fq, an abelian
group which does not have mixing, as follows from Theorem 2 and Lemma 12.

Then we obtain a mixing result for the lamplighter group.

Theorem 14. The lamplighter group Ln is (O(s/n1/4), 0) mixing for N ≤s via

F (x) := y · x

where y ∈ Ln depends only on n.
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The error parameterO(s/n1/4) is tight up to polynomials. As mentioned earlier, R3(Ln) =
O(log n) and hence for some constant c the group Ln is not (1/nc, 0.99)-mixing for N ≤ nc

by Lemma 12.
As in Theorem 13, the group Ln also mixes via F (x) = Hx where H is the uniform

distribution over a subgroup. The definition of H depends on the prime factorization of n.
The simplest case is when n is prime. In that case H is the subgroup {(z; 0) :

∑
i zi = 0

mod 2} and note that for any (x; s) ∈ Ln we have

H(x; s) = (Z; s)

where Z is uniform over Zn2 conditioned on
∑

i Zi =
∑

i xi mod 2. Thus, the theorem for
n prime is saying that for any high-entropy A and B, the distribution AB is close to the
distribution obtained from AB by replacing the Zn2 part x (i.e., AB = (x; s)) with a uniform
element with the same parity as x. This result is strongest possible in the sense that F (x; s)
must preserve both the parity of x and the value s with high probability. One way to see this
is to note that if F changes either the parity of x or s with high probability then the parties
can in fact distinguish inputs of the form a, b, (ab)−1 from those of the form a, b, F ((ab)−1).
To do so, the parties can send the parities of the Zn2 parts, and can use the efficient protocol
for the Zn part.

Then we consider direct-product groups Hn. We show that we have mixing for any
non-abelian H. Mixing occurs via taking a random coordinate and computing a uniform
conjugate of that coordinate.

Theorem 15. Let H be a non-abelian group. The group Hn is (O(s2/3/n1/3), 0.99) mixing
for N ≤ s via

F (x1, x2, . . . , xn) := (x1, x2, . . . , xi−1, u
−1xiu, xi+1, . . . , xn),

where i ∈ {1, 2, . . . , n} and u ∈ H are uniform.

The error cannot be improved to o(1/n) even for N = |H|, as A and B can just fix a
coordinate. But an interesting question is whether the bound on N can be increased to
exponential.

Under the stronger assumption thatH does not have an irrep of dimension one we improve
the bound in several respects, none of which affects the communication results. First, instead
of taking a random conjugate of a coordinate we can simply set that coordinate to uniform.
Second, we improve the error to about 1/

√
n. And third, we show that the bound still holds

if one distribution has exponential N (see the proof for this statement).

Theorem 16. Let H be a group with no non-trivial irrep of dimension one. The group Hn

is (O(s
√

log(sn)/
√
n), 1/|H|) mixing for N ≤ s via

F (x1, x2, . . . , xn) := (x1, x2, . . . , xi−1, xiu, xi+1, . . . , xn),

where i ∈ {1, 2, . . . , n} and u ∈ H are uniform.

The smallest group H with no non-trivial irrep of dimension one is the alternating group
on five elements, of size 60.
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1.3 Techniques for mixing results, and organization

Our main tool for the mixing results is non-abelian Fourier analysis, which we review in
Section 2. We prove in Section 3 that (the probability mass function of) AB can be approx-
imated by a function whose Fourier coefficients are few and have small dimension. Then
we give different ways in which this fact can be exploited. First, we show that if the in-
tersection of the kernels of irreps of small dimension is non-trivial, then we can take F to
be multiplication by any non-identity element in that intersection. We call this method the
kernel method, presented in Section 4. Using known facts about the representation theory
of the affine group, Theorem 13 is proved in Section 4.1. For the lamplighter group we also
use known facts about its representation theory, and we show that the small-dimensional
representations lie, in a suitable sense, within a small-dimensional vector space. This is done
in Section 4.2.

Note that the kernel K = {k ∈ G : ρ(k) = I} of an irrep ρ, where I is the identity
matrix, is a normal subgroup of G. (The latter means that g−1kg ∈ K for every k ∈ K and
g ∈ G, which is true because ρ(g−1kg) = ρ(g−1)ρ(k)ρ(g) = ρ(g−1g) = I.) In particular, the
intersection of kernels is also a normal subgroup, and it is in fact known that all normal
subgroups arise in this way. Hence, the kernel method shows that ∆(AB,HAB) is small,
where H is the uniform distribution over a normal subgroup. The applicability of the method
hinges on our understanding of what normal subgroups arise when considering intersection
of kernels of irreps of bounded dimension.

The kernel method cannot be applied to groups of the form Hn. For such groups, we
use the fact that the irreps ρ of Hn are tensor products ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn of irreps ρi of
H, and in particular the dimension of ρ is the product of the dimensions of the ρi. Then
the key observation is that low-dimensional irreps of Hn must be tensor products of mostly
one-dimensional ρi. And then we use the fact that unidimensional irreps are constant on
conjugacy classes. In the special case that H does not have irreps of dimension one we can
conclude the stronger fact that most ρi are trivial. And then we can get the refined result by
extending a well-known Fourier expression for average sensitivity to the non-abelian setting.
This appears in Section 5.

We briefly comment on how we prove the communication upper bounds (or equivalently
the non-mixing results) in Theorem 2. The proof is in Section 6. Item (1) builds on the result
for Zn that we mentioned earlier and is obtained using the characterization of abelian groups,
the Chinese remainder theorem, and hashing. Item (2) uses the random self-reducibility of
the abc = 1G problem together with efficient protocols for disjointness. While (3) follows
from (2) and (1) and a known characterization of groups whose irreps all have bounded
dimension.

Finally, the proof of Lemma 12 is in Section 7.

1.4 Open problems

This work raises several interesting questions. First, can we characterize groups which admit
non-trivial mixing? (We can define non-trivial as (ε, β)-mixing for N = ω(1) where ε and β
are bounded constants.) We ask whether a group G has non-trivial mixing if and only if G
has irreps of unbounded dimension. Note that we prove the “only if” direction in this work.
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Can we prove this at least for some important classes of groups? Can we characterize the
groups for which the kernel method suffices?

Another question is whether the bound on N in the Hn results can be improved to
exponential, for both distributions. This points to the interesting question of discovering
suitable generalizations of classical results in additive combinatorics, such as the Freiman-
Ruzsa theorem, for groups of the form Hn.

It would also be interesting to study if the results in this paper can be extended to the
number-on-forehead [CFL83] model. The study of group products in this model could lead to
the solution of several outstanding problems. For example, it is conjectured in [GV19] that
computing the product of many elements is hard even for more than logarithmically many
parties (a well-known barrier, see e.g. [Vio17]). Moreover, the problem of computing the
product of just three elements could also lead to stronger separations between deterministic
and randomized communication. Specifically, it is pointed out in [Vio19] that the “corners”
result in [Aus16] can be used to obtain a separation whose parameters match the state-of-
the-art [BDPW10] but hold for a different function. And as remarked in [Aus16] stronger
results could be within reach. For an exposition of the relevant result in [Aus16] see [Vio19].
Can the results for interleaved products in [GV19] or for “corners” in [Aus16] be suitably
extended to other groups such as those in this paper? Those groups might be easier to
understand than quasirandom groups, possibly leading to improved results.

2 Non-abelian Fourier analysis

The books by Serre [Ser77], Diaconis [Dia88], and Terras [Ter99] are good references for
representation theory and non-abelian Fourier analysis. The Barbados notes [Wig10] and
Section 13 of [Gow17] provide briefer introductions. The exposition in these sources is not
always consistent, and often has different aims from ours. So let us give a quick account of
the theory that is most relevant for this work.

Matrices. Let M be a square complex matrix. We denote by M the conjugate of M , by
MT the transpose of M , and by M∗ the conjugate transpose MT (aka adjoint, Hermitian
conjugate, etc.). The matrix M is unitary if M−1 = M∗.

The Hilbert-Schmidt operator (or Frobenius norm) of M is

‖M‖2
HS :=

∑
i,j

|Mi,j|2 = tr(MM∗).

To verify the latter note that

tr(MM∗) =
∑
i

(MM∗)i,i =
∑
i

∑
k

Mi,kM
∗
k,i =

∑
i

∑
k

Mi,kM i,k =
∑
i,k

|Mi,k|2.

If M = AB we have

‖M‖2
HS =

∑
i,j

|
∑
k

Ai,kBk,j|2 ≤
∑
i,j

(
∑
k

|A|2i,k)(
∑
k

|B|2k,j) = ‖A‖2
HS ‖B‖

2
HS , (1)

where the inequality is Cauchy-Schwarz.
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Representation theory. Let G be a group. A representation ρ of G with dimension d
maps elements of G to d× d unitary, complex matrices so that ρ(xy) = ρ(x)ρ(y). Thus ρ is
a homomorphism from G to the group of linear transformations of the vector space Cd. We
denote by dρ the dimension of ρ.

If there is a non-trivial subspace W of Cd that is invariant under ρ (that is ρ(x)W ⊆ W
for every x ∈ G) then ρ is reducible; otherwise it is irreducible. Irreducible representations

are abbreviated irreps and play a critical role in Fourier analysis. We denote by Ĝ a complete
set of inequivalent irreducible representations of G.

Fourier analysis Let f : G→ C. Recall the L2 norm: ‖f‖2
2 = Ex|f(x)|2. Note that

N(p) = (|G| ‖p‖2)2.

The ρ Fourier coefficient of f is

f̂(ρ) := Exf(x)ρ(x).

The Fourier inversion formula is then

f(x) =
∑
ρ

dρtr(f̂(ρ)ρ(x)T ),

where tr is the trace and ρ ranges over Ĝ, here and below, unless specified otherwise.
We define the convolution as follows (which is off by a factor of |G| from some texts):

p ∗ q(x) :=
∑
y

p(y)q(y−1x).

Note that if p and q are distributions then p ∗ q is the distribution obtained by sampling
x from p, y from q, and then outputting xy.

We note that under this normalization we have

p̂ ∗ q(α) = |G|p̂(α)q̂(α).

Parseval’s equality is

Ef(x)g(x) =
∑
ρ

dρtr(f̂(ρ)ĝ(ρ)∗).

In case f = g this becomes

E|f(x)|2 =
∑
ρ

dρtr(f̂(ρ)f̂(ρ)∗) =
∑
ρ

dρ

∥∥∥f̂(ρ)
∥∥∥2

HS
.

3 Fourier truncation

Let p and q be distributions over a group G. We show that p ∗ q is well-approximated by a
function with few Fourier coefficients. Specifically we just take certain “heavy” coefficients.

Before stating the lemma for arbitrary groups it is instructive to see it in the basic setting
of Zn2 . Here the irreps are ρ(x) = χα(x) = (−1)

∑
i αixi where α, x ∈ {0, 1}n.
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Lemma 17. Let p and q be distributions over G = Zn2 . Let R = {α : p̂2(α) ≥ θ2/|G|2}. We
have ∆(p ∗ q,

∑
α∈R p̂ ∗ q(α)χα) ≤

√
N(q)θ. Moreover |R| ≤ N(p)/θ2.

To make sense of the parameters note that if N(p) = O(1) then the bound on ∆ is O(θ)
and that on |R| is O(1/θ)2.

Once we have this statement, the verification is straightforward.

Proof. The bound on |R| follows from Parseval because ‖p‖2
2 =

∑
α p̂

2(α) ≥ |R|θ2/|G|2.
For the bound on ∆ let f :=

∑
α 6∈R p̂ ∗ q(α)χα. We have∑

x

|f(x)| = |G|Ex|f(x)| ≤ |G|
√
Ex|f(x)|2 = |G|

√∑
α 6∈R

f̂(α)2 = |G|
√∑

α 6∈R

ˆp ∗ q(α)2.

Now we use the fact that ˆp ∗ q(α) = |G|p̂(α)q̂(α), and the bound on p̂ to get∑
x

|f(x)| ≤ |G|2
√∑

α 6∈R

p̂(α)2q̂(α)2 ≤ |G|θ
√∑

α 6∈R

q̂(α)2 ≤ |G|θ
√∑

α

q̂(α)2 ≤ |G|θ ‖q‖2 .

The last inequality is Parseval’s.

One can expect that this proof generalizes to any group, and indeed it does.

Lemma 18. Let p and q be distributions over a group G. Let R = {ρ : ‖p̂(ρ)‖2
HS ≥ θ2/|G|2}.

Let f :=
∑

ρ∈R tr(p̂ ∗ q(ρ)ρ(.)T ). We have ∆(p ∗ q, f) ≤
√
N(q)θ. Moreover

∑
ρ∈R dρ ≤

N(p)/θ2.

Proof. The bound on
∑

ρ∈R dρ follows from Parseval’s fact that ‖p‖2
2 =

∑
ρ dρ ‖p̂(ρ)‖2

HS. The

latter is ≥
∑

ρ∈R dρθ
2/|G|2, and the bound follows.

For the bound on ∆ let e(x) := p ∗ q(x) − f(x) =
∑

ρ6∈R tr(p̂ ∗ q(ρ)ρ(x)T ). We seek to
bound

∑
x |e(x)|. First we bound the L2 norm. By Parseval we have

‖e‖2
2 =

∑
ρ 6∈R

dρ ‖ê(ρ)‖2
HS .

Now we use the fact that ê(ρ) = p̂ ∗ q(ρ) = |G|p̂(ρ)q̂(ρ). Then we use Equation (1) in
the preliminaries to obtain

‖ê(ρ)‖2
HS = |G|2 ‖p(ρ)q̂(ρ)‖2

HS ≤ |G|
2 ‖p̂(ρ)‖2

HS ‖q̂(ρ)‖2
HS .

For every ρ 6∈ R we have ‖p̂(ρ)‖2
HS ≤ θ2/|G|2, and so ‖ê(ρ)‖2

HS ≤ θ2 ‖q̂(ρ)‖2
HS. This gives

‖e‖2
2 ≤ θ2

∑
ρ

dρ ‖q̂(ρ)‖2
HS = θ2 ‖q‖2

2 ,

using Parseval once again.
Hence we can bound∑

x

|e(x)| ≤ |G| ‖e‖2 ≤ θ|G| ‖q‖2 = θ
√
N(q).
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4 The kernel method

In this section we first develop the kernel method in the next lemma, and then we apply it
to the affine and lamplighter groups.

Lemma 19. Suppose that an element y ∈ G belongs to the kernel of every irrep of G of
dimension ≤ t. Then G is (2s/

√
t, 0)-mixing for N ≤ s via F (x) := y · x.

Proof. We prove it for F (x) = y−1x, which is the same since each kernel is a subgroup. Let
p and q be two distributions with N(p) and N(q) ≤ s. For a function f denote by fy the
function fy(x) := f(yx). We need to bound ∆(p ∗ q, (p ∗ q)y). We apply Lemma 18 with

θ :=
√
N(p)/t. Let f be the corresponding function. Then we can bound

∆(p ∗ q, (p ∗ q)y) ≤ ∆(p ∗ q, f) + ∆(f, fy) + ∆(fy, (p ∗ q)y)
≤ 2∆(p ∗ q, f) + ∆(f, fy).

By Lemma 18 the first term is at most 2
√
N(q)θ = 2

√
N(q)N(p)/t = 2s/

√
t. To bound

the second term we use the fact that f only has representations ρ in R, where R is as in
Lemma 18. Because

∑
ρ∈R dρ ≤ N(p)/θ2 = t, every value dρ with ρ ∈ R is at most t. By

Fourier inversion we have:

∆(f, fy) =
∑
x

|f(x)− f(yx)| =
∑
x

∣∣∣∣∣∑
ρ∈R

dρ

(
trf̂(ρ)ρ(x)T − trf̂(ρ)ρ(yx)T

)∣∣∣∣∣ .
Because ρ is a representation we have ρ(yx) = ρ(y) · ρ(x), and by the assumption on

y we have ρ(y) = I, and so ρ(yx) = ρ(x). Hence each term in the inner sum is 0, and
∆(f, fy) = 0.

4.1 Affine group

In this section we prove Theorem 13, the mixing result for the affine group Aff(q). We use
the kernel method, so we want to find a non-identity element y that belongs to the kernel of
low-dimensional representations of Aff(q).

The irreps of Aff(q) are given explicitly for example in [Ter99].

Lemma 20. [Ter99], Page 273. The group Aff(q) has q − 1 irreps of dimension 1 of the

form ρ

(
a b
0 1

)
= χ(a), where χ is a character of the multiplicative group of Fq, and one

irrep of dimension q − 1. This includes all the irreps.

Because χ(1) = 1, we have that for any b ∈ Fq the element

(
1 b
0 1

)
belongs to the kernel

of any representation of dimension ≤ q − 2. By Lemma 19, Aff(q) is (2s/
√
q − 2, 0)-mixing

for N ≤ s.
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4.2 Lamplighter group

In this section we prove Theorem 14, the mixing result for the lamplighter group Ln. We use
the kernel method, so we want to find a non-identity element y that belongs to the kernel of
low-dimensional representations of Ln.

The representation theory of Ln is given in [TFF09] (see also the book [TFF14]). To
state their result we need some notation. Every string θ ∈ {0, 1}n has a period t(θ) which
is the smallest integer t such that θi = θi+t for every i, where the + works modulo n. We
denote by Θt a set of representatives for the orbits under Zn of the strings with period t. In
other words, every string with period t is in Θt up to a shift.

For example, for n = 4 we have the following representatives

Θ1 = {0000, 1111},
Θ2 = {1010},
Θ4 = {0001, 0011, 0111}.

For s ∈ Zn and θ ∈ Zn2 we denote by sθ the vector θ shifted by s, that is (sθ)i = θi−s.

Lemma 21. [TFF09] For every t, every θ ∈ Θt, and every r ∈ {0, 1, . . . , n/t− 1} the group
Ln has a t× t irrep ρ defined as:

ρ(x; k)s,j =

{
0 if t does not divide k + j − s
(−1)〈sθ,x〉 · e2πir(k+j−s)/n otherwise,

where s, j ∈ {0, 1, . . . , t− 1}, i =
√
−1, and 〈a, b〉 =

∑
i aibi. This includes all the irreps.

We shall only consider k = 0 in which case the matrix ρ(x; k) is diagonal (since t can
only divide j − s if j = s) and we have

ρ(x; 0)s,s = (−1)〈sθ,x〉 · e2πir0/n = (−1)〈sθ,x〉.

Note that these matrices do not depend on r any more.
Now we investigate the kernels of these matrices. Fix t. Note that each vector sθ where

θ ∈ Θt has period t. The key to obtaining tight bounds is the following observation.

Claim 22. The vectors in Zn2 with period t are contained in a vector space of dimension t.

Proof. Any vector of period t is in the span of the t vectors 0i10t−110t−1 · · · 10t−1−i for
i = 0, 1, . . . , t− 1.

Hence, the set of vectors whose period is ≤ t is contained in a vector space of dimension
≤
∑

i≤t i < t2. Therefore, as long as t ≤
√
n there exists a vector y′ which is orthogonal to

any vector with period ≤ t. This implies that y = (y′; 0) is in the intersection of the kernels
of the representations of dimension ≤ t, because ρ(y′; 0)s,s = (−1)0 = 1, and so ρ(y′; 0) = I.
Appealing to Lemma 19 concludes the proof.

The case n prime Because the period of a string divides n, if n is prime the period is
either t = n or t = 1. The strings of period 1 are the all-zero and the all-one string. Thus,
for any vector y′ with parity 0, we have that y = (y′; 0) is in the intersection of the kernels
of the representations of dimension < n.
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5 Product groups

In this section we prove theorems 15 and 16: mixing results for groups of the form Hn. We
begin with the proof of Theorem 15 and present the proof of the other theorem in subsection
5.1.

The next key lemma shows that every low-dimensional irrep of Hn can be written as a
product of unidimensional irreps of H and one irrep of Hn that depends on few coordinates.

Lemma 23. Let ρ be an irrep of Hn of dimension dρ. Then there are a set S ⊆ {1, 2, . . . , n}
with |S̄| ≤ log2 dρ, unidimensional irreps ρi for i ∈ S of H, and an irrep ρ∗ of H |S̄| such that

ρ(x1, x2, . . . , xn) = ρ∗(xS̄)
∏
i∈S

ρi(xi).

Proof. We use the following fact from representation theory. Any irrep of Hn is the tensor
product of n irreps of H. This can be found as Theorem 10 in Section 3.2 in [Ser77] or as
Theorem 9 in [Dia88]. In particular, the dimensions multiply.

Let ρ = ⊗ni=1ρi where the ρi are irreps of H. We define S to be the set of indices i such
that the dimension of ρi is ≤ 1. Because the dimensions multiply, we have

2|S̄| ≤ dρ.

Letting ρ∗ be the tensor product of ρi with i ∈ S̄ concludes the proof.

Now we use the above lemma in conjunction with Fourier truncation to claim that p ∗ q
is close to a function that does not change when we conjugate most coordinates.

Lemma 24. Let p and q be distributions on Hn. For any θ there is a function f such that
∆(p ∗ q, f) ≤

√
N(q)θ and for all but N(p)/θ2 coordinates i, and every u,

f(x1, . . . , xi−1, u
−1xiu, xi+1, . . . , xn) = f(x1, . . . , xi−1, xi, xi+1, . . . , xn).

Proof. We use Lemma 18 and let f :=
∑

ρ∈R tr(p̂ ∗ q(ρ)ρ(.)T ). By Lemma 23, each ρ can be

written as ρ∗(xS̄)
∏

i∈S ρi(xi) where |S̄| ≤ log2 dρ. Note that the ρi are constant on conjugacy
classes since they map to C: ρi(u

−1xiu) = ρi(u
−1)ρi(xi)ρi(u) = ρi(xi).

Summing all the ρ ∈ R, the number of coordinates that change with conjugation is
≤
∑

ρ∈R log2 dρ ≤
∑

ρ∈R dρ. By Lemma 18 the latter quantity is at most N(p)/θ2.

We have not used the logarithmic dependence between the dimension and the number of
coordinates. A linear dependence would have been enough. We will exploit the logarithmic
dependence below to give a refined bound.

The following definition corresponds to the effect of applying F .

Definition 25. Let p be the probability mass function of a distribution on Hn. We define
c(p) to be the probability mass function of the distribution which samples (x1, x2, . . . , xn)
from p and then picks a uniform i and replaces xi with a uniform conjugate u−1xiu of xi.

We have c(p)(x1, x2, . . . , xn) = Ei,up(x1, . . . , xi−1, u
−1xiu, xi+1, . . . , xn). We aim to bound

∆(p ∗ q, c(p ∗ q)).
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Lemma 26. Let f be the function from Lemma 24. Then

∆(f, c(f)) ≤
(
N(p)

θ2n

)
· 2(
√
N(q)θ + 1).

Proof. We have

∆(f, c(f)) =
∑
x

|Ei,u∈H(f(x)− f(x1, . . . , xi−1, u
−1xiu, xi+1, . . . , xn))|.

By the triangle inequality this is at most

Ei,u∈H
∑
x

|f(x)− f(x1, . . . , xi−1, u
−1xiu, xi+1, . . . , xn)|.

For all but N(p)/θ2 coordinates i the inner sum is 0. For any other i, by the triangle
inequality the inner sum is at most∑

x

|f(x)|+ Eu∈H
∑
x

|f(x1, . . . , xi−1, u
−1xiu, xi+1, . . . , xn)| = 2

∑
x

|f(x)|.

From Lemma 18 we know that ∆(f, p ∗ q) ≤
√
N(q)θ. Hence we have∑

x

|f(x)| =
∑
x

|f(x)− p ∗ q(x) + p ∗ q(x)| ≤ ∆(f, p ∗ q) +
∑
x

|p ∗ q(x)| ≤
√
N(q)θ + 1,

because p ∗ q is a probability distribution. The result follows.

We also note that c does not increase distance.

Lemma 27. Let f, g : G→ C be any functions. Then ∆(c(f), c(g)) ≤ ∆(f, g).

Proof. By the triangle inequality:

∆(c(f), c(g)) =
∑
x

|Ei,u(f(x1, . . . , xi−1, u
−1xiu, xi+1, . . . , xn)− g(x1, . . . , xi−1, u

−1xiu, xi+1, . . . , xn))|

≤ Ei,u
∑
x

|f(x1, . . . , xi−1, u
−1xiu, xi+1, . . . , xn)− g(x1, . . . , xi−1, u

−1xiu, xi+1, . . . , xn)|.

Fix i to maximize the expectation, and the result follows.

So we can bound the distance as follows.

∆(p ∗ q, c(p ∗ q)) ≤ ∆(p ∗ q, f) + ∆(f, c(f)) + ∆(c(f), c(p ∗ q))
≤ 2∆(p ∗ q, f) + ∆(f, c(f))

≤ 2
√
N(q)θ +O(N(p)/θ2n)(

√
N(q)θ + 1).

Setting θ3 = N(p)

n
√
N(q)

we obtain distance

O(N(p)N(q)/n)1/3.
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It remains to show that F (AB) 6= AB often. First we note that N(p ∗ q) ≤ N(p). To see
this, let A,A′ be distributed according to p and let B and B′ be distributed according to q.
Then

N(p ∗ q) = |G|P[AB = A′B′].

We can fix the outcomes of B and B′ to maximize this probability. Hence there is an
element g ∈ G such that

N(p ∗ q) ≤ |G|P[A = gA′].

The latter probability equals∑
x

p(x)p(g−1x) ≤
√∑

x

p2(x)

√∑
x

p2(g−1x) =

√∑
x

p2(x)

√∑
x

p2(x) = P[A = A′],

where the inequality is Cauchy-Schwarz. Hence N(p ∗ q) ≤ |G|P[A = A′] = N(p).
Now that we have a bound on N(p ∗ q) we can apply the following lemma.

Lemma 28. There is α > 0 such that the following holds:
Let H be a non-abelian group. Let p be a distribution over Hn with N(p) ≤ (1 + α)n.

With probability ≥ 0.01 over x sampled from p, i uniform in {1, 2, . . . , n} and u uniform in
H we have

(x1, . . . , xi−1, u
−1xiu, xi+1, . . . , xn) 6= (x1, . . . , xi−1, xi, xi+1, . . . , xn).

For the proof we need some basic concepts from group theory. For an element h ∈ H the
centralizer of h is the set {x : hx = xh} of elements that commute with h. The center of
H is the set Z(H) of elements that commute with every element from H, that is the set of
elements whose centralizer is H. Both the centralizer of h and the center of H are subgroups
of H. To prove the lemma, first we show that with high probability over x, many coordinates
do not belong to the center of H. When we take a uniform conjugate of that coordinate,
the probability that we get the same element is at most the size of the centralizer. Since the
latter is a non-trivial subgroup of H, by Lagrange’s theorem that probability is at most 1/2.
Details follow.

Proof. Let Z be the center of H. Since Z is a subgroup of H, the size of Z divides the size
of H. Since H is not abelian we have |Z| ≤ |H|/2. So the complement Z̄ of the center is at
least half the group. Let S ⊆ Hn be the set of tuples with at most n/3 coordinates in Z̄.
By a Chernoff bound we have

|S| ≤ (c|H|)n,

for some c ≤ 1− Ω(1).
The collision probability of any distribution q over S is at least 1/|S|. This is because∑
x∈S q(x)2 ≥ |S|(Ex∈Sq(x))2 = 1/|S| by Cauchy-Schwarz.
Now suppose that a sample from p lands in S with probability β. Then the collision

probability of p would be at least β2 times the probability of collision conditioned on landing
in S, which is at least 1/S by what we just said. Hence the collision probability would be
β2/|S| ≥ β2/(c|H|)n. Hence N(p) ≥ β2c−n. Under the assumption on N(p) for a small
enough α we have, say, β ≤ 1/2.
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For any sample that is not in S we have probability at least 1/3 over i that xi ∈ Z̄ and
so the centralizer of xi is a strict subgroup of H. By Lagrange’s theorem its size divides |H|.
Hence its size is at most |H|/2. Hence the probability over u that u−1xiu = xi is at most
1/2.

5.1 No unidimensional rep case

Using some of the ideas in the previous proof, in this subsection we prove Theorem 16, a re-
fined bound under the stronger assumption that H does not have a uni-dimensional represen-
tation. For slight convenience, if f : Hn → C we write fi for the function fi(x1, . . . , xi . . . xn, y) =
f(x1, . . . , y, . . . xn). Let v be the distribution over Hn where a uniformly selected coor-
dinate is set to a uniform element and the others are set to 1. Our goal is to bound
∆(p ∗ q, p ∗ q ∗ v). In the next lemmas we give a convenient expression for this quantity.
Note that p ∗ v(x) =

∑
y p(y)v(y−1x) = Ei,hpi(x, h).

Lemma 29. Let f : G→ C be a function. Then ∆2(f, f∗v) ≤ |G|2(Ex|f(x)|2−Ei,x|Ey∈Hfi(x, y)|2).

Proof. The LHS equals(∑
x∈G

|f(x)− Ei,y∈Hfi(x, y)|

)2

≤

(∑
x∈G

Ei|f(x)− Ey∈Hfi(x, y)|

)2

≤ |G|2Ex,i|f(x)− Ey∈Hfi(x, y)|2

= |G|2Ex,i
(
|f(x)|2 − f(x)Ey∈Hfi(x, y)− f(x)Ey∈Hfi(x, y) + |Ey∈Hfi(x, y)|2

)
= |G|2(Ex,i|f(x)|2 − 2Ex,i|Ey∈Hfi(x, y)|2 + Ex,i|Ey∈Hfi(x, y)|2)

= |G|2(Ex,i|f(x)|2 − Ex,i|Ey∈Hfi(x, y)|2).

For ρ = ⊗ρi we denote by #trivial(ρ) the number of trivial ρi (that is those equal to 1)
and by #non − trivial n minus that number. The following is a non-abelian version of a
well-known result in abelian Fourier analysis (Theorem 2.38 in [O’D14]).

Lemma 30. Let f : Hn → C be a function. We have

Ex,i|Ey∈Hfi(x, y)|2 =
1

n

∑
ρ

dρ#trivial(ρ)
∥∥∥f̂(ρ)

∥∥∥2

HS

= E|f(x)2| − 1

n

∑
ρ

dρ#non− trivial(ρ)
∥∥∥f̂(ρ)

∥∥∥2

HS
.

Proof. Define the function f−i : Hn−1 → C as

f−i(x1, x2, . . . , xn−1) := Ey∈Hf(x1, . . . , xi−1, y, xi, . . . , xn−1).
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Note that for any i we have

Ex|Ey∈Hfi(x, y)|2 = Ex|f−i(x)|2 =
∑

ρ=ρ1⊗...⊗ρn−1

dρ

∥∥∥f̂−i(ρ)
∥∥∥2

HS

by Parseval. For ρ = ρ1⊗ . . .⊗ ρn−1 write ρ+i for ρ = ρ1⊗ · · · ρi−1⊗ 1⊗ ρi⊗ . . .⊗ ρn−1. We
have

f̂−i(ρ) = Ex∈Hn−1f−i(x)ρ(x) = Ex∈Hn−1,y∈Hfi(x, y)ρ(x) = Ex∈Hnf(x)ρ+i(x) = f̂(ρ+i).

Averaging over i corresponds to summing over all representations in Ĥn and multiplying
each by the number of trivial components, and dividing everything by n.

This proves the first equality, and the second follows by Parseval.

Let now f and R be given by Lemma 18. Putting the above results together we obtain

∆(f, f ∗ v)2 ≤ |G|2 1

n

∑
ρ∈R

dρ#non− trivial(ρ)
∥∥∥f̂(ρ)

∥∥∥2

HS
.

Reasoning as in the proof of Theorem 15, we know that dρ ≤ N(p)/θ2 and so

#non− trivial(ρ) ≤ log2(N(p)/θ2)

because we are assuming that non-trivial irreps have dimension ≥ 2, and dimensions multiply
in tensor products of representations. Hence we get

∆(f, f∗v)2 ≤ |G|2 1

n
log(N(p)/θ2)

∑
ρ

∥∥∥f̂(ρ)
∥∥∥2

HS
≤ 1

n
log(N(p)/θ2)N(p∗q) ≤ 1

n
log(N(p)/θ2)N(q).

Here we are using the definition of f , Parseval, and the fact N(p ∗ q) ≤ N(q).
Again as before, we get the bound

∆(p ∗ q, p ∗ q ∗ v) ≤ 2∆(p ∗ q, f) + ∆(f, f ∗ v)

≤ 2N(q)θ +

√
1

n
log(N(p)/θ2)N(q).

Setting say θ = 1/n gives the desired distance.
It remains to argue that F (AB) 6= AB often. This probability is exactly 1/|H| (the

chance of getting 1G in v).
Finally, it is apparent from the bound on ∆ that it remains non-trivial even for exponen-

tial N(p).

6 Upper bounds on R3(G)

In this section we prove Theorem 2, one item at the time.

Lemma 31. Let G be a finite abelian group. Then R3(G) = O(1).
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Proof. For the proof we establish a series of simple reductions which reduce the problem in
groups of a type (i) to the problem in groups of type (i + 1), where the last type is that of
cyclic groups Zm which is solved in Theorem 15 in [Vio14]. Next are the types. Throughout,
the pi are prime numbers and the the ei are positive integers.

(1) abelian
(2) ×iZpeii
(3) ×iZpeii where pi = pj ⇒ ei = ej
(4) ×iZpeii where the pi are distinct

(5) Zm.
The reduction from (1) to (2) is the fundamental theorem of abelian groups.
To reduce (2) to (3): suppose the group has factors Zpe and Zpe′ where e′ > e. We can

replace the first factor with Zpe′ : On a given input, the parties privately multiply their input

in the first factor by pe
′−e. We can repeat this argument until (3) holds.

To reduce (3) to (4): suppose the group has a factor (Zpe)k. We can replace it with a
single Zpe : Using public randomness, the parties pick a uniform subset S of {1, 2, . . . , k}.
On a given input, each party privately replaces its input a1, a2, . . . , ak in the factor (Zpe)k
with

∑
i∈S ai. We can repeat this argument until (4) holds. If the parties’ inputs sum to 0,

this will continue to hold. Otherwise, with probability ≥ 1/2 the new inputs will not sum
to 0 either.

The reduction from (4) to (5) is the Chinese Remainder Theorem.

Lemma 32. If H is a subgroup of G then R3(G) ≤ O(|G|/|H|+R3(H)).

The proof of the lemma uses random self-reducibility and efficient protocols for disjoint-
ness on small sets [HW07], [BCK+14].

Proof. By the random self-reducibility of the problem, given inputs a, b, c ∈ G, the parties
can use public randomness to sample uniformly distributed ABC such that abc = ABC.
Specifically, the parties may pick r1 and r2 uniformly from G and privately compute their
new inputs as A = ar−1

1 , B = r1br
−1
2 , C = r2c.

Naively, we could proceed as follows. If both A ∈ H and B ∈ H, then the parties can
execute the protocol for H. So they only have to keep sampling until that happens. This
would take Ω(s2) trials and communication in expectation, where s := |G|/|H|.

To obtain the stronger bound, the parties will repeat the above sampling t independent
times, obtaining Ai, Bi, Ci using elements ri,1, ri,2 for i = 1, 2, . . . t. It suffices for the parties
to identify an index i∗ such that Ai∗ ∈ H and Bi∗ ∈ H and then they can run the protocol
for H as before. By picking t = O(s)2 the chance that such an index does not exist is at
most 1/10.

Now the first party can compute a vector α ∈ {0, 1}t where αi = 1 iff Ai ∈ H, and the
second party can compute the vector β corresponding to whether Bi ∈ H.

All the computation up until this point was private and required no communication. Now
however the parties need communication to find i∗.

The expected Hamming weight of α is t/s = O(s), and by Markov’s inequality we have
that it is at most O(s) except with probability 1/10.

It remains to find the index i∗ where αi = βi = 1. This can be solved with communication
O(s) [HW07], [BCK+14]. (The latter paper explicitly proves this.)
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For the last item, it is known [IP64] that if all the irreducible representations of G have
dimension ≤ d then G has an abelian subgroup of index f(d).

7 Proof of Lemma 12

This proof is similar to a proof for quasirandom groups that appears in [Vio19]. First, by
repeating the protocol we can assume that we have a protocol P rep whose error probability is
less than 0.001. Now consider the distributions D0 = (a, b, (ab)−1) and D1 = (a, b, F ((ab)−1))
where a, b are uniform and G mixes via F . By assumption we have P[P rep(D0) = 1] ≥ 0.999
and P[P rep(D1) = 1] ≤ 0.001 + 0.99 < 0.999. Hence there is a fixing of the randomness to
the protocol yielding a deterministic protocol P using c bits of communication such that

P[P (D0)]− P[P (D1)] ≥ Ω(1).

By a standard argument, which can be found in [KN97] for two parties and generalizes
to more parties, P can be written as the sum of 2c “rectangles” Ri = Ai ×Bi ×Ci. That is,
P (x, y, z) =

∑
i≤2c Ai(x)Bi(y)Ci(z) where Ai is the characteristic function of the set Ai and

the same for Bi and Ci.
For any rectangle Ri where either Ai or Bi has density≤ ε we have ∆(Ri(D0), Ri(D1)) ≤ ε

just because a and b are uniform.
Consider a rectangle where Ai and Bi have both density ≥ ε. Note that the distribution

of a conditioned on a ∈ Ai has N ≤ 1/ε, and the same for b. It follows from the mixing
property that for any such rectangle we have ∆(Ri(D0), Ri(D1)) ≤ ε.

Hence we obtain
|P[P (D0)]− P[P (D1)]| ≤ O(2cε).

This contradicts the previous displayed equation unless c = Ω(log(1/ε)).
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