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Abstract

This note proves the existence of a quadratic GF(2) map p : {0, 1}n → {0, 1} such
that no constant-depth circuit of size poly(n) can sample the distribution (u, p(u)) for
uniform u.

We continue the study of sampling lower bounds [Vio12a, LV12, DW12, Vio14b, BIL12,
Vio12b, BCS14, Vio14a]. The paper [Vio14b] exhibits an explicit function f : {0, 1}n →
{0, 1} such that the distribution (u, f(u)), for uniform u ∈ {0, 1}n, is not the output distri-
bution of any poly(n)-size, constant-depth (AC0) circuit evaluated on a uniform input. We
say that the circuit cannot sample (u, f(u)). Although explicit, this function is somewhat
complicated and so it leaves a gap in our understanding of what can be sampled in AC0.

This note makes a step towards closing this gap by proving the existence of a quadratic
GF(2) map p : {0, 1}n → {0, 1} such that (u, p(u)) cannot be sampled in AC0. It is an
open problem to obtain an explicit map. The degree bound on p is tight because for every
degree-1 map p there exists an AC0 circuit that samples (x, p(x)) [Bab87]. Moreover, the
quadratic map Inner Product, x1x2 + x2x3 + . . . , xn−1xn modulo 2, can be sampled in AC0

[IN96]. Also related is the result [LV12] which gives a non-boolean, linear transformation
f : {0, 1}n → {0, 1}m such that f(u) cannot be sampled in AC0. The quadratic map in this
work is the composition of Inner Product with a random linear transformation.

Theorem 1. For any d and all sufficiently large n:
There exists a quadratic map p : {0, 1}n → {0, 1} such that for any AC0 circuit C : {0, 1}nd →
{0, 1}n+1 of depth d and size nd, the output distribution of C(v) for uniform v ∈ {0, 1}nd

is
different from the distribution (u, p(u)) for uniform u ∈ {0, 1}n.

The proof goes by using the fact that any AC0 source (a.k.a. distribution) is a convex
combination of bit-block sources [Vio14b], and then noticing that one can extract from the
latter by a quadratic map. Here we do not gain from bounding the size of the blocks.

Bit-block sources are a special case of affine sources, and for the proof we will have to
work with the latter. An affine source S over {0, 1}n is a random variable that is uniform over
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an affine subspace of the vector space given by {0, 1}n with component-wise addition modulo
2. The min-entropy of S is the dimension of the space. We say that f : {0, 1}n → {0, 1} is an
ε-extractor for a class of sources if for every source S in the class we have |E[(−1)f(S)| ≤ ε.

Definition 2 (Bit-block source). A random variable Y = (Y1, Y2, . . . , Yn) over {0, 1}n is a
bit-block source if every Yi belongs to {0, 1, X1, X2, . . . , Xn, 1−X1, 1−X2, . . . , 1−Xn}. A
sample from the source is obtained by selecting the Xi uniformly and independently in {0, 1}.

Note that the entropy of a bit-block source equals the number of different variables Xi

(negated or not) that appear in the output.
The following result reduces our task to that of extracting from bit-block sources.

Lemma 3 ([Vio14b]). Suppose that f : {0, 1}n → {0, 1} is a o(1)-extractor for bit-block
sources of min-entropy n0.99. Then AC0 circuits of size nd and depth d cannot sample
(u, f(u)), for any constant d.

Proof. Note that Pr[f(u) = 1] ≥ 1/2 − o(1). Suppose that C ′ is a circuit that samples
(u, f(u)). Construct the circuit C that first runs C ′ to obtain a sample (x, b) ∈ {0, 1}n ×
{0, 1}. Then, if b = 1 it outputs x, otherwise it output a uniform string in {0, 1}n. Note that
C samples a source which has entropy k ≥ n− O(1) and on which f is biased. Specifically,
Pr[f(S) = 1] ≥ 1/2 + Ω(1). By Corollary 1.8 in [Vio14b], the output distribution of C
is o(1)-close to a convex combination of bit-block sources with min-entropy n0.9. Hence, f
should be nearly unbiased on the output of C, which is a contradiction.

A simple modification of this proof gives in Lemma 3 and Theorem 1 a lower bound of
2−n

1−Ω(1)
on the statistical distance between the two distributions; and it is not clear how to

do more, cf. Section 3.1 in [Vio14b].
By Lemma 3, to prove Theorem 1 it only remains to construct a quadratic map which

extracts from bit-block sources. This is given by the next theorem.

Theorem 4. There exists a quadratic map f : {0, 1}n → {0, 1} that is a o(1)-extractor for
bit-block sources with min-entropy k = n1/2+Ω(1).

To prove Theorem 4 we first notice that there are few bit-block sources, then we show the
existence of a linear map which condenses any such source to an affine source whose entropy
is more than half the length of the string, at which point we use the folklore fact that Inner
Product extracts from such sources.

The proof of the following claim is immediate from the definition.

Claim 5. The number of bit-block sources over n bits is at most (2 + 2n)n.

The next claim gives the condenser.

Claim 6. Let S be an affine source on n bits with min-entropy k. Let M be a random k×n
matrix. Then the probability that MS has min-entropy less than 0.9k is at most 2−Ω(k2).
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Proof. Let S = TX + b, where T is an n× k full-rank matrix, X is uniform in {0, 1}k, and
b ∈ {0, 1}n is a shift. Consider a change-of-basis full-rank n × n matrix A such that AT
is the n × k matrix which is identity in the first k rows and 0 everywhere else. Rewriting
M as MA−1A, and noting that MA−1 is uniform for uniform M , we have that the min-
entropy of MS equals the dimension of MAT , which in turn is the dimension of the span of
k uniformly chosen vectors. The probability that this dimension is less than 0.9k is at most
the probability that there exist 0.9k vectors such that every other vector lies in their span,
which is at most (

k

0.9k

)(
20.9k

2k

)0.1k

≤ 2O(k)20.01k2

= 2−Ω(k2).

The following result is folklore but we do not find a proof in the literature.

Lemma 7. Let f : {0, 1}n → {0, 1} be the Inner Product function modulo 2. Let X be
uniform over an affine subspace of {0, 1}n with dimension k. Then |E[(−1)f(X)| ≤ 2n/2−k.

Proof. Let X = V +a where V is uniform over a vector space of dimension k and a ∈ {0, 1}n
is a shift. Let g(x) := f(x+ a). Now write

E[(−1)f(X)] = E[(−1)g(V )] = 2n−kE[(−1)g(U)1V (U)],

where U is uniform in {0, 1}n, and 1V is the 0/1 indicator function of V .
Now let Y be uniform over the orthogonal complement V ⊥ of V . Note that for every

a ∈ {0, 1}n we have
1V (a) = E[(−1)

∑
i Yiai ].

To verify this, notice that if a ∈ V then the inner product
∑

i yiai equals 0 for any y ∈ V ⊥.
While if a is not in V then the same inner product equals 1 for some y ∈ V ⊥. In this case
consider sampling Y by selecting a uniform linear combination of a basis of V ⊥ that contains
y. For any choice for the coefficients of the vectors different from y, the inner product

∑
i Yiai

will be 0 for one choice of the coefficient for y, and 1 for the other.
Combining these two facts, and using the triangle inequality, we have

|E[(−1)f(X)| = 2n−k|E[(−1)g(U)(−1)
∑

i YiUi ]| ≤ 2n−kEY |EU [(−1)g(U)(−1)
∑

i YiUi ]|.

To conclude the proof, note that the inner expectation is at most 2−n/2. This in turn follows
from the fact that, for every x, g(x) = f(x)+`(x) modulo 2, where `(x) is an affine function,
and the fact that f is bent, i.e., all of its Fourier coefficients have absolute value 2−n/2.

Proof of Theorem 4. By Claim 5 the number of bit-block sources is O(nn). The latter is
2o(k2) for k ≥ n1/2+Ω(1). By Claim 6 and a union bound, there exists a linear map M such
that M condenses any bit-block source to a source on k bits with entropy 0.99k. By Lemma
7, the evaluation of the Inner Product function on this source is nearly unbiased. Thus, the
quadratic map obtained by composing the Inner Product function with M is the desired
extractor.
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