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Abstract

Research in the 80’s and 90’s showed how to construct a pseudorandom generator
from a function that is hard to compute on more than 99% of the inputs. A more recent
line of works showed however that if the generator has small error, then the proof of
correctness cannot be implemented in subclasses of TC0, and hence the construction
cannot be applied to the known hardness results. This paper considers a typical class
of pseudorandom generator constructions, and proves an analogous result for the case
of large error.

The construction of pseudorandom generators from hard functions is a fundamental paradigm
in complexity theory. Call a function f : {0, 1}` → {0, 1} δ-hard if every “small circuit” fails
to compute f on at least a δ fraction of the inputs. Perhaps the simplest example of the
paradigm is this. Given f which is (1/2− ε)-hard the repetition pseudorandom generator

PRG : {0, 1}`·s → {0, 1}`·s+s

PRG(x1, x2, . . . , xs) := (x1, x2, . . . , xs) ◦ f(x1) ◦ f(x2) ◦ · · · ◦ f(xs)

has error O(εs), by which we mean that small circuits cannot distinguish its output dis-
tribution from uniform with advantage more than O(εs). The proof relies on the hybrid
argument, see for example [FSUV13] and the discussion there. Hence, from hardness 1/2− ε
we can obtain Ω(1/ε) bits of pseudorandomness, and this is tight for black-box reductions
[FSUV13].

This repetition approach has poor output/input ratio less than two. The landmark paper
by Nisan [Nis91] gave a better construction using a design S1, S2, . . . , Ss ⊆ {1, 2, . . . . ,m}.
Here the generator gets an input σ and computes from it s inputs x1, x2, . . . , xs for f where
xi is the bits of σ indexed by Si.

N : {0, 1}m → {0, 1}m+s

N(σ) := σ ◦ f(x1) ◦ f(x2) ◦ · · · ◦ f(xs).
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The repetition generator can be seen as a trivial design where the Si are disjoint. Nisan
allows us to take s much larger than m, and so the stretch is essentially unaffected if we
drop σ from the output.

Jumping ahead, our result only applies if σ is revealed in the output. We note that most
or all applications of such generators in the literature are unaffected if σ is revealed, while
there are applications (for example [KvMS12]) which actually require that σ is revealed.
Still, we view the case where σ is not revealed as an interesting open problem which we
discuss more in Section 3.

Starting from less hard f . If the hardness of f is less, say if it is a constant bounded
away from 1/2, then the above approaches give only a constant number of bits of pseudo-
randomness. Since at least [NW94] the way around this has been to amplify the hardness
of f to obtain another function f ′ with hardness 1/2 − ε where ε ≤ 1/s, and then apply a
generator construction to f ′. The simplest and most well-known hardness amplification is
the XOR lemma originating from oral presentations by Yao in the 80’s, see [GNW95]. Here
f ′ is simply the XOR of k independent copies of f :

f ′ : {0, 1}`·k → {0, 1}
f ′(x1, x2, . . . , xk) := ⊕j≤kf(xj).

Here by ⊕j≤k we mean the XOR over all j ∈ {1, 2, . . . , k}.
For a concrete example, if we combine this hardness amplification with the repetition

generator we obtain the following construction where m = `ks:

G : {0, 1}m → {0, 1}m+s

G(xij) i ≤ s
j ≤ k

:= (xij) i ≤ s
j ≤ k

◦ ⊕j≤kf(x1j) ◦ ⊕j≤kf(x2j) ◦ · · · ◦ ⊕j≤kf(xsj). (1)

If we start with f that has constant hardness then in Yao’s XOR lemma for any given s
we can take k = O(log s) to obtain hardness say 1/2− 1/s2 which is sufficient to show that
G has error O(1/s).

The extension of Nisan’s generator where we first apply Yao’s XOR lemma appears in
the work of Nisan and Wigderson [NW94]. It is as follows

NW : {0, 1}m → {0, 1}m+s

NW (σ) := σ ◦ ⊕j≤kf(x1j) ◦ ⊕j≤kf(x2j) ◦ · · · ◦ ⊕j≤kf(xsj), (2)

where now all the xij are computed from σ via a design as before.

Hardness amplification proofs require majority. This hardness amplification step is
problematic for restricted computational models. This is because most or all reductions that
prove hardness amplification are black-box, and a line of research [Vio04, Vio06, LTW11,
SV10, GR08, AS14, GSV18] has shown that these reductions cannot be implemented in a
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class less powerful than TC0. The sense in which this holds is made precise below, but
basically the reduction circuits that amplify hardness to 1/2 − ε can be used to compute
majority on Ω(1/ε) bits. This means that when ε is polynomially small these reductions
can only be used when starting from a lower bound against at least TC0, a long-standing
open problem which is believed to require new techniques [RR97, NR04]. In particular, they
cannot be used for several classes for which we do have δ-hard functions for δ = 0.1 but
not even δ = 1/2 − 1/

√
` for functions on ` bits. Such classes include AC0 circuits with

parity gates [Raz87, Smo87] or with one majority gate [ABFR94]. We refer to [GSV18] for
additional discussion and pointers.

Moreover, most proofs of pseudorandom generators PRG : {0, 1}m → {0, 1}m+s also
yield error about 1/s. For example in the above example of G if we amplify hardness to 1/s2

we obtain error O(1/s). And the same limitations apply to a pseudorandomness proof with
error ε as to a hardness amplification proof to hardness 1/2− ε [GSV18].

Constant-error pseudorandomness. However such limitations were not known for pseu-
dorandomness proofs with constant error. Pseudorandom generators with constant error are
important in their own right. For example they suffice for derandomization, and are not
known for several frontier classes such as AC0 with parity gates. In this paper we show
that even the proofs of the constructions above with constant error require TC0. For s bits
of stretch we obtain the same limitations established in [GSV18] for amplifying hardness
to 1/2 − 1/s. We state a more general and abstract result, where the generator computes
inputs xij from the seed σ via a function L, then evaluates f at those inputs and combines
the output via a function H.

Let us prepare for the technical statement of the result. A black-box proof of correctness
consists of a reduction showing that if the generator is broken then the function f is not
hard. More formally, such a reduction is an oracle circuit C which receives an input x and
oracle access to a distinguisher D for the generator, and outputs f(x) correctly on a 1 − δ
fraction of inputs. If D has small size and depth, and C has small size and depth, one
obtains a circuit C ′(x) = CD(x) also of small size and depth that computes f well, thus
contradicting the hardness of f . It is known that in this setup, the reduction circuit C
must use an additional advice string α, which may arbitrarily depend on the function f and
the distinguisher D. More precisely, the reduction circuit C fulfills the following guarantee:
For every function f , and every distinguisher D, there exists an advice string α for which
Px∈{0,1}` [CD(x, α) = f(s)] ≥ 1 − δ. The reader is referred to [SV10, GSV18] for additional

discussion. Following [Vio06, SV10], the theorem below shows that reduction circuits C of
this type can be used to distinguish uniform bits from slightly biased bits. Specifically let us
denote by N q

1/2−ε a q-tuple of i.i.d. bits coming up 1 with probability 1/2− ε. The theorem

shows how to distinguish between N q
1/2 and N q

1/2−Ω(1/s) using roughly the same size and depth

as that of the circuits C (with no oracle and using the same gates as in C plus gates for H
and L). By arguments in [SV10] we can then show how to compute majority on Ω(s) bits,
and moreover the circuits C must make many queries.
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Theorem 1. There is a constant c such that if max{s, a, q, k} ≤ g ≤ 2`/c and 2−`/c ≤ δ ≤ 1/3
the following holds.

Hypothesis: Let Gf (σ) = σ ◦ Gf
1(σ) ◦ Gf

1(σ) ◦ · · · ◦ Gf
s (σ) be a pseudorandom-generator

construction mapping a seed σ ∈ {0, 1}m and a function f : {0, 1}` → {0, 1} to m+ s output
bits defined by

Gf
i (σ) = H(f(xi1), f(xi2), . . . , f(xik))

where H : {0, 1}k → {0, 1} is a function, and the s · k values xij for i ≤ s and j ≤ k are

obtained from σ by the map L : {0, 1}m → {0, 1}`·s·k. Suppose that with probability 1−1/1000
over σ, the xij values L(σ) are distinct.

Let {C .(., α)}α∈{0,1}a be a family of 2a oracle circuits such that for every α the circuit
C .(., α) has size g, depth κ, makes q oracle queries, and uses gates Ξ ⊇ {And,Or,Not}.

Suppose that for every f : {0, 1}` → {0, 1} and d : {0, 1}m+s → {0, 1} such that

|P[d
(
Gf (σ)

)
= 1]− P[d (Um+s) = 1]| ≥ 1

100
,

where σ and Um+s are uniform in {0, 1}m and {0, 1}m+s respectively, there exists α ∈ {0, 1}a
such that

Px∈{0,1}` [C
d(x, α) = f(x)] ≥ 1− δ.

Conclusion: Then for every ε = Ω(1/s) there is a circuit t : {0, 1}q → {0, 1} such that

P[t(N q
1/2−ε) = 1]− P[t(N q

1/2) = 1] ≥ 1−O(δ),

and moreover t has depth O(κ), size poly(g, 1/δ), and only uses gates for H and L in addition
to the gates Ξ.

By the arguments in sections 5 and 6 of [SV10], the conclusion of the theorem has two
corollaries:

(A) q ≥ Ω(s2 log(1/δ)). For this the fact that t can be computed by small circuits is not
required.

(B) there is a circuit with depth O(κ), size poly(g, 1/δ), and the same gates as t that
computes majority on inputs of length Ω(s). In particular if H,L,C are computable in AC0

or even in AC0 with parity gates, the size of C must be exponential in sΩ(1). By contrast,
for unbounded-depth circuits the size can be polynomial. Note for this δ = 1/3 is sufficient.

The function L is the identity map in the repetition PRG, and is a projection in NW. In
both cases it is trivially computable in AC0. The function H is simply parity on k bits in
both cases, obviously computable in AC0 with parity gates. In fact, as discussed before, in
typical settings we have k = O(log s) and so this parity is even computable in AC0.

The theorem assumes that with probability 1 − 1/1000 over σ the xij are distinct. We
now remark that for typical settings of both generators (1) and (2) this assumption holds.
When each xij is the projection of σ on a set of ` bits, as long as the pairwise intersection
of the sets is ≤ `/2 then the probability that two xij will be equal is ≤

(
ks
2

)
2−`/2 by a union

bound. In particular if k, s = `O(1) the assumption is satisfied for large enough `. (The
designs in [Nis91, NW94] have even smaller intersection guarantees.)
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The corollaries (A) and (B) are the same obtained in [GSV18] for amplification to hard-
ness 1/2− 1/s. As explained there, the bounds are tight for hardness amplification. Specif-
ically, the bound on the number of queries matches [KS03], and the result about majority
is tight because there exist proofs of Yao’s XOR lemma which can be implemented in AC0

with one majority gate [Kli01] (for a simplification of [Kli01], due to Klivans and Vadhan,
see [Vio09]). We note that such tightness extends to the generators (1) and (2), because the
pseudorandomness proof from a 1/2 − 1/s hard function can be implemented in AC0 with
only one query [Vio07].

Note that for constructions with small error ε the work [GSV18] rules out AC0 reductions
even for one bit of stretch, that is s = 1. In our setting of constant error ε we can’t do that
because it is possible to get s = poly log g bits of stretch via an AC0 reduction of size g, and
our result shows that this is tight.

Theorem 1 would immediately follow from [GSV18] if there was a way to turn a constant-
error generator into a 1/2 − 1/s hard function with a proof of correctness by a reduction
that does not use majority. No such way is known, and in fact we suspect one can derive a
black-box separation for this task along the lines of [GSV18].

Organization. After presenting the proof we conclude in Section 3 where we also discuss
several open problems.

1 Proof discussion

We explain the basic idea of the proof in the case of the repetition generator (1). Take F
to be a random function F : {0, 1}` → {0, 1} and the distinguisher d as a distribution D
defined as follows. Recall that the input to D is a string z of length m + s which consists
of sk inputs xij to F and s additional bits bi. On input z the distinguisher D selects a
uniform pointer P (z) ∈ {1, 2, . . . , s} and then answers one if and only if the bit bi matches
the output of the pseudorandom generator, that is, if bi = ⊕j≤kF (xij). Such a D breaks the
pseudorandom generator, as it always outputs 1 when the input is pseudorandom, but if bi
is uniform then the equation bi = ⊕j≤kF (xij) is satisfied with probability 1/2.

Now imagine, for some fixed α, a reduction circuit CD(x∗, α) that is trying to compute
F (x∗) by querying D. Equivalently, the circuit is trying to distinguish F0 := F |F (x∗) = 0
from F1 := F |F (x∗) = 1. We can assume that in any query z to D the inputs xij are all
different (by instructing D to answer 0 otherwise). Then the answers to each query in F0

and F1 are close: they are random bits whose statistical distance is O(1/s). When s is large
enough, this difference is too small to be detected by a constant-depth circuit.

Formalizing this idea presents several difficulties. First, the above definition of D actually
does not work. This is because, using advice, the reduction could ask queries where all the
values F (xij) are 0 except possibly F (x∗). In such a situation the answers of D would be
always 0 under F0, and non-zero with probability ≥ 1/s under F1. This can be detected in
constant-depth (by a simple Or). The fix is to pad the bits bi with a balanced string, so that
the answer bits always come up 1 with probability bounded away from 0 and 1.
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To handle advice, we use the fixed-set lemma from [GSV18], which basically says that
conditioning on a specific α can be thought of as fixing some values of F and D. As in
[GSV18], this lemma appears to greatly simplify the argument.

We note that although we use this lemma from [GSV18], and other results from [SV10],
our proof presents several differences. The main one is in the choice of the oracle. In previous
works this choice is straightforward: the oracle is simply obtained by perturbing the encoding
of f with suitable noise, and the main focus is on the analysis. In our case the choice is less
obvious. This difference then propagates to several other parts of the proof, for example in
how we handle adaptive queries.

2 Formal proof

Let F : {0, 1}` → {0, 1} be a uniform function. We define the distinguisher D as follows.
Let P : {0, 1}m+s → [3s] be a uniform function. On input z = σ ◦ b1 ◦ · · · ◦ bs ∈ {0, 1}m+s,
compute

L(σ) = {xij} i ≤ s
j ≤ k

.

For simplicity we think of the output of L(σ) as a multiset. If the xij are not all distinct
then output zero. Otherwise compute the string v(z) ∈ {0, 1}s where the bit i is the in-
dicator of whether bi is the correct output of the hard function, i.e., it is the indicator of
H(F (xi1), F (xi2), . . . , F (xik)) = bi. Return the bit P (z) of the string v(z)0s1s ∈ {0, 1}3s.

Claim 2. For every F , with probability Ω(1) over the choice of P , D distinguishes the PRG
from uniform with advantage Ω(1).

Proof. We first prove the claim ignoring the fact that D outputs 0 if the xij are not all
distinct.

On any input z from the PRG, D outputs 1 unless P (z) lands on 0s. The latter happens
with probability 1/3 independently. Hence with probability say 1− 1/100 over P , assuming
s is large enough, D outputs 1 with probability ≥ 2/3− 1/100 over a uniform output of the
PRG. Note we can assume that s is large enough for else the conclusion of the theorem is
trivial.

We now analyze the behavior for a uniform input u. First note that at least say a 0.99
fraction of the strings u ∈ {0, 1}m+s are such that v(u) has Hamming weight ≤ 0.51s, again
using that s is large enough. (Note that this statement only depends on F , which is fixed.)
For any such string u, the distinguisher outputs 1 with probability ≤ (1 + 0.51)/3 over the
choice of P (u). Hence with probability 1 − 1/100 over P the distinguisher outputs 1 on at
most a (1+0.52)/3 fraction of those strings, and hence overall on at most a 1/100+(1+0.52)/3
fraction of the strings in {0, 1}m+s.

By a union bound, with probability ≥ 1− 1/50 over P , D has an advantage of

≥ (2/3− 1/100)− (1/100 + (1 + 0.52)/3) = 0.14.
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Finally we take into account the probability that the xij are not all distinct. This happens
with probability ≤ 1/1000 by assumption. Hence we still have advantage ≥ Ω(1).

By the above claim, averaging over F , and our assumption, there is an advice α ∈ {0, 1}a
such that with probability ≥ Ω(2−a) over F and P the event A := “Px∈{0,1}` [CD(x, α) =

F (x)] ≥ 1− δ” happens. We now use the fixed-set lemma from [GSV18], restated next.

Lemma 3. Let N, a, q′ be integers. Let Y = (Y1, . . . , Y N) be independent random variables,
each uniform over some finite set Σ. Let A ⊆ ΣN be an event such that P[Y ∈ A] ≥ 2−a, and
let X = (Y |Y ∈ A). For every η > 0, there exists a set B ⊆ [N ] of size poly(a, q′, η−1), and
µ ∈ {0, 1}B such that for Y ′ := (Y |YB = µ) and X ′ := (X|XB = µ) = (Y |YB = µ, Y ∈ A),
and every q′-query decision tree t, |P[t(Y ′) = 1]− P[t(X ′) = 1]| ≤ η.

The notation XB means the variables Xi where i ∈ B. We apply the lemma to the
2` + 2m+s random variables F (x), P (z). We set q′ = O(qk) and η = δ.

Remark 4. The fixed-set lemma is only stated for variables with the same range Σ, whereas
F (x) and P (z) have different range. However we can for example rewrite F (x) and P (z) as
fixed functions of random variables with the same range Σ (for example |Σ| = 2 · 3s will do).
So we can apply it in our setting as well.

The lemma gives a set B of size poly(a, q′, 1/η) = poly(g, 1/δ) (using a, q, k ≤ g) and a
string µ such that for every x

|PF,P [CD(x, α) = F (x)|A, (FP )B = µ]− PF,P [CD(x, α) = F (x)|(FP )B = µ]| ≤ δ, (3)

where note in the second probability there is no conditioning on A. Here we are using
that checking if CD(x, α) = F (x) can be computed by a decision tree with access to the
variables F (x) and P (z) making ≤ 1 + q + qk = O(qk) queries. The tree first queries F (x),
then it simulates CD(x, α), answering each oracle query D(z) by querying P (z) and then
the k corresponding values of F .

Recall that for every F, P such that A holds we have by definition of A that

Px[CD(x, α) = F (x)] ≥ 1− δ.

Hence the same holds if we average over F, P and further condition:

Px,F,P [CD(x, α) = F (x)|A, (FP )B = µ] ≥ 1− δ.

By Equation 3 we can drop the conditioning over A and have

Px,F,P [CD(x, α) = F (x)|(FP )B = µ] ≥ 1− 2δ.

We now want to fix a “good” x such that F (x) is uniform and C does not get too much
“information” about F (x) from the oracle. The first condition simply means x 6∈ B. The
second is more complicated. We need to avoid that C makes a query to a z such that P (z)
is fixed to a bit that depends on F (x); as that could give away the value F (x) (for example
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if the answer is F (x)⊕ 0⊕ 0⊕· · ·⊕ 0). For simplicity, we shall fix F at all values x ∈ {0, 1}`
that appear in any z ∈ B. We can enlarge B to include such problematic x:

B′ := B
⋃
{x ∈ {0, 1}` : x ∈ L(σ) for some σ ◦ b ∈ B}.

Note that |B′| ≤ |B| + |B| · k · s ≤ poly(g, 1/δ) (by the above bound on |B| and using
k, s ≤ g). By averaging there exists a corresponding fixing µ′ such that again

Px,F,P [CD(x, α) = F (x)|(FP )B′ = µ′] ≥ 1− 2δ.

Hence we have that there exists a fixed x∗ 6∈ B′ such that

PF,P [CD(x∗, α) = F (x∗)|(FP )B′ = µ′] ≥ 1− 2δ − |B′|/2` ≥ 1− 3δ,

using that δ ≥ |B′|/2`, which is implied by 2−`/c ≥ poly(2`/c)/2` because δ ≥ 2−`/c and
g ≤ 2`/c, and hence true for a large enough c.

Now let us hardwire x∗ and α and write C0 for C(x∗, α). So we have

PF,P [CD
0 = F (x∗)|(FP )B′ = µ′] ≥ 1− 3δ.

Next we produce a series of circuits Ci to arrive to the desired t. Each circuit will have
depth O(κ), size poly(g, 1/δ), will not increase the number of oracle queries, and will use the
same gates Ξ used by C0, and also gates for H and L.

Our first task is to get rid of the queries z ∈ B. If z ∈ B then P (z) is fixed. Let the
corresponding evaluation be H = H(F (x1), F (x2), . . . , F (xk)). All the xi belong to B′, hence
the corresponding values of F are fixed and so D(z) is fixed if z ∈ B. Construct a circuit C1

which has all the values D(z) for z ∈ B stored in a table, and answers a query z ∈ B with
that fixed value. So we have

PF,P [C1
D = F (x∗)|(FP )B′ = µ′] ≥ 1− 3δ,

and we now know that C1 only makes queries z where P (z) is uniform. Note that because
|B| = poly(g, 1/δ) the size of C1 is again poly(g, 1/δ).

At this point the conditioning on PB′ = µ′ is immaterial, hence we drop it. Let us pause
a moment to discuss the meaning of the notation used. We defined above XB to mean the
variables Xi where i ∈ B. Typically the number of such variables is |B|, but we can also use
this notation when B is a superset of the index set of the Xi. In this case the number of the
variables XB may be smaller than |B|. This is what we mean with the notation PB′ = µ′.
So we can write

PF,P [C1
D = F (x∗)|FB′ = µ′] ≥ 1− 3δ.

Recall that F (x∗) is still uniform conditioned on FB′ = µ′ because x? 6∈ B′. Hence the
previous equation can be rewritten as

1

2
(PF,P [C1

D = 1|FB′ = µ′, F (x∗) = 1] + PF,P [C1
D = 0|FB′ = µ′, F (x∗) = 0]) ≥ 1− 3δ.
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We multiply by 2 this inequality and then complement the second probability to rewrite
the inequality as

PF,P [CD
1 = 1|FB′ = µ′, F (x∗) = 1]− PF,P [C1

D = 1|FB′ = µ′, F (x∗) = 0] ≥ 1− 6δ. (4)

Now for b ∈ {0, 1} define the oracle Eb as follows. The input is a string w ∈ {0, 1, ?, 1−?}s
with exactly one occurrence of ? (possibly as 1−?). The output is obtained by replacing ?
with b (and 1−? with 1− b) to obtain wb ∈ {0, 1}s and then outputting a uniformly selected
bit of wb0

s1s.

Lemma 5. There is a distribution on circuits C2 such that for every b ∈ {0, 1} we have

P[C2
Eb = 1] = PF,P [C1

D = 1|FB′ = µ′, F (x∗) = b].

Proof. The high-level idea is that C2 fills the unfixed values of F (x) on the fly, for every
x 6= x∗, while keeping a table of its choices. More precisely, initialize the table with the
values FB′ = µ′. Then arrange the oracle gates of C1 in levels 1, 2, . . . with level 1 being
closest to the input. To perform the queries

z1 = σ1b11 · · · b1s

z2 = σ2b21 · · · b2s

...

zt = σtbt1 · · · bts

for t ≤ q, at some level i, C2 first computes L′ := L(σ1)
⋃
L(σ2)

⋃
. . .
⋃
L(σt). For every

x ∈ L′ that is in the table, it fetches the corresponding value of F . For the others, except
for x∗, it tosses a coin, and stores the value in the table. From these values it computes t
strings w′1, w

′
2, . . . , w

′
t ∈ {0, 1, ?, 1−?}s by computing H. If an evaluation of H depends on

the unknown value F (x∗) then C2 writes ? or 1−? depending on what this dependency is. (If
H syntactically depends on F (x∗) but actually the other input bits of H already determine
the value of H, C2 writes a value in {0, 1}. This obviously never happens when H =Parity.)

Recall from above that there is at most one occurrence of x∗ in each L(σi) (for else the
oracle always outputs 0 and the query isn’t made). Hence each of the strings w′i has ≤ 1
occurrence of ?. Then the strings w1, w2, . . . , wt are constructed by performing bit-by-bit
equality with the bij. More formally the j bit of wi is wij := 1⊕w′ij⊕ bij, where ⊕ is bit-wise
xor and the expression is the indicator of the equality function (here (1−?)⊕ 1 =? etc.). For
those strings wi which happen to be in {0, 1}s, the oracle query is simply answered by the
circuit by returning a uniform bit of wi0

s1s. For the other strings, C2 queries Eb.

Now we further simplify the oracle to zoom in on strings which are nearly balanced.
Earlier we had |w| = s now we will have |w| = 1. Let E ′b be the oracle that takes as input
w ∈ {?, 1−?}, substitutes b for ? to obtain wb ∈ {0, 1} and then outputs a uniform bit of
wb0

s1s.
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Lemma 6. There is a distribution on circuits C3 of size polynomial in that of C2 and constant
depth such that for every b ∈ {0, 1} we have

P[C
E′

b
3 = 1] = P[C2

Eb = 1].

Proof. Think of answering an oracle query to Eb as follows. On input w ∈ {0, 1, ?, 1−?}s,
write w = w′w′′ where w′′ ∈ {?, 1−?}. First toss a selection coin to decide if the answer
will be a uniform bit from w′ or from w′′b 0

s1s. In the former case we can answer the query
without invoking the oracle. In the latter case the oracle query is answered using E ′b.

Now we want to replace the oracles E ′0, E
′
1 with inputs N q

1/2, N
q
1/2−ε. Note E ′0 on input ?

outputs Ns/(2s+1) and on input 1−? outputs N(s+1)/(2s+1). E
′
1 does the same but with ? and

1−? swapped. We use the following lemma to map pairs of distributions.

Lemma 7. Let p, γ, ε be such that the following quantities are in [0, 1]: 1/2 − ε, p + γ, p −
γ, p+ γ + γ/2ε, p+ γ − γ/2ε. There is a distribution on functions M : {0, 1} → {0, 1} such
that M(N1/2) ≡ Np+γ and M(N1/2−ε) ≡ Np−γ, where ≡ denotes equivalence as distributions.

Proof. M(0) outputs 1 with probability α := p+ γ − γ/2ε, M(1) outputs 1 with probability
β := p+ γ + γ/2ε. Then

P[M(N1/2) = 1] = (1/2)β + (1/2)α = p+ γ,

P[M(N1/2−ε) = 1] = (1/2− ε)β + (1/2 + ε)α = p+ γ + ε(−β + α) = p− γ.

Consider the circuit C4 that on input a string x ∈ {0, 1}q simulates C3. Oracle query
at gate i on input ? is answered applying Lemma 7 to bit xi of x with p = 1/2 and γ =
−1/2(2s+ 1). If xi is sampled according to N1/2 then we get N1/2−1/2(2s+1) = Ns/(2s+1), and
if xi is sampled according to N1/2−ε then we get N1/2+1/2(2s+1) = N(s+1)/(2s+1), as desired. On
input 1−? we instead pick γ = +1/2(2s + 1). In both cases the hypotheses of the lemma
hold for ε = Ω(1/s). This shows that

P[C4(N q
1/2) = 1] = P[C

E′
0

3 = 1],

P[C4(N q
1/2−ε) = 1] = P[C

E′
1

3 = 1].

Combining this with the above lemmas and Equation 4 gives that

P[C4(N q
1/2−ε) = 1]− P[C4(N q

1/2) = 1] ≥ 1− 6δ.

By averaging we can fix C4 to a circuit t, and this concludes the proof.
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3 Discussion and open problems

This work points to several open problems. First, can we prove similar limitations when the
seed σ is not part of the output of the generator? Our proof strategy immediately encounters
a problem because it is not clear anymore how to define the distinguisher D. On input z,
which values of F should D use to answer? Here is a candidate definition of D. On input
z, consider the string z′ that is closest to z in Hamming distance and that can be output by
the generator. Pick a uniform index i and answer zi ⊕ z′i (suitably padded). Then we would
need to understand how changing one value of F affects the output of D. But here technical
difficulties arise that we have not yet been able to overcome.

Problem 8. Prove Theorem 1 when the seed σ is not part of the output (for s� m).

Second, what can we prove for fixed hard functions f? The result is actually false! More
in detail, recall that our proof is black-box in both the use of the distinguisher d and of the
hard function f . For proofs that are only black-box in d but that can be tailored to specific
functions f the result is false: [FSUV13] showed with an AC0 reduction that the repetition
generator is pseudorandom with no error loss when starting with any “resamplable function,”
such as Parity. Using this they constructed the best-known generators for classes such as
AC0 with modular gates. However it is not known how to push their techniques to Nisan-
style pseudorandom generators with much better stretch. A natural proof strategy would
require sampling the output distribution of the generator, which is impossible [LV12]. So it
may be interesting to understand if the techniques in this paper can be extended to handle a
fixed f like Parity. We remark that for this one needs a proof that further exploits that the
reduction’s queries are a low-complexity function of the input x, or a different distinguisher.
This is because a reduction on input x could make for example the query (x10x20 . . . xt0)
where each xi has the same parity as x. Then a distinguisher such as ours would allow to
compute the parity of x. And this is exactly how the proof in [FSUV13] works. Intuitively
we cannot compute such correlated xi for a random function f , and our proof formalizes the
intuition.

Because Nisan’s generator applied to the parity function is just the uniform distribution
over a vector space, we can ask:

Problem 9. Understand the pseudorandomness properties of vector spaces V ⊆ {0, 1}n
with bit-wise addition modulo 2. In particular, for how small m there exists a space of
dimension m that fools AC0 with mod 3 gates? What about a single mod 3 gate? What can
be proved using reductions that are black-box in the use of the distinguisher?

We remark that some of the earlier works did hold for fixed f . For example Artemenko
and Shaltiel proved [AS14] a query lower bound even for fixed f (in the setting of hardness
amplification with small error).

Finally, for the NW generator (where L is projection and H is parity) the circuits t in
the conclusion of Theorem 1 are AC0 with parity gates. It is not clear to us how to obtain
AC0 circuits (unless k is small). It may be useful to think about this as a stepping stone
towards handling arbitrary H.
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