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Abstract. We study a variant of the classical circuit-lower-bound prob-
lems: proving lower bounds for sampling distributions given random
bits. We prove a lower bound of 1 − 1/nΩ(1) on the statistical dis-
tance between (i) the output distribution of any small constant-depth
(a.k.a. AC0) circuit f : {0, 1}poly(n) → {0, 1}n, and (ii) the uniform
distribution over any code C ⊆ {0, 1}n that is “good”, i.e. has relative
distance and rate both Ω(1). This seems to be the first lower bound of
this kind.
We give two simple applications of this result: (1) any data structure
for storing codewords of a good code C ⊆ {0, 1}n requires redundancy
Ω(log n), if each bit of the codeword can be retrieved by a small AC0

circuit; (2) for some choice of the underlying combinatorial designs, the
output distribution of Nisan’s pseudorandom generator against AC0

circuits of depth d cannot be sampled by small AC0 circuits of depth
less than d.
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1. Introduction

The classical problem in computational complexity is to prove
“lower bounds,” that is to show that certain functions cannot be
computed or approximated in various computational models. A
few works, such as the ones by Jerrum et al. (1986), Ambainis et al.
(2003), Goldreich et al. (2010), and by Viola (2010) study instead
the complexity of generating – or sampling – certain distributions.
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Viola (2010) raises the problem of exhibiting any explicit boolean
function b : {0, 1}n → {0, 1} such that no small, unbounded fan-
in constant-depth circuit (i.e., AC0) can generate the distribution
(x, b(x)) given random bits.

To illustrate the differences between computing a function and
sampling a distribution, consider for example the Parity func-
tion Parity(x1, . . . , xn) := x1 ⊕ . . . ⊕ xn. A classical result
of H̊astad (1987) shows that Parity cannot be approximated by
unbounded fan-in constant-depth (i.e., AC0) small circuits with
better than exponentially small bias. It is possible however to
sample an (input,output) pair (x1, . . . , xn,Parity(x1, . . . , xn)) in
AC0: let y1, . . . , yn+1 be uniform bits, and take xi = yi ⊕ yi+1

and Parity(x1, . . . , xn) = y1 ⊕ yn+1.
In this work we solve the variant of the problem raised in Vi-

ola (2010) where b is a function with long output length (not
boolean). Specifically, we prove that small AC0 circuits cannot
approximate uniform distributions over good codes, where approx-
imation is measured by the statistical distance between the two
corresponding distributions D′ and D′′:

sd(D′, D′′) = max
S
|Pr[D′ ∈ S]− Pr[D′′ ∈ S]|.

A subset C ⊂ {0, 1}n is an (n, k, d) code if |C| = 2k and the ham-
ming distance between any two distinct codewords x, y ∈ C is at
least d. A code C is good if k = Ω(n) and d = Ω(n). As is well
known, there exist explicit constructions of good codes. We denote
by Um the uniform distribution over {0, 1}m and by UC the uniform
distribution over codewords of C.

Theorem 1.1 (Small AC0 circuits cannot sample codes). Let
F : {0, 1}m → {0, 1}n be a function computable by an AC0 circuit
of depth t and size M . Let C ⊂ {0, 1}n be an (n, k, d)-code. Then

sd(F (Um), UC) ≥ 1−O
( n
dk
· logt−1M

)1/3

.

In particular, if C is a good code, t = O(1), and M = poly(n) then
sd(F (Um), UC) ≥ 1− 1/nΩ(1).
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It is well-known (and we review it in Section 1.1) that small AC0

circuits cannot compute the encoding function of any good error-
correcting code; our lower bound is stronger in that it applies even
if the circuit is given as input a number of random bits that is longer
than the message length of the code. Furthermore, we achieve
statistical distance approaching one, which is crucial for a couple
of applications mentioned below. It may even be true that the
statistical distance approaches 1 exponentially fast, as opposed to
polynomially fast in our result. But our techniques seem unable to
establish this, and more generally we raise the question of proving
such a statistical bound for any explicit distribution.

We mention that after this work, and using the ideas in it,
there has been progress on proving sampling lower bounds on AC0

circuits, see Viola (2011).

We next discuss two applications of Theorem 1.1. From a tech-
nical point of view, the applications are straightforward corollaries
to the theorem.

Data structures. As pointed out in Viola (2010), proving lower
bounds approaching 1 on the statistical distance between the out-
put of a circuit and some flat distribution T on {0, 1}n implies data
structures lower bounds for storing elements t in the support of T
succinctly while retrieving each bit of t efficiently. In particular,
one obtains the following lower bound for storing codewords.

Corollary 1.2. Let C be an (n, k, d) code with kd ≥ n1+Ω(1).
Suppose we can store codewords of C using only k + r bits so that
each bit of the codeword can be computed by an AC0 circuit of
depth O(1) and size poly(n). Then r ≥ Ω(log n).

Proof. Assume for the sake of contradiction that it is possible.
Consider the AC0 circuit F : {0, 1}k+r → {0, 1}n computing the
codeword bits. For a random input to F , the output distribution
of F has statistical distance ≤ 1 − 2−r from the uniform distri-
bution over codewords. By Theorem 1.1, 2−r ≤ 1/nΩ(1) hence
r ≥ Ω(log n). �
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Note that without the restriction that the bits are retrievable
by small AC0 circuits, r = 0 is possible.

The model in Corollary 1.2 generalizes standard models such
as bit-probe and cell-probe (for background, see Miltersen (1999)):
it is easy to see that one can simulate cell-probes by small AC0

circuits, while the lower bound in Corollary 1.2 holds even if one is
allowed to look at the entire data structure, as long as the compu-
tation is done efficiently in AC0. One can think of this as placing a
lower bound on data structures where queries are answered quickly
in parallel. This seems to be the first result of this kind.

We note that Gál & Miltersen (2007) prove a bit-probe lower
bound for the same data structure problem as in Corollary 1.2.
If the data structure is allowed q queries, then they show that it
must have redundancy r ≥ Ω(kd/nq). It is conceivable that one
can obtain their result (or even improve it) by improving the bound
in Theorem 1.1 to be exponentially close to one.

The complexity of Nisan’s generator against AC0. In this
section we discuss the consequences of our results for the com-
plexity of Nisan’s generator given in Nisan (1991) against small
bounded-depth circuits (AC0 circuits). As typical of the Nisan-
Wigderson style pseudorandom generators, computing Nisan’s gen-
erator requires more resources than the circuits it is supposed to
fool: Nisan’s generator against circuits of depth d and size n (taking
≤ n input bits) computes the parity function on inputs of length `
that, loosely, is ≥ logd+1 n, and thus to be computed in size poly(n)
the generator requires depth ≥ d+ 1.1 However, it was not clear if
such a lower bound on the complexity of computing the generator
still holds if we only want to produce its output distribution, which
is all that matters for pseudorandomness purposes. In this section
we give a first answer to this question by showing that qualita-
tively the same lower bound applies for this task too, even up to

1The distinction between d + 1 and d is irrelevant for the main message of
this section. But we mention it arises because (1) up to lower order terms, the
minimum size of depth-d circuits for parity on ` bits is exp(`1/(d−1)) H̊astad
(1987), and (2) the depth increases by 1 in the proof of correctness of Nisan’s
generator.
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a constant statistical distance, for a particular implementation of
Nisan’s generator as we explain next.

Nisan’s generator G : {0, 1}k → {0, 1}n can be written as
G(x) = Mx where M is an n × k matrix and multiplication is
modulo 2. The rows of M are characteristic vectors of a design
with set-size ` and intersection size ≤ log n, which means that
each row has hamming weight exactly ` and any two rows share at
most log n ones. To fool circuits of depth d, one sets ` sufficiently
larger than logd+1 n and k = poly(`). Nisan’s proof works for any
choice of M satisfying the above constraints. We now exhibit a
particular matrix M satisfying the constraints such that generat-
ing the distribution Mx requires circuits of depth ≥ d. This is
accomplished by showing a matrix satisfying the constraints that
is also the generator matrix of a good code, and then applying
Theorem 1.1.

Theorem 1.3. Let ` = `(n) and k = k(n) be functions such that
k ≥ 4`2, n = ω(k3), and `(n) ≥ log(n) is odd.
For arbitrarily large n, there is an n× k matrix such that:

(1) M forms a design: each row of M has hamming weight `,
and any two rows share at most log n ones, and

(2) Any AC0 circuit of size s and depth c whose output distribu-
tion (over uniform input) has statistical distance less than 1/2
from Mx (over uniform x ∈ {0, 1}k) satisfies logc−1 s = Ω(`).

In particular, if one wants to compute the generator for ` ≥
logd+1 n by an AC0 circuit of size s = poly(n) then depth c ≥
d is required. Except for the arbitrariness in the choice of the
underlying designs, this theorem shows an inherent inefficiency in
Nisan’s generator. By contrast, there is an alternative generator
in Viola (2010) (based on the results in Bazzi (2009); Braverman
(2010); Razborov (2009) and in Guruswami et al. (2009)) which
fools circuits of depth d and can be computed by small depth-2
circuits.

1.1. Techniques. In this section we explain the techniques be-
hind the proof of Theorem 1.1. In short, the result is obtained
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by combining bounds on the noise-sensitivity (a.k.a. average-
sensitivity) of small AC0 circuits with isoperimetric inequalities
for the boolean cube. The techniques apply to any model with
“low” noise-sensitivity; we focus on AC0 circuits for concreteness.

We start by recalling the low noise-sensitivity of AC0 circuits
Boppana (1997); Linial et al. (1993). We use the following version,
given explicitly in (Viola 2004, Lemma 6.6). Let f : {0, 1}m →
{0, 1} be an AC0 circuit of depth t and size M . Then

Pr
x∈Um,e∈µp

[f(x) 6= f(x+ e)] ≤ O
(
p · logt−1M

)
,

where Um is the uniform distribution over {0, 1}m, ‘+’ denotes bit-
wise xor, and e ∈ µp is obtained by setting each bit independently
to 1 with probability p. We explain our ideas in stages, thinking
of M = poly(n), t = O(1), so that logt−1M = poly log n.

Why small AC0 circuits cannot compute good codes. Us-
ing the low noise-sensitivity of AC0 it is easy to see that a small AC0

circuit f cannot compute the encoding function E : {0, 1}k=Ω(n) →
{0, 1}n of a code with minimum distance d = Ω(n): If we choose
x ∈ {0, 1}k at random and let e ∈ µ1/k then f(x) and f(x+e) have
expected hamming distance only n(1/k) poly log n = poly log n,
while on the other hand (if e 6= 0) the two codewords should have
hamming distance ≥ d = Ω(n). This gives a contradiction and
proves that small AC0 circuits cannot compute good codes.

Warm-up: lower bound for generating a codeword. Imag-
ine now that the circuit is given as input not a number of bits
equal to the message length, but m� k bits, think m = n100, and
we would like to show that its output distribution cannot be uni-
form over codewords (statistical distance 0). The argument from
the previous paragraph does not apply any more because it could
happen that f(x) = f(x + e) with high probability. We reason as
follows. For any codeword y ∈ {0, 1}n let f−1(y) ⊆ {0, 1}m be the
set of input bits causing the circuit to output y. If we show that,
no matter how the sets f−1(y) are placed, with high probability
over the choice of x and e the inputs x, x+ e fall into different sets
f−1(y), then we can carry through the same argument as before.
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To argue this, we use the edge-isoperimetric inequality over the
hamming cube Harper (1964); Hart (1976). This states that for any
set S ⊆ {0, 1}m, the number of edges (unordered pairs of nodes at
distance 1) with one endpoint in S and the other outside of S is
≥ |S|(m− log2 |S|), which is tight if S is a subcube. Therefore, no
matter where x lands, assuming for simplicity that e has hamming
weight 1, we have over the choice of such an e that the probability
that x+ e lands in a different set is

≥ m− log2 2m/2k

m
=

k

m
.

Hence the expected hamming distance between f(x) and f(x+ e)
is ≥ (k/m)d. On the other hand, by low noise-sensitivity of AC0

(p = 1/m) it is only (n poly log n)/m, which yields a contradiction
as long as kd� n.

Obtaining statistical distance 1−ε. To explain the techniques
we use to improve the bound in the previous paragraph to a 1− ε
statistical distance bound, consider the model case in which the
circuit f outputs a codeword with probability ε over the input,
and we have no control on its output for the other 1− ε fraction of
inputs. To use noise-sensitivity, we need to argue that both f(x)
and f(x+ e) are valid codewords.

We note that using the edge-isoperimetric inequality in a
straight forward manner one cannot get error below ε < 1/2, since
there are sets S ⊂ {0, 1}m of size |S| ≥ 2m−1 which contain no
edges (e.g., the set of all {0, 1}m strings with parity 0). Thus, if F
maps S to codewords and {0, 1}m \ S to non-codewords, then at
least one of f(x), f(x+e) is always a non-codeword and we cannot
argue by using the minimal distance of the code.

To improve the statistical distance bound to make it approach
1, we increase the noise parameter p in the definition of e. Using a
symmetrization argument this resolves the problem of showing that
both f(x) and f(x+ e) are codewords with noticeable probability,
but leaves the problem of analyzing the boundary of sets with
respect to noise. We make use of a more sophisticated isoperimetric
inequality that applies to vectors perturbed to noise: for any set
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A ⊂ {0, 1}m, and any 0 ≤ p ≤ 1/2(
|A|
2m

)2

≤ Pr
x∈Um,e∈µp

[x ∈ A, x+ e ∈ A] ≤
(
|A|
2m

)1/(1−p)

. (?)

These inequalities and their proofs were pointed out to us by Alex
Samorodnitsky. The first inequality is the “symmetrization ar-
gument” we alluded to before, and it is proved via the Cauchy-
Schwarz inequality. The second inequality is based on the hy-
percontractivity theorem (often credited to Bonami, Beckner, and
Gross). The inequalities appear to be folklore but we could not
find them in the literature. Note that we do not claim that the
inequalities are a contribution of this paper.

The proof then proceeds as follows. For simplicity, consider
again a model case in which the input universe {0, 1}m is made of
a 1 − ε fraction of inputs over which we have no control, and the
other ε2m inputs are uniformly partitioned into 2k sets A1, . . . , A2k

each corresponding to a codeword. Following the previous outline,
we would like to argue that with noticeable probability x ∈ Ai and
x+ e ∈ Aj for i 6= j. We set the noise parameter to

p := log(4/ε)/k.

Now, by the left inequality in (?) we get that the probability that
both x and x+ e fall into

⋃
iAi is ≥ ε2. On the other hand, by the

right inequality in (?) the probability of falling into the same set
Ai is at most∑

i

(|Ai|/2m)1/(1−p) ≤
∑
i

(|Ai|/2m)1+p ≤ ε · (ε/2k)p ≤ ε2/2.

Thus with probability ≥ ε2/2 we have that x ∈ Ai and x+ e ∈ Aj
for i 6= j, in which case the hamming distance between the output
of f should be d. Thus the expected hamming distance between
f(x) and f(x+ e) is Ω(dε2).

On the other hand, the same expected hamming distance is at
most n · p ·poly log n = n(poly log n)/k by the low noise-sensitivity
of AC0 circuits. Combining these two bounds gives the result:

Ω(dε2) ≤ n(poly log n)/k.
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Organization: We prove our main lower bound in Section 2.
Theorem 1.3 is proved in Section 3. In Section 4 we discuss a
possible way to attack the problem, mentioned at the beginning of
the introduction, of exhibiting an explicit boolean function b such
that AC0 cannot generate (x, b(x)). For completeness, a proof of
the isoperimetric inequalities is in Section 5.

2. Lower bound for sampling good codes in AC0

We prove Theorem 1.1 in this section, restated next.

Theorem 1.1, restated. (Small AC0 circuits cannot sample
codes). Let F : {0, 1}m → {0, 1}n be a function computable by
an AC0 circuit of depth t and size M . Let C ⊂ {0, 1}n be an
(n, k, d)-code. Then

sd(F (Um), UC) ≥ 1−O
( n
dk
· logt−1M

)1/3

.

In particular, if C is a good code, t = O(1), and M = poly(n) then
sd(F (Um), UC) ≥ 1− 1/nΩ(1).

Although one could work with expected hamming distance as in
the introduction, we prove Theorem 1.1 using a certain extension
of the notion of noise sensitivity of a function, which we now define.

Definition 2.1 (Noise sensitivity). Let x ∈ Um be uniform over
{0, 1}m. A sample e ∈ µp from the p-biased distribution µp on
{0, 1}m is obtained by setting each bit ei of e independently to
1 with probability p. For any x ∈ {0, 1}m, we denote by x + e
the bit-wise xor of x and e. We define the noise sensitivity of
f : {0, 1}m → {0, 1}n with regards to a set S ⊆ {0, 1}n as the
probability that f maps x, x+ e to distinct elements of S:

NSp(f ;S) := Pr
x∈Um,e∈µp

[f(x) ∈ S, f(x+ e) ∈ S, f(x) 6= f(x+ e)].

The standard noise sensitivity of a function corresponds to n =
1 and S = {0, 1}.

The proof of the theorem is deduced from the following lemmas.
The first shows that if C is large enough, then for any function F
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whose output distribution is not too far from UC, we must have
that NSp(F ; C) is relatively large. In fact, we prove this for any
large enough set S.

Lemma 2.2. Let S ⊂ {0, 1}n be a set. Let F : {0, 1}m → {0, 1}n
be a function such that sd(F (Um), US) ≤ 1 − ε. Then for any
0 < p ≤ 1/2, if |S| ≥ (4/ε)1/p then

NSp(F ;S) ≥ ε2/8.

We prove Lemma 2.2 in Section 2.1. We then show that any
function in AC0 must have small noise sensitivity with regards to
a code C of good distance.

Lemma 2.3 (AC0 circuits have low noise sensitivity w.r.t. codes).
Let F : {0, 1}m → {0, 1}n be an AC0 circuit of depth t and size
M . Let C be an (n, k, d) code. Then for any 0 < p ≤ 1/2 we have

NSp(F ; C) ≤ O
(
p · n

d
logt−1M

)
.

We prove Lemma 2.3 in Section 2.2. We now deduce Theo-
rem 1.1 from Lemma 2.2 and Lemma 2.3.

Proof (Proof of Theorem 1.1). Let sd(F (Um), UC) := 1 − ε.
First, note that we can assume k ≥ 2 log(4/ε), for else the conclu-
sion of the theorem holds (using d ≤ n,M ≥ 2 and a sufficiently
large constant in the O(·)). Let

p :=
log(4/ε)

k
,

so that |C| = 2k ≥ (4/ε)1/p. Since k ≥ 2 log(4/ε), we have p ≤ 1/2.
Applying Lemma 2.2 for S = C and Lemma 2.3 we get that

ε2/8 ≤ NSp(F ; C) ≤ O
(
p · n

d
logt−1M

)
.

Hence we deduce that

ε ≤ O
( n
dk
· logt−1M

)1/3

.

�
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2.1. Noise sensitivity of distributions close to uniform over
a large set. We prove Lemma 2.2 in this subsection. We restate
it below for the convenience of the reader.

Lemma 2.2, restated. Let S ⊂ {0, 1}n be a set. Let F :
{0, 1}m → {0, 1}n be a function such that sd(F (Um), US) ≤ 1− ε.
Then for any 0 < p ≤ 1/2, if |S| ≥ (4/ε)1/p then

NSp(F ;S) ≥ ε2/8.

We will need the following lemma, already stated in the intro-
duction (?).

Lemma 2.4. Let A ⊆ {0, 1}m and α := |A|/2m. Then for any
0 ≤ p ≤ 1/2 we have

α2 ≤ Pr
x∈Um,e∈µp

[x ∈ A, x+ e ∈ A] ≤ α1/(1−p) ≤ α1+p.

The lower bound follows from a simple convexity argument. The
upper bound uses hypercontractivity. Both are given in Section 5.
For the familiar reader, we note that the upper bound is equivalent
to small set expansion for the noisy hypercube.

We conclude the following corollary. If A1, . . . , At ⊂ {0, 1}m are
disjoint subsets, each of which is small, but whose union ∪ti=1Ai is
large, then with good probability x and x + e belong to distinct
sets.

Corollary 2.5. Let A1, . . . , At ⊂ {0, 1}m be disjoint subsets,
such that |A1|, . . . , |At| ≤ α · 2m and | ∪ti=1 Ai| = ε · 2m. Then

Pr
x∈Um,e∈µp

[∃i 6= j such that x ∈ Ai, x+ e ∈ Aj] ≥ ε(ε− αp).

Proof. Let A = ∪ti=1Ai. We have

Pr[∃i 6= j such that x ∈ Ai, x+ e ∈ Aj]

= Pr[x, x+ e ∈ A]−
t∑
i=1

Pr[x, x+ e ∈ Ai].



12 Lovett & Viola

Thus, we need to lower bound the probability that both x, x+e ∈ A
and to upper bound the probability that x, x + e ∈ Ai for any
specific set Ai. By Lemma 2.4 we have

Pr[x ∈ A, x+ e ∈ A] ≥ ε2

and, for any set Ai,

Pr[x ∈ Ai, x+ e ∈ Ai] ≤
(
|Ai|
2m

)1+p

≤ |Ai|
2m
· αp.

Since
∑t

i=1 |Ai| = |A| = ε · 2m we conclude that

Pr[∃i 6= j s.t. x ∈ Ai, x+ e ∈ Aj] ≥ ε(ε− αp).

�

We also use the following claim.

Claim 2.6. Let S ⊂ {0, 1}n be a set. Let D be a distribution over
{0, 1}n such that sd(D,US) ≤ 1 − ε. Let E := {x ∈ S : D(x) ≤
2/ε
|S| }. Then

Pr
x∈D

[x ∈ E] ≥ ε/2.

Proof. We will show that Prx∈US
[x ∈ E] ≥ 1 − ε/2. Since by

assumption sd(D,US) ≤ 1− ε this will imply that Prx∈D[x ∈ E] ≥
ε/2 as claimed. Let E ′ = S \ E = {x ∈ S : D(x) ≥ 2/ε

|S| }. Note

that since
∑

x∈E′ D(x) ≤ 1 we get that |E ′| ≤ (ε/2)|S|. Thus
Prx∈US

[x ∈ E ′] ≤ ε/2. Since US is supported on S we conclude
since Prx∈US

[x ∈ E] = 1− Prx∈US
[x ∈ E ′] ≥ 1− ε/2. �

We now have all the ingredients to prove Lemma 2.2.

Proof (Proof of Lemma 2.2). Let D = F (Um) be the output

distribution of F . Let E = {x ∈ S : D(x) ≤ 2/ε
|S| }. Since

sd(D,US) ≤ 1− ε we have by Claim 2.6 that

Pr
x∈{0,1}m

[F (x) ∈ E] ≥ ε/2.
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For any y ∈ E let Ay ⊂ {0, 1}m be the preimage of y under F ,

Ay = F−1(y) = {x ∈ {0, 1}m : F (x) = y}.

Note that by definition we have that the sets {Ay} are disjoint, that

|Ay| ≤ 2/ε
|S| · 2

m for every y ∈ E, and that | ∪y∈E Ay| ≥ (ε/2) · 2m.

Let ε′ = ε/2. Hence by Corollary 2.5 we have that

Pr
x∈Um,e∈µp

[F (x) ∈ S, F (x+ e) ∈ S, F (x) 6= F (x+ e)]

≥ Pr
x∈Um,e∈µp

[∃y′ 6= y′′ ∈ E such that x ∈ Ay′ , x+ e ∈ Ay′′ ]

≥ ε′(ε′ − (ε′/|S|)p).

Thus to conclude we just need to verify that the condition |S| ≥
(4/ε)1/p implies that

(ε′/|S|)p ≤ 1/|S|p ≤ ε′/2,

and we get that

NSp(F ;S) = Pr
x∈Um,e∈µp

[F (x) ∈ S, F (x+ e) ∈ S, F (x) 6= F (x+ e)]

≥ (ε′)2/2 = ε2/8

as claimed. �

2.2. Noise sensitivity of AC0 functions with respect to
codes. We prove Lemma 2.3 in this subsection. We restate it
below for the convenience of the reader.

Lemma 2.3, restated. (AC0 circuits have low noise sensitivity
w.r.t. codes). Let F : {0, 1}m → {0, 1}n be an AC0 circuit of depth
t and size M . Let C be an (n, k, d) code. Then for any 0 < p ≤ 1/2
we have

NSp(F ; C) ≤ O
(
p · n

d
logt−1M

)
.

The proof of Lemma 2.3 uses the low noise-sensitivity of AC0

circuits Boppana (1997); Linial et al. (1993). We use the following
version, given explicitly in (Viola 2004, Lemma 6.6).
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Lemma 2.7. Let f : {0, 1}m → {0, 1} be an AC0 circuit of depth
t and size M . Then

Pr
x∈Um,e∈µp

[f(x) 6= f(x+ e)] ≤ O
(
p · logt−1M

)
.

We now prove Lemma 2.3.

Proof (Proof of Lemma 2.3). The proof will follow by analy-
sis of the average distance between F (x) and F (x + e). Let
F = (f1, . . . , fn) where each fi : {0, 1}m → {0, 1} is an AC0

function of depth t and size at most M . By Lemma 2.7 we
know that Prx,e[fi(x) 6= fi(x + e)] ≤ O

(
p · logt−1M

)
. Since

Ex,e[dist(F (x), F (x + e)] =
∑n

i=1 Prx,e[fi(x) 6= fi(x + e)] we de-
duce that

Ex,e[dist(F (x), F (x+ e))] ≤ O(n · p · logt−1M).

On the other hand, as C is a code with minimal distance d, when-
ever F (x), F (x + e) ∈ C such that F (x) 6= F (x + e) we must have
dist(F (x), F (x+ e)) ≥ d. Hence we get that

Ex,e[dist(F (x), F (x+ e))]

≥ d · Pr
x,e

[F (x) ∈ C, F (x+ e) ∈ C, F (x) 6= F (x+ e)].

Thus we deduce that

Pr
x,e

[F (x) ∈ C, F (x+e) ∈ C, F (x) 6= F (x+e)] ≤ O
(
p · n

d
logt−1M

)
.

�

3. Complexity of Nisan’s generator against AC0

We prove Theorem 1.3 in this section, which we restate for the
convenience of the reader.

Theorem 1.3, restated. Let ` = `(n) and k = k(n) be functions
such that k ≥ 4`2, n = ω(k3), and `(n) ≥ log(n) is odd.
For arbitrarily large n, there is an n× k matrix such that:
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(1) M forms a design: each row of M has hamming weight `,
and any two rows share at most log n ones, and

(2) Any AC0 circuit of size s and depth c whose output distribu-
tion (over uniform input) has statistical distance less than 1/2
from Mx (over uniform x ∈ {0, 1}k) satisfies logc−1 s = Ω(`).

A natural approach is to choose each row of M to be a random
string with ` ones. However, we find it easier to analyze a different,
block-wise construction.

Proof. To construct the matrix M , divide [k] into ` blocks of
size k/` each. In order to construct a row of M , with probabil-
ity 1/2 independently choose one bit from every block, and with
probability 1/2 shift all the blocks by 1 to the right rolling over
(so the last bit of the last block is the first bit of the row) and
again independently choose one bit from every block. This “trick”
of shifting is useful when arguing that the matrix generates a good
enough code.

Do this independently across rows. We show that each of (1)
and (2) holds with probability > 1/2, hence there exists a matrix
as claimed.

(1) The hamming weight of the rows is ` by construction. To
analyze the intersection size, consider any two rows r and r′. Fix
arbitrarily r′, and also fix arbitrarily the choice of whether or not
to shift the blocks of r by 1. Note that each block of r intersects
at most 2 blocks of r′. Hence for every block i of r, the probability
that the choice of the bit in the i-th block of r overlaps a bit of r′

is ≤ 2`/k. Consequently, the probability that r and r′ share more
than log n ones is at most(

`

log n

)
(2`/k)logn ≤ (`2/k)logn ≤ 1/n2.

Hence the probability that there exist two rows sharing more than
log n ones is at most

(
n
2

)
1/n2 < 1/2.

(2) We show that with probability > 1/2 the matrix M is the
generator matrix of a code with “good” parameters, and then apply
Theorem 1.1. M corresponds to a code with block-length n and



16 Lovett & Viola

message-length k. We now analyze the distance. Since the code
is linear, it is sufficient to bound from below the hamming weight
of any non-zero codeword, which we accomplish by bounding each
fixed codeword and then applying a union bound.

First we claim that for any fixed nonzero x ∈ {0, 1}k and row
index, the probability (over the bits in that row) that the inner
product between x and that row is 1 is at least

p := 0.5`/k.

If x = 1k, then Mx = 1n since ` is odd, with probability 1. Fix any
x 6∈ {0k, 1k}. With probability ≥ 1/2 over the choice of whether or
not to shift the blocks of the row by 1, there is a block of k/` bits of
x with both a 0 and a 1. Consider the inner product between the
row and x. Whatever the choice for the row in the other blocks,
the choice in this block guarantees that this inner product is 1 with
probability at least `/k. This establishes the claim.

Thus, Mx has expected hamming weight pn. By a standard
Chernoff bound, the probability that Mx has hamming weight less
than (p/2)n is at most

e−2(p/2)2n ≤ 2−Ω(`2/k2)n < 2−Ω(n/k2) < (1/2)2k

using that n = ω(k3). By a union bound, with probability bigger
than 1/2 it holds that Mx has hamming weight at least (p/2)n
for every non-zero x. This means that M generates a code with
hamming distance ≥ (p/2)n = 0.25`n/k. By Theorem 1.1, any
circuit of depth c and size s has an output distribution (over uni-
form input) whose statistical distance from the distribution Mx
(for uniform x ∈ {0, 1}k) is ≥ 1− ε for

ε = O

(
n

(0.25`n/k)k
logc−1 s

)1/3

= O

(
logc−1 s

`

)1/3

.

If one wants ε ≥ 1/2 then logc−1 s = Ω(`), concluding the proof. �

Not every matrix M corresponding to a design is the generator
matrix of a “good” code, e.g. let one column of M be 0. However
it may be possible that every matrix M corresponding to a design
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contains as a submatrix a “good” code. This would generalize
our results showing that the lower bound applies regardless of the
choice of the design.

4. Open problems

In this section we discuss a possible way to attack the problem
of exhibiting an explicit boolean function b such that AC0 cannot
generate the distribution (x, b(x)). Let b be the n-bit Majority
function, for n odd. As shown in Viola (2010), there are small AC0

circuits that generate (x, b(x)) with exponentially small error and
using ≥ n log n input random bits. We discuss a possible way to
show that small AC0 circuits cannot generate (x, b(x)) with error
0 (i.e., exactly) and using n random bits, which is open.

It is easy to see (see Viola (2010)) that any, say, AC0 circuit
C : {0, 1}n → {0, 1}n+1 whose output distribution equals (X, b(X))
can be transformed into an AC0 circuit C ′ : {0, 1}n → {0, 1}n that
generates the distribution A over n-bit strings whose hamming
weight is ≥ n/2. We would like to show that the latter is impos-
sible. For simplicity, let us start with the simpler setting in which
the input length to C ′ is n − 1 (as opposed to n) which is also
open (hopefully a solution to this case can be lifted to a solution
for input length n).

In other words, we are trying to rule out that there exists an
easily computable (say AC0) bijection from the hamming cube
{0, 1}n−1 into the “upper half” of the hamming cube {0, 1}n. Us-
ing, like in this paper, the low noise-sensitivity of AC0, what stands
in the way of a lower bound is a (positive) solution to the following
seemingly new and interesting open problem:

Open problem 4.1. Prove that any bijection f : {0, 1}n−1 →
{x ∈ {0, 1}n :

∑
xi ≥ n/2}, n odd, has high average distortion: the

expected hamming distance D between f(x) and f(y) for uniform
(x, y) at hamming distance 1 is D ≥ logω(1) n.

Even a weaker, ω(1) lower bound would be interesting and
would have consequences for NC0. In general, proving lower
bounds on the distortion necessary to embed hamming cubes into
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various subsets of larger hamming cubes seems an interesting ap-
proach to prove lower bounds for generating distributions, and an
approach that could leverage from the existing body of knowledge
on embeddings.

5. Proof of noise sensitivity isoperimetric
inequality

We prove in this section Lemma 2.4, restated next.

Lemma 2.4, restated. Let A ⊆ {0, 1}m and α := |A|/2m. Then
for any 0 ≤ p ≤ 1/2 we have

α2 ≤ Pr
x∈Um,e∈µp

[x ∈ A, x+ e ∈ A] ≤ α1/(1−p) ≤ α1+p.

The third inequality is obvious. We now prove the first.
We can view e ∈ µp as the bit-wise xor of e′, e′′ ∈ µp′

if p = 2p′(1 − p′). Fix such a p′. Thus, the joint distri-
bution (x, x + e)x∈Un,e∈µp is equivalent to the joint distribution
(x + e′, x + e′′)x∈Un,e′,e′′∈µp′

. Let 1A : {0, 1}m → {0, 1} denote
the indicator function for A. We thus have

Pr
x∈Um,e∈µp

[x ∈ A, x+ e ∈ A]

= Pr
x∈Um,e′,e′′∈µp′

[x+ e′ ∈ A, x+ e′′ ∈ A]

= Ex∈Um,e′,e′′∈µp′
1A(x+ e′)1A(x+ e′′)

= Ex∈Um

(
Ee′∈µp′

1A(x+ e′)
)2

≥
(
Ex∈Um,e′∈µp′

1A(x+ e′)
)2

= (Ex∈Um1A(x))2

=

(
|A|
2m

)2

,

where the inequality follows from the Cauchy-Schwarz inequality.
We now prove the second inequality.
Let f : {0, 1}m → R be a function. The p-noise sensitivity of f

is given by

NSp(f) := Ex∈Um,e∈µp [f(x)f(x+ e)].
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We are interested in the p-noise sensitivity of the indicator function
of A, 1A(x) := 1x∈A.

One may define a noise operator as follows.

Definition 5.1. Let f : {0, 1}m → R and 0 ≤ p ≤ 1/2. Then
T1−2pf(x) = Ee∈µpf(x+ e).

We define an inner product between two functions as

〈f, g〉 = Ex∈Umf(x)g(x).

Also, for 1 ≤ q ≤ ∞, the Lq norm of f is

‖f‖q = (Ex∈Um [|f(x)|q])1/q.

Noise sensitivity can be described as the L2 norm of the noise
operator (this is proved below in Fact 5.3). Thus, to study the
noise sensitivity of f is equivalent to studying the L2 norm of Tρf .
The following hypercontractivity theorem relates the L2 norm of
Tρf to norms of f , cf. (O’Donnell 2007, Lecture 16).

Theorem 5.2 (Hypercontractivity). Let f : {0, 1}m → R. Then
for any 0 ≤ ρ ≤ 1 we have ‖Tρf‖2 ≤ ‖f‖1+ρ2 .

We can now immediately derive a somewhat weaker bound than
that guaranteed by Lemma 2.4 by applying the Cauchy-Schwarz
inequality 〈f, g〉 ≤ ‖f‖2 · ‖g‖2.

NSp(1A) = 〈1A, T1−2p1A〉 (follows from the definition)

≤ ‖1A‖2 · ‖T1−2p1A‖2 (Cauchy-Schwarz)

≤ ‖1A‖2‖1A‖1+(1−2p)2 (hypercontractivity)

=

(
|A|
2n

) 1
2

+ 1
1+(1−2p)2

(1A is a {0, 1} function)

=

(
|A|
2n

) 1−p+p2

1−2p+2p2

.

This bound is sufficient for our applications.
To derive the better bound in Lemma 2.4 we use the following.
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Fact 5.3. Let f : {0, 1}m → R. Then NSp(f) = ‖T√1−2pf‖2
2.

Proof. We have:

‖T√1−2pf‖2
2 = Ex

(
T√1−2pf(x)

)2
= Ex

(
Ee∈µ 1−

√
1−2p
2

f(x+ e)

)2

= ExEe,e′∈µ 1−
√

1−2p
2

f(x+ e)f(x+ e′)

= ExEe,e′∈µ 1−
√

1−2p
2

f(x)f(x+ e+ e′)

= ExEe∈µpf(x)f(x+ e) = NSp(f).

�

We can now prove the second inequality in Lemma 2.4. We
have

NSp(1A) = ‖T√1−2p1A‖2
2 ≤ ‖1A‖2

2(1−p) (hypercontractivity)

=
(
Ex∈Um [|1A(x)|2(1−p)]

)1/(1−p)

= (Ex∈Um [1A(x)])1/(1−p) (1A is a {0, 1} function)

=

(
|A|
2m

)1/(1−p)

.

This concludes the proof of Lemma 2.4.
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