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Abstract

We exhibit an explicit function f : {0,1}n → {0,1} that can be computed by a nonde-
terministic number-on-forehead protocol communicating O(logn) bits, but that requires nΩ(1)

bits of communication for randomized number-on-forehead protocols with k = δ · logn play-
ers, for any fixed δ < 1. Recent breakthrough results for the Set-Disjointness function (Lee
Shraibman, CCC ’08; Chattopadhyay Ada, ECCC ’08) based on the work of (Sherstov, STOC
’08) imply such a separation but only when the number of players is k < log logn.

We also show that for any k = A log logn the above function f is computable by a small
circuit whose depth is constant whenever A is a (possibly large) constant. Recent results again
give such functions but only when the number of players is k < log logn.
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1 Introduction
Number-on-forehead communication protocols are a fascinating model of computation where k
collaborating players are trying to evaluate a function f : ({0,1}n)k→ {0,1}. The players are all-
powerful, but the input to f is partitioned into k pieces of n bits each, x1, . . . ,xk ∈ {0,1}n, and xi is
placed, metaphorically, on the forehead of player i. Thus, each player only sees (k−1)n of the k ·n
input bits. In order to compute f , the players communicate by writing bits on a shared blackboard,
and the complexity of the protocol is the number of bits that are communicated (i.e., written on the
board). This model was introduced in [CFL83] and has found applications in a surprising variety
of areas, including circuit complexity [HG91, NW93], pseudorandomness [BNS92], and proof
complexity [BPS07].

In this model, a protocol is said to be efficient if it has complexity logO(1) n. Correspond-
ingly, Pcc

k , RPcc
k , BPPcc

k and NPcc
k are the number-on-forehead communication complexity analogs

of the standard complexity classes [BFS86], see also [KN97]. For example, RPcc
k is the class of

functions having efficient one-sided-error randomized communication protocols. One of the most
fundamental questions in number-on-forehead communication complexity, and the main question
addressed in this paper, is to separate these classes. In [BDPW07], Beame et al. give an exponen-
tial separation between randomized and deterministic protocols for k≤ nO(1) players (in particular,
RPcc

k 6= Pcc
k for k ≤ nO(1)). The breakthrough work by Sherstov [She09, She08a] sparked a flurry

of exciting results in communication complexity [Cha07, LS08, CA08] which gave an exponential
separation between nondeterministic and randomized protocols for k < log logn players (in partic-
ular, NPcc

k 6⊂ BPPcc
k for k < log logn). Our main result is to improve the latter separation to larger

values of k.

Theorem 1.1 (Main Theorem; NPcc
k 6⊂ BPPcc

k for k = δ logn players). For every fixed δ < 1,
sufficiently large n and k = δ · logn, there is an explicit function f : ({0,1}n)k→{0,1} such that:
f can be computed by k-player nondeterministic protocols communicating O(logn) bits, but f
cannot be computed by k-player randomized protocols communicating no(1) bits.

We note that the number of players k = δ · logn in the above Theorem 1.1 is state-of-the-art: it
is a major open problem in number-on-forehead communication complexity to find an explicit n-
bit function that cannot be computed by k = log2 n players communicating O(logn) bits. We also
note that Theorem 1.1 in particular implies an exponential separation between nondeterministic
and deterministic protocols (hence, NPcc

k 6⊂ Pcc
k for k = δ logn players). Similar separations follow

from [BDPW07], but only for non-explicit functions.
We also address the challenge of exhibiting functions computable by small (unbounded fan-in)

constant-depth circuits that require high communication for k-player protocols, which is relevant
to separating various circuit classes (see, e.g., [HG91, RW93, BHN08b]). Previous results [Cha07]
give such functions for k < log logn. We offer a slight improvement and achieve k = A log logn for
any (possibly large) constant A, where the depth of the circuit computing the function depends on
A.

Theorem 1.2 (Constant-depth circuits require high communication for k = A log logn players). For
every constant A > 1 there is a constant B such that for sufficiently large n and k := A log logn there
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is a function f : ({0,1}n)k→{0,1} which satisfies the following: f can be computed by circuits of
size nB and depth B, but f cannot be computed by k-player randomized protocols communicating
no(1) bits.

1.1 Techniques
In this section we discuss the technical challenges presented by our theorems and how we have
overcome them. Our work builds on a recent line of research in communication complexity that
was sparked by the work of Sherstov [She09, She08a] and is surveyed in [She08b].

For concreteness, in our discussion below we focus on the problem of separating nondetermin-
istic from deterministic (as opposed to randomized) protocols, a goal which involves all the main
difficulties.

Until recently, it was far from clear how to obtain communication lower bounds in the number-
on-forehead model for any explicit function f with efficient nondeterministic protocols. The diffi-
culty can be described as follows. The standard method for obtaining number-on-forehead lower
bounds is what can be called the “correlation method” [BNS92, CT93, Raz00, VW08].1 This
method goes by showing that f has exponentially small (2−nΩ(1)

) correlation with efficient (de-
terministic) protocols, and this immediately implies that f does not have efficient protocols (the
correlation is w.r.t. some probability distribution which in general is not uniform). The drawback of
this method is that, although for the conclusion that f does not have efficient protocols it is clearly
enough to show that the correlation of f with such protocols is strictly less than one, the method
actually proves the stronger exponentially small correlation bound. This is problematic in our set-
ting because it is not hard to see that every function that has an efficient nondeterministic protocol
also has noticeable (≥ 2− logO(1) n) correlation with an efficient (deterministic) protocol, and thus
this method does not seem useful for separating nondeterministic from deterministic protocols.

In recent work, these difficulties were overcome to obtain a lower bound for a function with an
efficient nondeterministic protocol: the Set-Disjointness function [LS08, CA08]. The starting point
is the work by Sherstov [She09, She08a] who applies the correlation method in a more general way
for the 2-player model in order to overcome the above difficulties. This generalized correlation
method is then adapted to handle more players (k� 2) in [LS08, CA08]. The high-level idea of
the method is as follows. Suppose that we want to prove that some specific function f does not have
efficient protocols. The idea is to come up with another function f ′ and a distribution λ such that:
(1) f and f ′ have constant correlation, say f and f ′ disagree on at most 1/10 mass of the inputs
with respect to λ , and (2) f ′ has exponentially small (2−nΩ(1)

) correlation with efficient protocols
with respect to λ . The combination of (1) and (2) easily implies that f also has correlation at most
1/10+2−nΩ(1)

< 1 with efficient protocols, which gives the desired lower bound for f . This method
is useful because for f ′ we can use the correlation method, and on the other hand the correlation
of f with efficient protocols is not shown to be exponentially small, only bounded away from 1 by
a constant. Thus it is conceivable that f has efficient nondeterministic protocols, and in fact this is
the case in [LS08, CA08] and in this work.

1This method is sometimes called the “discrepancy method.” We believe that lower bound proofs are easier to
understand when presented in terms of correlation rather than discrepancy, cf. [VW08].
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Although a framework similar to the above is already proposed in previous papers, e.g. [Raz03],
it is the work by Sherstov [She09, She08a] that finds a way to successfully apply it to functions
f with efficient nondeterministic protocols. For this, [She09, She08a] introduce two main ideas,
generalized to apply to the number-on-forehead setting in [LS08, CA08]. (We present them spe-
cialized for our needs, see [She08b] for a broader view.) The first is to consider a special class
of functions f := Lift(OR,φ) with efficient nondeterministic protocols. These are obtained by
combining the “base” function OR on m bits with a “selection” function φ as described next. It is
convenient to think of f = Lift(OR,φ) as a function on (k+1)n bits distributed among k+1 play-
ers as follows: Player 0 receives an n-bit vector x, while Player i, for 1≤ i≤ k, gets an n-bit vector
yi. The selection function φ takes as input y1, . . . ,yk and outputs an m-bit subset of {1, . . . ,n}. We
view φ as selecting m bits of Player 0’s input x, denoted x|φ(y1, . . . ,yk). Lift(OR,φ) outputs the
value of OR on those m bits of x:

Lift(OR,φ)(x,y1, . . . ,yk) := OR(x|φ(y1, . . . ,yk)).

The second idea is to apply to such a function f := Lift(OR,φ) a certain orthogonality prin-
ciple to produce a function f ′ that satisfies the points (1) and (2) above. The structure of f =
Lift(OR,φ)(x,y1, . . . ,yk) is crucially exploited to argue that f ′ satisfies (2), and it is here that pre-
vious works require k < log logn [Cha07, LS08, CA08].

So far we have rephrased previous arguments. We now discuss the main new ideas in this
paper.

Ideas for the proof of Theorem 1.1. To prove Theorem 1.1 we start by noting that regardless of
what function φ is chosen, Lift(OR,φ) has an efficient nondeterministic protocol: Player 0 simply
guesses an index j that is one of the indices chosen by φ (she can do so because she knows the
input to φ ) and then any of the other players can easily verify whether or not x j is 1 in that position.
In previous work [LS08, CA08], φ is the bitwise AND function, and this makes Lift(OR,φ) the
Set-Disjointness function. By contrast, in this work we choose the function φ uniformly at random
and we argue that, for almost all φ , Lift(OR,φ) does not have efficient randomized protocols,
whenever k is at most δ logn for a fixed δ < 1.

The above argument gives a non-explicit separation, due to the random choice of φ . To make
it explicit, we derandomize the choice of φ . Specifically, we note that the above argument goes
through as long as φ is 2k-wise independent, i.e. as long as φ comes from a distribution such
that for every 2k fixed inputs ȳ1, . . . , ȳ2k ∈ ({0,1}n)k the values φ(ȳ1), . . . ,φ(ȳ2k

) are uniform and
independent (over the choice of φ ). Known constructions of such distributions [ABI86, CG89]
only require about n ·2k = nO(1) random bits, which can be given as part of the input. Two things
should perhaps be stressed. The first is that giving a description of φ as part of the input does not
affect the lower bound in the previous paragraph which turns out to hold even against protocols that
depend on φ . The second is that, actually, using 2k-wise independence seems to add the constraint
k < 1/2(logn); to achieve k = δ logn for every δ < 1 we use a distribution on φ that is almost
2k-wise independent [NN93].
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Ideas for the proof of Theorem 1.2. To prove Theorem 1.2 we show how to implement the
function given by Theorem 1.1 by small constant-depth circuits when k is A log logn for a fixed,
possibly large, constant A. In light of the above discussion, this only requires computing a 2k-
wise independent function by small constant-depth circuits, a problem which is studied in [GV04,
HV06]. Specifically, dividing up φ in blocks it turns out that it is enough to compute 2k-wise
independent functions g : {0,1}t → {0,1}t where t is also about 2k. When k = A log logn, g is a
(2k = logA n)-wise independent function on logA n bits, and [HV06] shows how to compute it with
circuits of size nB and depth B where B depends on A only – and this dependence of B on A is tight
even for almost 2-wise independence. This gives Theorem 1.2. Finally, we note that [HV06] gives
explicit (a.k.a. uniform) circuits, and that we are not aware of an alternative to [HV06] even for
non-explicit circuits.

Subsequent Work. Subsequent to our work, [BHN08a] extend our main results (Theorem 1.1
and Theorem 1.2) by proving the separation in Theorem 1.1 under the stronger requirement that the
function f is computable by explicit (unbounded fan-in) circuits of depth 4 (albeit they can only
handle (1−Ω(1)) logn players, as opposed to (1−δ ) logn for arbitrarily small δ in our results).

Organization. The organization of the paper is as follows. In Section 2 we give necessary defini-
tions and background. We present the proof of our main result Theorem 1.1 in two stages. First, in
Section 3 we present a non-explicit separation obtained by selecting φ at random. Then, in Section
4 we derandomize the choice of φ in order to give an explicit separation and prove Theorem 1.1.
Finally, in Section 5 we prove our results about constant-depth circuits, Theorem 1.2.

2 Preliminaries
Correlation. Let f ,g : X → R be two functions, and let µ be a distribution on X . We define
the correlation between f and g under µ to be Corµ( f ,g) := Ex∼µ [ f (x)g(x)]. Let G be a class of
functions g : X → R (e.g. efficient communication protocols). We define the correlation between
f and G under µ to be Corµ( f ,G) := maxg∈G Corµ( f ,g). Note that, whenever G is closed under
complements, which will always be the case in this paper, this correlation is non-negative. When-
ever we omit to mention a specific distribution when computing the correlation, an expected value
or a probability, it is to be assumed that we are referring to the uniform distribution, which we
denote by U.

Communication Complexity. In the number-on-forehead multiparty communication complex-
ity model [CFL83], k players are trying to collaborate to compute a function f : X1× . . .×Xk →
{−1,1}. For each i, player i knows the values of all of the inputs (x1, . . . ,xk) ∈ X1× . . .×Xk ex-
cept for xi (which conceptually is thought of as being placed on Player i’s forehead). The players
exchange bits according to an agreed-upon protocol, by writing them on a public blackboard. A
protocol specifies what each player writes as a function of the blackboard content and the inputs
seen by that player, and whether the protocol is over, in which case the last bit written is taken as
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the output of the protocol. The cost of a protocol is the maximum number of bits written on the
blackboard.

In a deterministic protocol, the blackboard is initially empty. A randomized protocol is a dis-
tribution on deterministic protocols such that for every input a protocol selected at random from
the distribution errs with probability at most 1/3. In a nondeterministic protocol, an initial guess
string is written on the blackboard at the beginning of the protocol (and counted towards commu-
nication) and the players are trying to verify that the output of the function is −1 (representing
true) in the usual sense: There exists a guess string where the output of the protocol is −1 if and
only if the output of the function is −1. The communication complexity of a function f under one
of the above types of protocols is the minimum cost of a protocol of that type computing f . In line
with [BFS86], a k-player protocol computing f : ({0,1}n)k→{−1,1} is considered to be efficient
if its cost is at most poly-logarithmic, logO(1) n. Equipped with the notion of efficiency, one has the
number-on-forehead communication complexity classes BPPcc

k and NPcc
k that are analogues of the

corresponding complexity classes.

Definition 2.1. We denote by Πk,c the class of all deterministic k-player number-on-forehead com-
munication protocols of cost at most c.

The following immediate fact allows us to derive lower bounds on the randomized communi-
cation complexity of f from upper bounds on the correlation between f and the class Πk,c [KN97,
Theorem 3.20].

Fact 2.2. If there exists a distribution µ such that Corµ( f ,Πk,c) ≤ 1/3 then every randomized
protocol (with error 1/3) for f must communicate at least c bits.

In order to obtain upper bounds on the correlation between f and the class Πk,c, we use the
following result, which is also standard. Historically, it was first proved by Babai, Nisan and
Szegedy [BNS92] using the notion of discrepancy of a function. It has since been rewritten in
many ways [CT93, Raz00, FG05, VW08]. The formulation we use appears in [VW08], except that
in [VW08] one also takes two copies of x; it is easy to modify the proof in [VW08] to obtain the
following lemma.

Lemma 2.3 (The standard BNS argument). Let f : X×Y1×·· ·×Yk→ R. Then,

CorU( f ,Πk+1,c)2k
≤ 2c·2k

·E (y0
1,...,y

0
k)∈Y1×···×Yk

(y1
1,...,y

1
k)∈Y1×···×Yk

∣∣∣∣∣∣Ex∈X

 ∏
u∈{0,1}k

f (x,yu1
1 , . . . ,yuk

k )

∣∣∣∣∣∣
 .

We later write y for (y1, . . . ,yk).

Degree. The ε-approximate degree of f is the smallest d for which there exists a multivariate
real-valued polynomial g of degree d such that maxx | f (x)−g(x)| ≤ ε . We will use the following
result of Nisan and Szegedy; see [Pat92] for a result that applies to more functions.

Lemma 2.4 ([NS94]). There exists a universal constant γ > 0 such that the (5/6)-approximate
degree of the OR function on m bits is at least γ ·

√
m.
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The following key result shows that if a function f has ε-approximate degree d then there is
another function g and a distribution µ such that, under µ , g is orthogonal to degree-d polynomials
and it has correlation ε with f . Sherstov [She08a] gives references in the mathematics literature
and points out a short proof by duality.

Lemma 2.5 (Orthogonality Lemma). If f : {0,1}m → {−1,1} is a function with ε-approximate
degree d, there exist a function g : {0,1}m→{−1,1} and a distribution µ on {0,1}m such that:

(i) Corµ(g, f )≥ ε; and

(ii) for every T ⊆ [m] with |T | ≤ d and every function h : {0,1}|T |→R, Ex∼µ [g(x) ·h(x|T )] = 0,

where x|T denotes the m bits of x indexed by T .

3 Non-explicit Separation
In this section we prove a non-explicit separation between nondeterministic and randomized pro-
tocols. As mentioned in the introduction, we restrict our attention to analyzing the communication
complexity of certain functions constructed from a base function f : {0,1}m → {−1,1}, and a
selection function φ . The base function we will work with is the OR function, which takes on the
value -1 if and only if any of its input bits is 1.

We now give the definition of the function we prove the lower bound for, and then the statement
of the lower bound.

Definition 3.1 (Lift). Let φ be a function that takes as input k strings y1, . . . ,yk and outputs an
m-element subset of [n]. Let f be a function on m bits. We construct a lifted function Lift( f ,φ) as
follows. On input (x ∈ {0,1}n,y1, . . . ,yk), Lift( f ,φ) evaluates φ on the latter k inputs to select a
set of m bits in x and returns the value of f on those m bits. Formally,

Lift( f ,φ)(x,y1, . . . ,yk) := f (x|φ(y1, . . . ,yk)),

where for a set S = {i1, . . . , im} ⊆ [n], x|S denotes the substring xi1 · · ·xim of x indexed by the ele-
ments in S, where i1 < i2 < .. . < im.

The inputs to Lift( f ,φ) are partitioned among k + 1 players as follows: Player 0 is given x
and, for all 1≤ i≤ k, Player i is given yi.

The following is the main theorem proved in this section.

Theorem 3.2. For every δ < 1 there are constants ε,α > 0 such that for sufficiently large n, for
k = δ · logn, and for m = nε , the following holds. There is a distribution λ such that if we choose
a random selection function φ : ({0,1}n)k→

([n]
m

)
, we have:

Eφ [Corλ (Lift(OR,φ),Πk+1,nα

)]≤ 1/3.

6



3.1 Overview of the Proof
We obtain our lower bound on the randomized communication complexity of Lift(OR,φ) using an
analysis that follows [CA08]. In their paper, Chattopadhyay and Ada analyze the Set-Disjointness
function, and for that reason, their selection function φ must be the AND function. In our case,
we allow φ to be a random function. While our results no longer apply to Set-Disjointness, we
still obtain a separation between randomized and nondeterministic communication (BPPcc

k and
NPcc

k ) because, no matter what selection function is used, Lift(OR,φ) always has an efficient
nondeterministic protocol.

At a more technical level, the results of [CA08] require k < log logn because of the relationship
between n (the size of player 0’s input) and m (the number of bits the base function OR gets applied
to.) For their analysis to go through, they need n > 22k ·mO(1). In our case, n = 2k ·mO(1) is
sufficient, and this allows our results to be non-trivial for k ≤ δ logn for any δ < 1.

As mentioned earlier, we will start with the base function OR on m input bits, m = nε � n. We
lift the base function OR in order to obtain the lifted function Lift(OR,φ). Recall that Lift(OR,φ)
is a function on (k+1)n inputs with small nondeterministic complexity, and is obtained by applying
the base function (in this case the OR function) to the selected bits of Player 0’s input, x. We want
to prove that for a random φ , Lift(OR,φ) has high randomized communication complexity.

We start with a result of Nisan and Szegedy [NS94] who prove a lower bound on the approx-
imate degree of the OR function. By Lemma 2.5 this implies that there exists a function g (also
on m bits) and a distribution µ such that the functions g and OR are highly correlated over µ and,
furthermore, g is orthogonal to low-degree polynomials. Now we lift the function g in order to
get the function Lift(g,φ), and we define λ to be a distribution over all (k + 1)n-bit inputs that
chooses the yi’s uniformly at random and x also uniformly at random except on the bits indexed
by φ(y1, . . . ,yk) which are selected according to µ . Since g and OR are highly correlated with
respect to µ , it is not hard to see that the lifted functions Lift(OR,φ) and Lift(g,φ) are also highly
correlated with respect to λ . Therefore, to prove that Lift(OR,φ) has low correlation with c-bit
protocols it suffices to prove that Lift(g,φ) has. To prove this, we use the correlation method. This
involves bounding the average value of Lift(g,φ) on certain k-dimensional cubes (cf. Lemma 2.3).
For this, we need to analyze the distribution of the 2k sets that arise from evaluating φ on the 2k

points of the cube. Specifically, we are interested in how much these 2k sets are “spread out,” as
measured by the size of their union. If the sets are not spread out, we use in Lemma 3.4 the fact that
g is orthogonal to low-degree polynomials to bound the average value of Lift(g,φ) on the cubes.
This step is similar to [She09, Cha07, LS08, CA08]. The main novelty in our analysis is that since
we choose φ at random, we can prove good upper bounds (Lemma 3.6) on the probability that the
sets are spread out.

3.2 Proof of Theorem 3.2
Let m := nε for a small ε > 0 to be determined later. Combining Lemma 2.4 and 2.5, we see that
there exists a function g and a distribution µ such that:

(i) Corµ(g,OR)≥ 5/6; and
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(ii) for every T ⊆ [m], |T | ≤ γ
√

m and every function h : {0,1}|T |→ R, Ex∼µ [g(x)h(x|T )] = 0.

Define the distribution λ on {0,1}(k+1)n as follows. For x,y1, . . . ,yk ∈ {0,1}n, let

λ (x,y1, . . . ,yk) :=
µ(x|φ(y1, . . . ,yk))

2(k+1)n−m
,

in words we select y1, . . . ,yk uniformly at random and then we select the bits of x indexed by
φ(y1, . . . ,yk) according to µ and the others uniformly.

It can be easily verified that Corλ (Lift(g,φ),Lift(OR,φ))= Corµ(g,OR)≥ 5/6. Consequently,
for every φ and c,

Corλ (Lift(OR,φ),Πc)≤ Corλ (Lift(g,φ),Πc)+2 ·Pr
λ

[Lift(OR,φ) 6= Lift(g,φ)]

≤ Corλ (Lift(g,φ),Πc)+1/6, (1)

since Prλ [Lift(OR,φ) 6= Lift(g,φ)] = (1−Corλ (Lift(g,φ),Lift(OR,φ)))/2 ≤ 1/12. Therefore,
we only have to upper bound Corλ (Lift(g,φ),Πc), and this is addressed next. We have, by the
definition of λ and then Lemma 2.3, for every φ ,

Corλ (Lift(g,φ),Πc)2k
= 2m·2k

CorU(µ(x|φ(y1, . . . ,yk))g(x|φ(y1, . . . ,yk),Πc)2k

≤ 2(c+m)2k
Ey0,y1

∣∣∣∣∣∣Ex

 ∏
u∈{0,1}k

µ(x|φ(yu1
1 , . . . ,yuk

k ))g(x|φ(yu1
1 , . . . ,yuk

k ))

∣∣∣∣∣∣
 , (2)

where for a ∈ {0,1}, ya stands for (ya
1, . . . ,y

a
k). Our analysis makes extensive use of the following

notation.

Definition 3.3. Let S = (S1, . . . ,Sz) be a multiset of m-element subsets of [n]. Let the range of S,
denoted by

⋃
S, be the set of indices from [n] that appear in at least one set in S. Let the boundary

of S, denoted by ∂S, be the set of indices from [n] that appear in exactly one set in the collection S.
For u ∈ {0,1}k, define Su = Su(y0,y1,φ) = φ(yu1

1 , . . . ,yuk
k ). Let S = S(y0,y1,φ) be the multiset

(Su : u ∈ {0,1}k). We define the number of conflicts in S to be q(S) := m ·2k−|
⋃

S|.

Intuitively, |
⋃

S| measures the range of S, while m2k is the maximum possible value for this
range. We use the following three lemmas to complete our proof. The first Lemma 3.4 deals with
the case where the multiset S has few conflicts. In this case, we argue that one of the sets Su ∈ S

has a very small intersection with the rest of the other sets, which allows us to apply Property (ii)
of g and µ to obtain the stated bound. A variant of Lemma 3.4 appears in [CA08].

Lemma 3.4. For every y0,y1 and φ , if q(S(y0,y1,φ)) < γ ·
√

m ·2k/2, then

Ex

 ∏
u∈{0,1}k

µ(x|Su(y0,y1,φ))g(x|Su(y0,y1,φ))

= 0.
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Lemma 3.5 gives a bound in terms of the number of conflicts in S which only uses the fact
that µ is a probability distribution. A slightly weaker version of this lemma appeared originally
in [CA08]. Independently of our work, Chattopadhyay and Ada have subsequently also derived
the stronger statement we give below.

Lemma 3.5. For every y0,y1 and φ :

Ex

 ∏
u∈{0,1}k

µ(x|Su(y0,y1,φ))

≤ 2q(S(y0,y1,φ))

2m·2k .

Lemma 3.6 is the key place where we exploit the fact that φ is chosen at random to obtain an
upper bound on the probability of having a given number of conflicts in S.

Lemma 3.6. For every q > 0 and uniformly chosen y0,y1,φ :

Pr
y0,y1,φ

[q(S(y0,y1,φ)) = q]≤
(

m3 ·22k

q ·n

)q

.
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Before proving these Lemmas, we complete the proof of our main theorem. We have the
following derivation. For a uniformly chosen φ :

Eφ [Corλ (Lift(g,φ),Πc)]2
k
≤ Eφ

[
Corλ (Lift(g,φ),Πc)2k

]
≤ 2(c+m)2k

·Ey0,y1,φ

∣∣∣∣∣∣Ex

 ∏
u∈{0,1}k

µ(x|Su)g(x|Su)

∣∣∣∣∣∣
 (by Equation (2))

= 2(c+m)2k
·∑

q≥0
Pr

y0,y1,φ
[q(S) = q] ·Ey0,y1,φ

∣∣∣∣∣∣Ex

 ∏
u∈{0,1}k

µ(x|Su)g(x|Su)

∣∣∣∣∣∣ ∣∣q(S) = q


≤ 2(c+m)2k

· ∑
q≥γ
√

m2k/2

Pr
y0,y1,φ

[q(S) = q] ·Ey0,y1,φ

∣∣∣∣∣∣Ex

 ∏
u∈{0,1}k

µ(x|Su)g(x|Su)

∣∣∣∣∣∣ ∣∣q(S) = q


(by Lemma 3.4)

≤ 2(c+m)2k
· ∑

q≥γ
√

m2k/2

Pr
y0,y1,φ

[q(S) = q] ·Ey0,y1,φ

∣∣∣∣∣∣Ex

 ∏
u∈{0,1}k

µ(x|Su)

∣∣∣∣∣∣ ∣∣q(S) = q


(because |g|= 1)

≤ 2(c+m)2k
· ∑

q≥γ
√

m2k/2

Pr
y0,y1,φ

[q(S) = q] · 2q

2m2k = 2c·2k
· ∑

q≥γ
√

m2k/2

Pr
y0,y1,φ

[q(S) = q] ·2q

(by Lemma 3.5)

≤ 2c·2k
· ∑

q≥γ
√

m2k/2

(
m3 ·22k

q ·n

)q

·2q = 2c·2k
· ∑

q≥γ
√

m2k/2

(
2 ·m3 ·22k

q ·n

)q

(by Lemma 3.6)

≤ 2c·2k
· ∑

q≥γ
√

m2k/2

(
1
2

)q

≤ 2c·2k+1−γ
√

m2k/2 ≤ 22k(c−nΩ(1))

(using q≥ γ
√

m2k/2, k = δ logn where δ < 1, and taking m = nε for a sufficiently small ε)

Therefore, when c is a sufficiently small power of n we have that Eφ [Corλ (Lift(g,φ),Πc)]≤ 1/6.
Combining this with Equation (1) we obtain:

Eφ [Corλ (Lift(OR,φ),Πc)]≤ 1/6+1/6 = 1/3.

It is left to prove the lemmas. For this, the reader may want to recall Definition 3.3.

Proof of Lemma 3.4. We write Su for Su(y0,y1,φ) and S for S(y0,y1,φ). Let r(S) = |
⋃

S| be the
size of the range of S, and let b(S) = |∂S| be the size of the boundary of S. Note that r(S)−b(S)≤
q(S) because every j ∈ ∪S \ ∂S occurs in at least 2 sets in S, thus contributes at least 1 to q(S).
Furthermore, r(S)+q(S) = m2k. Then, ∑u∈{0,1}k |Su∩∂S|= b(S)≥ r(S)−q(S) = m2k−2q(S) >

10



(m− γ
√

m)2k. By the pigeonhole principle, there exists v such that |Sv∩∂S|> m− γ
√

m. We can
write

Ex

 ∏
u∈{0,1}k

µ(x|Su)g(x|Su)

= Ex|Sv

µ(x|Sv)g(x|Sv)Ex|[n]\Sv

 ∏
u∈{0,1}k,u6=v

µ(x|Su)g(x|Su)

 .

Let T = Sv \∂S. So |T | ≤ γ
√

m. Let h = Ex|[n]\Sv

[
∏u6=v µ(x|Su)g(x|Su)

]
. Note that h is a function

that depends only on x|T . Then, by the property (ii) of g and µ , Ex|Sv[µ(x|Sv)g(x|Sv)h(x|T )] =
0.

Proof of Lemma 3.5. We write Su for Su(y0,y1,φ) and S for S(y0,y1,φ). We see that

Ex

 ∏
u∈{0,1}k

µ(x|Su)

= Ex|
⋃

S

 ∏
u∈{0,1}k

µ(x|Su)

 ,

as each µ(x|Su) only depends on the bits of x in
⋃

S. For 0 ≤ j ≤ 2k − 1, let S j be the sub-
multiset of S consisting of the sets up to and including S j, S j = (S0, . . . ,S j). We have S = S2k−1

and define S−1 = /0. For 0 ≤ j ≤ 2k− 1, let G j = Ex|
⋃

S j [∏
j
i=0 µ(x|Si)] and let H j(x|S j \ ∂S j) :=

Ex|S j∩∂S j [µ(x|S j)], which note is a quantity that depends on the bits of x in S j \∂S j, i.e. on x|(S j \
∂S j). Letting G−1 := 1, observe that, for 0≤ j ≤ 2k−1,

G j = Ex|
⋃

S j−1

[(
j−1

∏
i=0

µ(x|Si)

)
H j(x|S j \∂S j)

]
≤ G j−1 · max

x|(S j\∂S j)
(H j).

To obtain a bound on max(H j), consider an arbitrary partition of [m] into two sets E,F . Let ν be a
distribution on [m], and let ρ(x|E)= Ex|F [ν(x)]. Then, ρ(x|E)= ∑x|F 2−|F |ν(x)= 2−|F |∑x|F ν(x)≤
2−|F | = 2|E|−m, simply using the fact that ν is a probability distribution. Thus, maxx|(S j\∂S j)(H j)≤
2|S j\∂S j|−m. Inductively,

Ex

[
2k−1

∏
i=0

µ(x|Si)

]
= G2k−1 ≤

2∑
2k−1
j=0 |S j\∂S j|

2m2k .

Consider some index z ∈
⋃

S. Suppose this index appears in l sets S j1, . . . ,S jl from S, with j1 <

· · ·< jl . Then, this index contributes exactly l−1 to the expression ∑
2k−1
j=0 |S j \∂S j|, once for every

j = j2, . . . , jl (for j = j1, z ∈ ∂S j because no set before S j contains z). Since this holds for every
index z, we see that ∑

2k−1
j=0 |S j \∂S j|= q(S) and therefore Ex[∏u∈{0,1}k µ(x|Su)]≤ 2q(S)−m2k

.

Proof sketch of Lemma 3.6. The multiset S is given by the sets Su = φ(yu1
1 , . . . ,yuk

k ) for u ∈ {0,1}k.
The probability over the choice of the y’s that for some i, y0

i = y1
i , is at most k/2n. When this event

does not occur, the 2k points at which φ gets evaluated are all distinct. Since φ is chosen at random,
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the 2k outputs of φ are 2k uniformly and independently random m-element subsets of [n]. We now
upper bound the probability of having q conflicts in this case.

We write Q for q(S). Let Si = (S1, . . . ,Si) and let S0 = /0. Let Qi be the number of conflicts
obtained while picking Si, after having picked Si−1, and let Ri be the range of Si. Formally, Qi =
|Si∩ (∪Si−1)| and Ri = |∪Si|. It is easy to see that Q = ∑

2k

i=1 Qi. Then,

Pr[Q = q] = ∑
q1+···+q2k=q

Pr[∀i,Qi = qi] = ∑
q1+···+q2k=q

∏
i

Pr[Qi = qi|∀ j < i,Q j = q j].

By the nature of the experiment, the probability of obtaining qi conflicts while picking Si depends
only on the range of the sets picked before, thus Pr[Qi = qi|∀ j < i,Q j = q j] = Pr[Qi = qi|Ri−1 =
(i− 1)m−∑ j<i q j]. Let C(q,r) denote the probability that, when picking an m-element subset
of [n] we obtain exactly q conflicts, conditioned on the fact that the range of elements picked so
far is exactly r. By standard calculations, one can show that, as long as 2km3 ≤ n (which holds
for sufficiently small m = nε ), C(q,r) ≤

(m2k

q

)
(4m/n)q. Plugging this into the expression above,

Pr[Q = q]≤
(
4em222k/qn

)q.
Taking into account the probability that the 2k strings yu1

1 , . . . ,yuk
k are all distinct, we obtain

Pr
y0,y1,φ

[q(S) = q]≤ k
2n +

(
4 · e ·m2 ·22k

q ·n

)q

≤
(

m3 ·22k

q ·n

)q

,

where the last inequality is a loose bound which is sufficient for our purposes. The bound holds
because we can assume that q≤m ·2k (otherwise the probability is 0) and note that m ·2k = n1−Ω(1),
for a sufficiently small m = nε , and therefore the second summand in the left-hand side of the
inequality above is greater than the first.

4 Explicit Separation
In this section we prove our main Theorem 1.1. We proceed as follows. First, we prove a deran-
domized version of Theorem 3.2 from the previous section. This derandomized version is such
that the distribution on φ can be generated using only n random bits r. Then, we observe how
including the random bits r as part of the input gives an explicit function for the separation, thus
proving Theorem 1.1. As we mentioned in the introduction, the idea is that the only property of the
distribution over φ that the previous construction was using is that such a distribution is 2k-wise
independent. That is, the evaluations of φ at any 2k points, fixed and distinct, are jointly uniformly
distributed, over the choice of φ (cf. the proof of Lemma 3.6). The most straightforward way to
obtain explicit constructions from our previous results is thus to replace a random φ with a 2k-wise
independent distribution, and then include a description of φ as part of the input. However, this
raises some technicalities, one being that the range of our φ was a size-m subset of [n], and it is not
immediate how to give constructions with such a range. We find it more simple to use a slightly
different block-wise approach as we describe next.

We think of our universe of n bits as divided in m := nε blocks of b := n1−ε bits each, where
as before ε is a sufficiently small constant. We consider functions φ(y1, . . . ,yk) whose output is

12



a subset of [n] that contains exactly one bit per block. That is, φ(y1, . . . ,yk) ∈ [b]m. The building
block of our distribution is the following result about almost t-wise independent functions. We say
that two distributions X and Y on the same support are ε-close in statistical distance if for every
event E we have |Pr[E(X)]−Pr[E(Y )]| ≤ ε .

Lemma 4.1 (almost t-wise independence; [NN93]). There is a universal constant a > 0 such that
for every t,b (where b is a power of 2) there is a polynomial-time computable map

h : {0,1}t×{0,1}a·t·logb→ [b]

such that for every t distinct x1, . . . ,xt ∈ {0,1}t , the distribution (h(x1;r), . . . ,h(xt ;r)) ∈ [b]t , over
the choice of r ∈ {0,1}a·t·logb, is (1/b)t-close in statistical distance to the uniform distribution over
[b]t .

Proof. Naor and Naor [NN93, Section 4] give an explicit construction of N random variables
over {0,1} such that any k of them are δ -close to uniform (over {0,1}k) and the construction uses
O(logN +k+ log(1/δ )) random bits.2 We identify [b] with {0,1}logb and use their construction for
N := 2t · logb,k := t · logb, and δ := (1/b)t . We consider the N random variables as divided up in 2t

blocks of logb bits each. On input x∈ {0,1}t , our function h will output the logb random variables
from the x-th block, which, again, we are going to identify with an element in [b]. Since we set
k = t · logb, and for distinct x1, . . . ,xt the distribution of (h(x1;r), . . . ,h(xt ;r)) is the distribution
of t · logb distinct random variables in {0,1}, we have by the result in [NN93] mentioned above
that (h(x1;r), . . . ,h(xt ;r)) is (δ = (1/b)t)-close to the uniform distribution on [b]t . To conclude,
we only need to verify the amount of randomness required. Indeed, as we mentioned above,
the construction in [NN93] uses O(logN + k + log(1/δ )) random bits, which by our choice of
parameters is O(t + log logb+ t · logb+ t · logb) = O(t · logb).

We now define our derandomized distribution on φ . This is the concatenation of m of the
above functions using independent random bits, a function per block. Specifically, for each of the
m blocks of b bits, we are going to use the above function h where t := k ·2k · (1+ logb). Jumping
ahead, the large input length t is also chosen so that the probability (over the choice of the y’s)
that we do not obtain 2k distinct inputs drops down exponentially with 2k, which is needed in the
analysis. On input y1, . . . ,yk and randomness r, we break up each yi in m blocks and also r in m
blocks. The value of φ in the j-th block depends only on the j-th blocks of the yi’s and on the j-th
block of r.

Definition 4.2 (Derandomized distribution on φ , given parameters n, m = nε , b = n1−ε , k = δ ·logn;
and a universal constant from Lemma 4.1). Let l := 2k · (1+ logb), t := l · k. Let

φ : {0,1}m·t×{0,1}m·a·t·logb→ [b]m

be defined as follows. On input (y1, . . . ,yk) ∈ {0,1}m·t and randomness r ∈ {0,1}m·a·t·logb, think
of each yi ∈ {0,1}m·l as divided in m blocks of l bits each, i.e. (yi = (yi)1 ◦ · · · ◦ (yi)m), and r as

2They in fact achieve in [NN93, Lemma 4.2] a doubly-logarithmic dependence on N, but this improvement, which
arises from combining the above bound with a construction from [CG89, ABI86], is irrelevant to this work.
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divided in m blocks of a · t · logb bits each, i.e. (r = r1 ◦ · · · ◦ rm). The j-th output of φ in [b] is then

φ(y1, . . . ,yk;r) j := h((y1) j, . . . ,(yk) j︸ ︷︷ ︸
l·k=t bits

; r j︸︷︷︸
a·t·logb bits

) ∈ [b].

The distribution on φ is the distribution obtained by selecting a uniform r ∈ {0,1}m·a·t·logb and
then considering the map

y1, . . . ,yk→ φ(y1, . . . ,yk;r) ∈ [b]m.

Note that, in the above definition, the input length of each yi is m · l which up to polylogarithmic
factors is nε ·2k = n1−Ω(1), for a sufficiently small ε depending on δ .

Theorem 4.3. For every δ < 1 there are constants ε,α > 0 such that for sufficiently large n,
k := δ · logn, and m = nε , the following holds.

There is a distribution λ such that if φ : {0,1}m·t → [b]m is distributed according to Definition
4.2 we have:

Eφ [Corλ (Lift(OR,φ),Πk+1,nα

)]≤ 1/3.

Proof. The proof follows very closely that of Theorem 3.2. A minor difference is that now the
yi’s are over m · l bits as opposed to n in Theorem 3.2, but the definition of the distribution λ in
Theorem 3.2 immediately translates to the new setting – λ just selects the yi’s at random. The only
other place where the proofs differ is in Lemma 3.6, which is where the properties of φ are used.
Thus we only need to verify the following Lemma.

Lemma 4.4. For every q > 0 and φ distributed as in Definition (4.2):

Pr
y0,y1,φ

[q(S(y0,y1,φ)) = q]≤
(

m2 ·22k

q ·b

)q

=
(

m3 ·22k

q ·n

)q

.

Proof. For the multiset S = S(y0,y1,φ) define the number of conflicts in the j-th block, denoted
q(S) j, as 2k minus the number of distinct elements in the j-th block – thus q(S) = ∑ j q(S) j. If
q(S) = q then there must exist q1, . . . ,qm summing up to q such that for every j, q(S) j = q j. As
by construction the distribution (q(S)1, . . . ,q(S)m) (over the choice of the y’s and φ ) is a product
distribution, we have:

Pr
y0,y1,φ

[q(S) = q] = ∑
q1,...,qm:
∑ j q j=q

∏
j≤m

Pr
y0,y1,φ

[q(S) j = q j]. (3)

We now bound Pry0,y1,φ [q(S) j = q j] for any fixed j. Thus we are interested in the size of⋃
u∈{0,1}k

{φ(yu1
1 , . . . ,yuk

k ;r) j} ⊆ [b].

By construction, this depends only on the j-th blocks (of l = 2k(1 + logb) bits) of the y’s and on
the j-th block of r. Specifically,⋃

u∈{0,1}k

{φ(yu1
1 , . . . ,yuk

k ;r) j}=
⋃

u∈{0,1}k

{h((yu1
1 ) j, . . . ,(y

uk
k ) j;r j)} ⊆ [b].
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The probability over the choice of the y’s that the 2k strings (given by the 2k choices of u∈ {0,1}k)

((yu1
1 ) j, . . . ,(y

uk
k ) j) ∈ {0,1}t

are not all distinct is at most, by a union bound, k/2l = 2logk−2k(logb+1) ≤ (1/b)2k
. When they are

all distinct, the 2k elements

Xu := h((yu1
1 ) j, . . . ,(y

uk
k ) j;r j) ∈ [b]

(given by the 2k choices of u ∈ {0,1}k) are by Lemma 4.1 (1/b)t-close to being uniform and
independent in [b] (over the choice of r), where recall t ≥ 2k. If the Xu’s were exactly uniform
and independent over [b] then it is not hard to see that the probability (over r) that q(S) j = q j

would be at most
(2k

q j

)
(2k/b)q j , a bound which can be obtained by noting that if q(S) j = q j then

there must exist q j distinct i ∈ {0,1}k such that Xi ∈ {X1, . . . ,Xi−1}. Since the Xu’s are ((1/b)t ≤
(1/b)2k

)-close to being uniform and independent, the probability (over r) that q(S) j = q j is at most

(1/b)2k
+
(2k

q j

)
(2k/b)q j . Overall,

Pr
y0,y1,φ

[q(S) j = q j]≤ (1/b)2k
+(1/b)2k

+
(

2k

q j

)
(2k/b)q j ≤

(
2k

q j

)
(3 ·2k/b)q j ,

where the last inequality holds when q j > 0 – which is the case to which we are going to restrict –
also using the fact that q j ≤ 2k – otherwise the probability is 0.

Therefore, combining the above bound with Equation (3) we obtain

Pr
y0,y1,φ

[q(S) = q]≤ ∑
q1,...,qm:
∑ j q j=q

∏
j≤m

Pr
y0,y1,φ

[q(S) j = q j]

≤ ∑
q1,...,qm:
∑ j q j=q

∏
j≤m:0<q j≤2k

(
2k

q j

)
(3 ·2k/b)q j

= (3 ·2k/b)q
∑

q1,...,qm:
∑ j q j=q

∏
j≤m:0<q j≤2k

(
2k

q j

)

= (3 ·2k/b)q
(

m ·2k

q

)
≤
(

3 ·2k

b
· e ·m ·2

k

q

)q

≤
(

m2 ·22·k

b ·q

)q

.

We can now prove the main theorem of this work.

Theorem 1.1 (Main Theorem; NPcc
k 6⊂ BPPcc

k for k = δ logn players). (Restated.) For every fixed
δ < 1, sufficiently large n and k = δ · logn, there is an explicit function f : ({0,1}n)k→{0,1} such
that: f can be computed by k-player nondeterministic protocols communicating O(logn) bits, but
f cannot be computed by k-player randomized protocols communicating no(1) bits.

15



Proof. Let f (x,(y1,r),y2, . . . ,yk) := OR(x|φ(y1, . . . ,yk;r)), where φ is as in Definition 4.2. We
partition an input (x,(y1,r),y2, . . . ,yk) as follows: Player 0 gets x, Player 1 gets the pair (y1,r),
where r is to be thought of as selecting which φ to use, and player i > 1 gets yi. Let p be the dis-
tribution obtained by choosing r uniformly at random, and independently (x,y1, . . . ,yk) according
to the distribution λ in Theorem 4.3.

It is not hard to see that f has a nondeterministic protocol communicating O(logn) bits: We
can guess a bit position i and then the player that sees (y1,r),y2, . . . ,yk can verify that the position
i belongs to φ(y1, . . . ,yk;r), and finally another player can verify that xi = 1.

To see the second item observe that:

Corp( f ,Πk+1,nα

) = max
π∈Πk+1,nα

Er[E(x,y)∼λ [OR(x|φ(y;r)) ·π(x,y,r)]]

≤ Er[ max
π∈Πk+1,nα

E(x,y)∼λ [OR(x|φ(y;r)) ·π(x,y,r)]]≤ 1/3,

where the last inequality follows by Theorem 4.3. Again, the claim about randomized communi-
cation follows by standard techniques, cf. Fact 2.2.

To conclude, we need to verify that we can afford to give r as part of the input without affecting
the bounds. Specifically, we need to verify that |(y1,r)| ≤ n. Indeed, |(y1,r)| ≤ m · l + O(m · t ·
logb) = m ·2k(1+ logb)+O(m ·2k(1+ logb)k · logb) which is less than n when k = δ logn for a
fixed δ < 1, m = nε for a sufficiently small ε , and n is sufficiently large (recall b ·m = n, and in
particular b≤ n.)

As is apparent from the proofs, and similarly to previous works [She08b], our lower bound
Theorems 3.2 and 4.3 hold more generally for any function of the form Lift( f ,φ) for an arbitrary
base function f . The communication bound is then expressed in terms of the approximate degree
of f . In our paper, we focused on f = OR for concreteness. However, also note that the choice
of f = OR is essential in Theorem 1.1 in order for Lift( f ,φ) to have a cheap nondeterministic
protocol.

4.1 Communication bounds for constant-depth circuits
In this section we point out how Theorem 4.3 from the previous section gives us some new
communication bounds for functions computable by constant-depth circuits. Specifically, the
next theorem, which was also stated in the introduction, gives communication bounds for up to
k = A · log logn players for functions computable by constant-depth circuits (whose parameters
depend on A), whereas the previously known result of [Cha07] requires k < log logn.

Theorem 1.2 (Constant-depth circuits require high communication for k = A log logn players).
(Restated.) For every constant A > 1 there is a constant B such that for sufficiently large n and
k := A log logn there is a function f : ({0,1}n)k → {0,1} which satisfies the following: f can be
computed by circuits of size nB and depth B, but f cannot be computed by k-player randomized
protocols communicating no(1) bits.
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Proof. Use the function from the proof of Theorem 1.1. This only requires computing (2k =
logA n)-wise independent functions on logO(A) n bits. (As mentioned before, although Theorem 4.3
uses the notion of almost t-wise independence, for small values of k, such as those of interest in the
current proof, we can afford to use exact t-wise independence, i.e. set the distance from uniform
distribution to 0). Such functions can be computed by circuits of size nB and depth B, for a constant
B that depends on A only. To see this, one can use the standard constructions based on arithmetic
over finite fields [CG89, ABI86] and then the results from [HV06, Corollary 6]. Equivalently,
“scale down” [HV06, Theorem 14] as described in [HV06, Section 3].

It is not clear to us how to prove a similar result for k = ω(log logn). This is because our ap-
proach would require computing almost (2k = logω(1) n)-wise independent functions on logω(1) n
bits by nO(1)-size circuits of constant depth, which cannot be done (even for almost 2-wise inde-
pendence). The fact that this cannot be done follows from the results in [MNT93] or known results
on the noise sensitivity of constant-depth circuits [LMN93, Bop97].

We point out that Theorem 1.2 can be strengthened to give a function that has correlation
2−nΩ(1)

with protocols communicating no(1) bits. This can be achieved using the Minsky-Papert
function instead of OR. A similar correlation bound is obtained in earlier works [She09, Cha07]
but for fewer players.

Finally, Troy Lee (personal communication, May 2008) has pointed out to us that the analogous
of our Theorem 1.2 for deterministic protocols can be easily obtained from the known lower bound
for generalized inner product (GIP) [BNS92]. This is because it is not hard to see that for every con-
stant c there is a circuit of depth B = B(c) and size nB that has correlation at least exp(−n/ logc n)
with GIP – just compute the parity in GIP by brute-force on blocks of size logc n – but on the
other hand low-communication k-party protocols have correlation at most exp(−Ω(n/4k)) with
GIP [BNS92]. However, this idea does not seem to give a bound for randomized protocols or a
correlation bound, whereas our results do.
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