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Abstract

We construct a PCP for NTIME(2n) with constant soundness, 2npoly(n) proof
length, and poly(n) queries where the verifier’s computation is simple: the queries are
a projection of the input randomness, and the computation on the prover’s answers is
a 3CNF. The previous upper bound for these two computations was polynomial-size
circuits. Composing this verifier with a proof oracle increases the circuit-depth of the
latter by 2. Our PCP is a simple variant of the PCP by Ben-Sasson, Goldreich, Harsha,
Sudan, and Vadhan (CCC 2005). We also give a more modular exposition of the latter,
separating the combinatorial from the algebraic arguments.

If our PCP is taken as a black box, we obtain a more direct proof of the result
by Williams, later with Santhanam (CCC 2013) that derandomizing circuits on n bits
from a class C in time 2n/nω(1) yields that NEXP is not in a related circuit class C ′.
Our proof yields a tighter connection: C is an And-Or of circuits from C ′. Along the
way we show that the same lower bound follows if the satisfiability of the And of any
3 circuits from C ′ can be solved in time 2n/nω(1).
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1 Introduction

It has long been known that solving satisfiability of circuits, or derandomizing probabilis-
tic circuits implies new circuit lower bounds (for various exponential-time classes), see
e.g. [KL80, IKW02]. In [Wil10] Williams gives an interesting instance of this phenomenon,
where a non-trivial lower bound against a circuit class C follows from a satisfiability or de-
randomization algorithm for circuits of a related class C ′ that runs in time 2n/nω(1), where n
is the number of variables of circuits in C ′. It is an interesting question whether the approach
based on satisfiability or the one based on derandomization should be pursed to obtain new
circuit lower bounds.

The satisfiability approach – not the derandomization approach – has given non-trivial
lower bounds [Wil11]. Moreover this approach has been tightened, by making C ′ closer to
C, in [SW13, JMV13, Oli13], making it plausible that more lower bounds will be obtained.
In fact, we will tighten it a bit more in this work. However, it is not clear how much this ap-
proach can be pushed. Do we believe that the satisfiability of (unrestricted) polynomial-size
circuits can be solved faster than brute-force search? Even for seemingly simple problems
such as MAX3SAT, no satisfiability algorithm better than brute-force search is known, de-
spite attempts since a decade ago [Wil05]. Note that the MAX3SAT problem – given a
3CNF and an integer `, is there an assignment that satisfies ≥ ` clauses? – corresponds to
the restricted class of depth-2 circuits known as MAJ ◦ AND3: a Majority on And’s on three
variables. The lack of progress on MAX3SAT is an obstacle for obtaining new lower bounds
from satisfiability.

A priori, the approach based on derandomization should apply more broadly, because
most researchers indeed believe that derandomization is possible (and a long line of research
has shown that indeed derandomization is possible based on lower bounds). Also, for sev-
eral classes we have nontrivial derandomization algorithms but not satisfiability ones. For
example, for the class mentioned above of MAJ ◦ AND3 circuits a derandomization is given
in [LVW93, Vio07]. Even when both types of algorithms are available, the speed of the de-
randomization one often outperforms that of the satisfiability one. For example, the running
time for the derandomization of CNF, see [GMR13] for the latest, vastly outperforms that
of satisfiability algorithms, cf. [Her11]. For another example, consider the class of poly-size,
constant-depth circuits with Or, Not, and Parity gates (AC0 with parity gates). To our
knowledge, the best satisfiability algorithm is the one in [Wil11] which has running time
2n−n

ε
. By contrast, [FSUV13] derandomize these circuits in time 2n−n/poly logn (building on

available lower bounds).
One advantage of satisfiability over derandomization is that the corresponding connection

to lower bounds is simpler and incurs less overhead. To obtain lower bounds from deran-
domization one relies on probabilistically checkable proofs (PCP), specifically the somewhat
intricate work by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [BGH+05]. The intri-
cacy of this work reflects on two aspects of the approach. First, to make it apply to restricted
circuit classes such as ACC0 or TC0, previous to this work one needed a roundabout argu-
ment, provided by Santhanam and Williams [SW13], which actually relies on a subsequent
PCP by Mie [Mie09] combining [BGH+05] with Dinur’s gap amplification [Din07]. Second,
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the indirect aspect of the argument is reflected in the overhead in the reduction. For ex-
ample, to obtain a lower bound against circuits of depth d, one needed a derandomization
algorithm for circuits of depth cd for a constant c > 1.

1.1 Our results

In this work we provide a variant of the PCP [BGH+05] where the computation of the
verifier is quite modest: Given randomness, the verifier computes its queries just by taking
projections of the randomness, and the computation on the prover’s answers is a 3CNF. The
previous upper bound for these two computations was polynomial-size circuits.

Theorem 1.1 (Short PCPs with projection queries). Let M be an algorithm running in time
T = T (n) ≥ n on inputs of the form (x, y) where |x| = n. Given x ∈ {0, 1}n one can output in
time poly(n, log T ) circuits Query : {0, 1}r → [2r]t for t = poly(r) and Dec : {0, 1}t → {0, 1}
such that:

• Proof length. 2r ≤ T · poly log T ,

• Completeness. If there exists y such that M(x, y) accepts then there exists a map
π : [2r]→ {0, 1} such that for any z ∈ {0, 1}r we have Dec(π(q1), . . . , π(qt)) = 1 where
(q1, . . . , qt) = Query(z),

• Soundness. If no y causes M(x, y) to accept, then for every map π : [2r]→ {0, 1}, at
most 1/n10 fraction of the z ∈ {0, 1}r have Dec(π(q1), . . . , π(qt)) = 1 where (q1, . . . , qt) =
Query(z),

• Complexity. Query is a projection (a.k.a. 1-local), i.e., each output bit of Query is
one input bit, the negation of an input bit, or a constant; Dec is a 3CNF.

The polynomial in the soundness item in Theorem 1.1 can be traded with the number t
of queries.

There is a substantial literature that develops PCPs with optimized parameters. One
focus of this literature has been to optimize the complexity of Dec. However typically these
works do not produce PCPs of length quasilinear in T , and the complexity of Query is not
optimized. Both these aspects are critical for our applications.

Remark 1.2 (Number of queries vs. Query complexity). Relaxing the complexity of Query
to be a poly(r)-computation allows to reduce the number of queries made to the oracle to
a constant, while obtaining constant soundness [Mie09]. It is an interesting open problem
to find the lowest complexity obtainable for Query in a PCP statement with proof length
quasilinear in T , polylogarithmic verifier running time, and where soundness, alphabet, and
number of queries are all constant. In particular, it is not clear to us if it is possible in such
a case to have Query be a projection.
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Along the way we give a more accessible presentation of [BGH+05]. Our presentation is
modular and separates the combinatorial steps (given in Theorem 2.2) from the algebraic
ones (given in §4).

Taking Theorem 1.1 as a black box, we eliminate the roundabout argument mentioned
before from the result in [SW13] that derandomizing TC0 circuits on n bits in time 2n/nω(1)

implies that NEXP is not in TC0. Also, Theorem 1.1 is a small variant on [BGH+05],
whereas as we mentioned [SW13] needs Mie’s PCP [Mie09]. Finally, we also obtain the
following alternative argument, which only uses the PCP result in [BGH+05] as a black-box.

The alternative argument. Given as a black-box a PCP such as [BGH+05], i.e., with
the parameters as in Theorem 1.1 but where the complexity is replaced by polynomial-size
circuits, we can construct a PCP where the verifier has low-complexity but makes adaptive
queries to the proof. Specifically, we will rely on the prover to obtain the indices of our
queries, and later query the prover at those indices and also verify the prover’s computation,
again with the help of the prover. This latter verification, as well as the computation Dec on
the prover’s answers, can be done by a 3CNF via a simple use of the Cook-Levin theorem –
cf. Lemma 1.6.

Again, this alternative argument is sufficient to recover the TC0 result in [SW13]. How-
ever, with Theorem 1.1 we obtain better parameters. Indeed, we seek very tight connections
in the hope they will lead to progress on various challenges in computational lower bounds
such as those mapped in [Vio13].

The concurrent work [Wil14] shows that the ability to count the number of satisfying
assignments to circuits faster than brute-force search yields lower bounds against related
circuits. This connection is used to obtain some new lower bounds. By our work the same
lower bounds can be obtained from a satisfiability algorithm (using Theorem 1.5) or even a
derandomization algorithm (using Theorem 1.4).

Next we state the tighter connections we obtain between derandomization and lower
bounds. First we make a definition.

Definition 1.3. Let Cn be a set of functions from {0, 1}n to {0, 1}. We say that Cn
is efficiently closed under projections if functions in Cn have a poly(n)-size description
and given (the description of) a function f ∈ Cn, indexes i, j ≤ n, and a bit b, we can
compute in time poly(n) the functions notf , f(x1, . . . , xi−1, b XOR xj, xi+1, . . . , xn), and
f(x1, . . . , xi−1, b, xi+1, . . . , xn), all of which are in Cn.

Most of the standard classes have this property. For the theorem, the two occurrences of
“poly(n)” above can be relaxed. We also use the notation ∧poly(n) ∨3 Cn+O(logn) to indicates
the And of poly(n) Or of 3 functions from Cn+O(logn), all on the same n input bits.

Theorem 1.4 (Derandomization implies lower bounds, tightly). Let Cn be efficiently closed
under projections.

If the acceptance probability of functions of the form h = ∧poly(n) ∨3 Cn+O(logn) can be
distinguished from being = 1 or ≤ 1/n10 in Time(2n/nω(1)), then there is a function f in
ENP such that fn 6∈ Cn.
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One can place f in NEXP if we replace Cn+O(logn) with Cpoly(n) and reason as in [IKW01,
Wil13, Wil11].

The first step of our more modular exposition of [BGH+05] is a reduction to 3SAT that
builds on [JMV13] (cf. [BCGT13a]) but achieves incomparable guarantees (Theorem 2.2).
Using that, we can obtain the following connection between satisfiability algorithms and
lower bounds.

Theorem 1.5 (Satisfiability implies lower bounds, tightly). Let Cn be efficiently closed under
projections.

If the satisfiability of functions h = g1∧g2∧g3, where gi ∈ Cn+O(logn) is in Time(2n/nω(1)),
then there is a function f in ENP such that fn 6∈ Cn.

The overhead to go from a satisfiability algorithm to a lower bound is evident from the
theorem. The loss in size is a multiplicative factor 3 + o(1). Previous losses were polynomial
[Wil10], or multiplicative by a larger constant [JMV13]. The loss in depth is 2 for circuits
with fan-in 2. For unbounded fan-in (or even fan-in 3) circuits with And gates (or threshold)
the depth loss is 1. Previous losses were 2 [JMV13, Oli13].

Recall that the best lower bound for an explicit function on n bits is 3n − o(n) (non-
input) gates [Blu84] (cf. [DK11]). This seems to be the best known even for functions in
ENP (note the number of circuits of size 3n is superlinear, so one cannot easily diagonalize
against them in ENP ). By Theorem 1.5, to obtain a function in ENP of circuit complexity
3n one would need to solve satisfiability of a circuit with 3(3n) non-input gates and n inputs
– ignoring lower-order terms. The Cook-Levin theorem reduces this to a 3SAT instance on
9n + n = 10n variables. So one would need to solve 3SAT in deterministic time cn for any
c < 21/10 = 1.07 . . . The current record is c = 1.33 . . . [MTY11], cf. [Her11].

1.2 Techniques

Ideas behind the proof of Theorem 1.1. We start with the PCP in [BGH+05] and
follow its proof closely. There are two computations of the verifier in this PCP that we need
to optimize. The first — Query — is taking the input randomness to the queries, which we
call preprocess. The second — Dec — is the computation on the prover’s answers, which we
call postprocess. We discuss them separately.

Postprocess: It is a common experience in theoretical computer science research, to
study at length an intricate proof in the reckless hope of optimizing parameters, only to be
surprised by the late realization that a trivial, sweeping argument takes the complex proof
as a black-box and gets a pretty good parameter optimization, too.

Lemma 1.6 (Making Dec a 3CNF). Suppose Theorem 1.1 holds except that Dec is an
unrestricted circuit of size poly(r). Then Theorem 1.1 holds as stated.

Proof. By the Cook-Levin theorem we reduce Dec to a 3CNF with poly(r) variables and
terms. The verifier will ask the prover for an additional poly(r) queries to obtain the satis-
fying assignments for this 3CNF corresponding to the input randomness. On input z, these
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queries are of the form (z, i), where i is an O(log r)-bit index to a variable in the 3CNF. The
proof contains the values of the variables in the 3CNF that verify the computation on the
outputs of the queries that are made by the verifier on input z.

This general technique shows that we can always make the postprocess a 3CNF as long as
we allow for poly(r) queries. Using it, there is no benefit in reducing the number of queries
to a constant.

Preprocess: This is in turn comprised of two parts, acting in parallel, known as “alge-
braic constraint satisfaction” and “low-degree testing”, and in this work we offer a clear
separation between the two. In the first part we reduce the succinct constraint satisfac-
tion problem (CSP) associated with verifying the M accepts x in T steps, to an algebraic
CSP (ACSP) problem, one stated as a question about equality of polynomials. We offer
a definition of ACSP that is algebraically cleaner than [BS08] and following works (e.g.,
[BGH+05, BCGT13b]). In particular, previous definitions included degree bounds on the
“assignment polynomial” and involved a “zero-testing” problem. In contrast, Definition 4.1
defines a satisfying assignment as one that causes a polynomial to vanish, and degree-bounds
are dealt with by the separate low-degree testing part, discussed later. We now elaborate on
how we obtain efficient preprocessing in each of the two parts.

In the ACSP part, our verifier simply selects a random field element α, generates poly(r)
queries to the prover where the ith query is α + σi where σi is fixed and independent of
α, cf. §4. Each such query can be verified to be a projection. To reach this simple form
of preprocessing we use a modular reduction from the combinatorial succinct CSP captured
by Theorem 2.1 to the succinct ACSP stated in Theorem 4.2. The mid-point between the
combinatorial and algebraic settings is given in Theorem 2.2. In it we reach a 3CNF formula
with ≈ T clauses where each clause (i.e., the three variables of the clause and their polarities)
can be computed by a simple XOR operation. Since XOR is addition in fields of characteristic
2, irrespective of the basis chosen for them, we get a simpler ACSP than [BS08, BGH+05]
albeit one that has a super-constant number of variables.

Turning to the second part, low-degree testing, we use auxiliary information in form of
a PCP of Proximity (PCPP) [BSGH+06, DR06]. This part is essentially from [BS08] and
regrettably remains an intricate step of the proof. The answers to queries of the verifier in
[BS08] can be seen as arranged in the nodes of a tree. The query at each node is indeed a
projection. However, the verifier uses part of its input randomness to select a path in this
tree, reaching a leaf, then possibly redirects the query to a node higher up in the tree. This
computation is more complicated than just a projection. Here we use the following simple,
key idea. The path from root to leaf is determined by only O(log r) of the verifier’s r input
bits (cf. Claim 6.3). Additionally, the process of redirecting a query from a leaf to a node
elsewhere in the tree is also determined by only O(log r) input bits (cf. Claim 6.4). Instead
of following the path, we let the verifier query every possible endpoint. This multiplies the
number of queries by a factor poly(r), which we can afford. We delegate the task of picking
the right query to the postprocess.

One more complication is that each of the two parts needs to be combined with a
randomness-efficient hitter to achieve constant soundness. Using e.g. Cayley expanders built
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from small-bias sets, this step is again just a projection (cf. §4.3).

Ideas behind the proof of Theorem 1.5. A natural idea is to improve the previous
constant-locality result [JMV13] to locality 1. But this may not be possible. Instead, we
show how to reduce arbitrary computation to a polynomial number of 3CNF formulae, each
of which has locality 1. By enumerating over these 3CNF, and running the satisfiability
algorithm on each of them, we get the result. This idea is similar to the one described above
to make [BS08] a projection: after reading a logarithmic number of bits, the rest of the
computation becomes just a projection.

Open problems. Improve Theorem 1.4 to have the same overhead as Theorem 1.5.

Organization. In §2 we give a variant of the reduction of non-deterministic time to 3SAT
given in [JMV13]. Using that and Theorem 1.1 as a black-box, in §3 we give the proofs of
theorems 1.4 and 1.5. In §4 we give the new exposition of [BGH+05] based on the reduction
in §2. By Lemma 1.6, we only need to verify that Query can be implemented by projections.
§4 states two main claims, and then proves Theorem 1.1 assuming those. The main claims
are in turn discussed in §5, 6.

2 A combinatorial reduction to 3SAT

Our starting point is the following result from [JMV13].

Theorem 2.1 ([JMV13]). Let M be an algorithm running in time T = T (n) ≥ n on inputs
of the form (x, y) where |x| = n. Given x ∈ {0, 1}n one can output a circuit D : {0, 1}` →
{0, 1}3v+3 in time poly(n, log T ) mapping an index to a clause of a 3CNF φ in v-bit variables,
for v = Θ(`), such that

1. φ is satisfiable iff there is y ∈ {0, 1}T such that M(x, y) accepts, and

2. For any r ≤ n we can have ` = max(log T, n/r) + O(log n) + O(log log T ) and each
output bit of D is a decision tree of depth O(log r).

Note that for T = 2n and r = O(1) this gives a 3CNF with Tpoly log T clauses such that
each clause can be computed from its index by a function with constant locality.

We need an incomparable variant of the latter. We enlarge the locality to O(log n), but
at the same time there are only O(log n) input bits that affect more than 1 bit. If we fix
these bits, the rest of the computation is just a bit-wise xor.

Theorem 2.2. Let M be an algorithm running in time T = T (n) ≥ n on inputs of the
form (x, y) where |x| = n. Let `1 = log T . For some `2 = O(log log T ) + O(log n) the
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following is true. Given x ∈ {0, 1}n one can output in time poly(n, log T ) six circuits (of
size poly(n, log T ))

Si : {0, 1}`2 → {0, 1}`1+`2 ,

bi : {0, 1}`2 → {0, 1},

for i = 1, 2, 3, such that:
Let φx be the 3CNF with 2`1+`2 = Tpoly(n, log T ) clauses (and variables) whose (α, β) ∈

{0, 1}`1 × {0, 1}`2 clause contains variables

Vi = (α, β)⊕ Si(β)

and corresponding sign bits
bi = bi(β),

where i = 1, 2, 3 and ⊕ is bit-wise xor. Then φx is satisfiable iff there is y ∈ {0, 1}T such
that M(x, y) accepts.

Note that in the case T = 2O(n) each output bit of D depends only on |β|+ 1 = O(log n)
bits of the input.

The next proof heavily builds on previous works. We give a sketch that highlights the
tiny changes from previous proofs, and to work out parameters. The closest previous proof
is [JMV13], to which we also refer for a discussion of other related works.

Proof sketch. Without loss of generality the algorithm is implemented by a random-access
Turing machine running in time T ′ = Tpoly log n and only using memory cells at indexes
≤ poly(T ) (see e.g. [NEU12] for details).

Consider a circuit-sat instance where the circuit first guesses a computation trace con-
sisting of T ′

configurations of size O(log T ) each; and then the circuit checks its validity and accep-
tance. The validity check consists of two separate checks. The first is the check of the
consistency of the transition function of the machine, assuming that memory reads are cor-
rect. The second is the check of the consistency of the memory reads and writes. The trace is
valid if and only if both checks pass. These two checks are implemented in a similar fashion;
we only describe the second.

Consider a matrix of r × T ′ configurations, where r = poly log T . We use α to index a
column in this matrix. (This actually gives |α| = `1 = log T ′ = log T +O(log log T ), but the
low-order summand can be swallowed in `2.) We use β to index a row, and the gates within
the subcircuits discussed next.

The first row is the computation trace mentioned above that the circuit guessed. For every
t = 1, . . . , T we have a poly(n, log T )-size subcircuit which checks the pair of configurations
(C,C ′) at positions (1, t) and (r, t) in the matrix, i.e., in the same column but at antipodal
rows. This subcircuit verifies that either C ′ accesses the same memory cell of C and has the
timestamp of C plus one, or C ′ accesses a memory cell with index greater than that of the
cell accessed by C, or – the wrap-around condition – it does nothing if C ′ is the configuration
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with timestamp 0. If all these checks pass then for every t the configuration at position (t, r)
is the one that comes next the configuration at position (t, 1) in the order given by memory
location accessed breaking ties by timestamp. The subcircuit then verifies consistency of the
memory read and write in C and C ′. In particular it verifies that cells read for the first time
are blank, and that the cells 1, . . . , n read for the first time contain the input x. Note that
the latter is possible because our circuits have size ≥ n and are built with knowledge of x.

Observe that these subcircuits operate independently on each column, and are identical
across columns. Their connections depend only on the row index and an index to one of
their gates. By including these two indexes inside β, these connections can be computed in
the required format.

It remains to discuss connections across columns, which are needed to move configurations
around to put them in the right order. For this we use routing networks such as Beneš’,
which are a simple composition of butterfly networks. The index of a neighbor in column
α is obtained by xoring α with a string (of Hamming weight 1) which only depends on the
row, which in turn is part of β. This leads to the desired format for Vi. The implementation
of the routing network also needs a simple gadget to swap two configurations depending on
a nondeterministic bit. This gadget is the same for every column and row. From this it
follows that the Vi and bi are in the desired format.

3 Lower bounds from fast algorithms

In this section we prove theorems 1.4 and 1.5. First we restate the theorem.

Theorem 1.5 (Satisfiability implies lower bounds, tightly). Let Cn be efficiently closed under
projections.

If the satisfiability of functions h = g1∧g2∧g3, where gi ∈ Cn+O(logn) is in Time(2n/nω(1)),
then there is a function f in ENP such that fn 6∈ Cn.

For the proof we use Theorem 2.2, and we enumerate over the β in its statement. The
key observation is that for any fixed β, the reduction is only computing xor which can be
hardwired with no loss in resources. This enumeration is feasible because |β| = O(log n). To
get better constants we also work with unary languages.

Proof of Theorem 1.5. Suppose that every function in ENP belongs to Cn when restricted to
inputs of length n. Let L be a unary language in NTime(2n)\NTime(o(2n)) [Coo73, SFM78,
Zák83]. Consider the ENP algorithm that on input x′ ∈ {0, 1}O(logn) and i ≤ 2npoly(n)
computes x = 1x

′
, the 3CNF φx corresponding to L through Theorem 2.2, computes its first

satisfying assignment if one exists, and outputs its ith bit. By assumption, on inputs of
length m = n + O(log n) this function is in Cm. Also, by assumption, if we hardwire x′ the
resulting function still belongs to Cm. Call this function gx.

We contradict the assumption on L by showing how to decide it in Ntime(o(2n)). Let
D, Si, α, β, Vi and bi be as in Theorem 2.2. Consider the algorithm that on input x = 1n

guesses gx. Then it constructs the function g′x that operates as follows. The input is that
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of D. Then it connects three copies of gx to the output variables Vi. Further, the output of
the ith copy is negated and then xored with bi. And finally an And is taken. Call g′x this
new function (which may not belong to any Cn). Note that g′x(i) = 1 iff the ith clause is
not satisfied (by satisfying assignment gx). So by determining the satisfiability of g′x we can
determine if x ∈ L or not.

The satisfiability algorithm enumerates over all poly(n) choices for β. For each fixed β,
the bi are determined, and the remaining computation to obtain the Vi is an xor by Si(β).
All this can be hardwired into g′x in time poly(m), because Cm is efficiently closed under
projections. For every i this gives a new function gi ∈ Cm. There remains to solve the
satisfiability of g1 ∧ g2 ∧ g3. The latter can be done in time 2m/mω(1) by assumption. So
overall the running time is poly(n,m)2m/mω(1) = 2n/nω(1) = o(2n).

Theorem 1.4 (Derandomization implies lower bounds, tightly). Let Cn be efficiently closed
under projections.

If the acceptance probability of functions of the form h = ∧poly(n) ∨3 Cn+O(logn) can be
distinguished from being = 1 or ≤ 1/n10 in Time(2n/nω(1)), then there is a function f in
ENP such that fn 6∈ Cn.

Proof sketch. Proceed as the proof of Theorem 1.5, but let φx be instead of the 3CNF
produced by Theorem 2.2 the constraint satisfaction problem corresponding to our main
theorem, 1.1. As before, we obtain a function g′x that on input i determines if the ith
constraint is satisfied. (To show that the complexity of this function is as desired, we merge
the Not gates of the 3CNF corresponding to Dec with the circuits in Cn+O(logn), using the
closure of the class.) Thus, approximately determining how many constraints are satisfied
amounts to approximately determinining the number of satisfying assignments to g′x.

4 Proof of Main Theorem 1.1

In this section we prove Theorem 1.1. To do so we recall that the succinct verifier of
[BS08, BGH+05] contains two sub-verifiers, the first one checks an Algebraic Constraint
Satisfaction Problem (ACSP) problem and the second verifies proximity to Reed-Solomon
codes. To prove the main theorem we need to show that both can be computed with low
computational complexity. In §4.1 we discuss the efficient verification of ACSP. In §4.2 we
state the efficiency of the proximity tester. In §4.3 we state the needed derandomization
tools for boosting soundness via repetition and in §4.4 we complete the proof.

4.1 Algebraic CSP

The following definition is a variant on that of a univariate ACSP appearing in [BS08,
BGH+05] (cf. [Mie09, BCGT13b]). It slightly differs as it requires an assignment which is a
pair of univariate polynomials (previous works required a single univariate polynomial) but
its definition of satisfiability (1) is cleaner from an algebraic point of view.
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Definition 4.1 (Algebraic CSP). A univariate ACSP (or, simply, an ACSP) instance ψ is
a quadruple ψ = (F, J,V , Q) where

• F is a finite field

• J is a finite set of indices

• V = {Vj | j ∈ J} is a set of univariate polynomials (Vj ∈ F[X]) indexed by J

• Q = Q(X,Z,Y = {Yj | j ∈ J}) is a multi-variate polynomial over variables X,Z and
the set of variables Y which, like V, is indexed by J .

An assignment to ψ is given by two polynomials A,B ∈ F[X]. We say (A,B) satisfies ψ if

Q (X,A(X), B(X), {Yj ← A(Vj(X)) | j ∈ J}) ≡ 0 (1)

where equality is over the ring F[X] and Yj ← A(Vj(X)) means substituting Yj by A(Vj(X)).

The first part in the proof of Theorem 1.1 is

Theorem 4.2. Let M be an algorithm running in time T = T (n) ≥ n on inputs of the form
(x, y) where |x| = n. There exists an integer c and another algorithm that given x ∈ {0, 1}n
and integer a ≥ 2, outputs in time poly(n, log T, a) an ACSP instance ψ = (F, J,V , Q) as in
Definition 4.1. This ACSP is satisfiable iff there is y ∈ {0, 1}T s.t. M(x, y) accepts, and has
the following features:

• Characteristic 2. F is the field of size 2`+a where ` = log(n+ T ) ·O(log log(n+ T )).

• Preprocessing. |J | = poly(log T, n) and deg(Vj) ≤ 1 for all j ∈ J . Moreover, Vj is
of the form Vj(X) = X + γj where γj ∈ F.

• Degree bounds. If Q is satisfiable then it is satisfied by polynomials A and B of
degrees at most 2` and 2`+c respectively.

• Postprocessing. Q is computed by an arithmetic circuit over F of size at most
poly(log T, n).

Note that by the Preprocessing feature, each Vj is computed by a projection as per the
last bullet of Theorem 1.1.

Remark 4.3 (Constant size J). The construction of [BGH+05, BCGT13b] has constant size
J (i.e., constant query complexity). However, this comes at the price of a more complicated
construction, resulting in preprocessing that is not necessarily a projection. Also note that
even if J were to be constant, proximity-testing (discussed in next section) requires super-
constant query complexity.
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Following [BGH+05, BCGT13b], the proof idea is to “arithmetize” the circuit D from
Theorem 2.1 into a polynomial Q: Inputs and outputs of this arithmetized version are
elements of a field F of size roughly 2` and an assignment is supposed to be the interpolation
(or “low-degree extension”) of the assignment to the variables. We denote the assignment
by A(X). (The role of the polynomial B is to solve the “zero-testing” problem and will be
explained later.) Since the definition above allows A to be any polynomial over F we need
to add a set of “range-checking” constraints, not appearing in D, that force A to evaluate
only to {0, 1} on the domain of interest.

4.2 Reed Solomon PCP of Proximity

We view a linear error correcting code C as a set of functions C = {w : L→ F} from a finite
domain L of size n (the code’s blocklength) to a finite field F.

Definition 4.4 (Succinct PCPP for a linear code). Let C = {w : L→ F} be a linear error
correcting code over finite field F. A PCP of proximity (PCPP) for C is a set of functions,
one for each codeword of C, denoted Π = {πw : L′ → Fq | w ∈ C}, where L ∩ L′ = ∅. A
succinct PCPP-verifier for (C,Π) is a pair (Query,Dec) where

• Preprocessing Query : {0, 1}r → Ft × (L ∪ L′)q. In what follows we denote by

x
(R)
1 , . . . , x

(R)
t+q are the outputs of Query(R) on input R ∈ {0, 1}r

• Postprocessing Dec is an arithmetic circuit over F with t+ q inputs

The proof length of this PCPP is |L′|, its alphabet is F, the randomness complexity is r,
query complexity is q and decision complexity is |Dec|. We say C has a PCPP system with
soundness s for proximity parameter δ0 if there exists a PCPP Π for C satisfying:

• Completeness: If w ∈ C then

Pr
R∈{0,1}r

[Dec(x
(R)
1 , . . . , x

(R)
t , y1, . . . , yq) = 0] = 1

where yi = (w ◦ πw)(x
(R)
i+t) is the answer given to query xi+t

• Soundness: If w is δ0-far from C then for any π : L′ → F,

Pr
R∈{0,1}r

[Dec(x
(R)
1 , . . . , x

(R)
t , y1, . . . , yq) 6= 0] ≥ s

We find it helpful to define Reed-Solomon codes in a somewhat non-standard way, using
fractional degree δ instead of regular degree.

Definition 4.5 (RS-codes). For F a finite field, L ⊂ F and constant δ ∈ (0, 1]

RS[F, L, δ] = {p : L→ F | deg(p) < δ|L|}

where deg(p) is the minimal degree of a polynomial P (X) whose evaluation over L is p.

11



The second part in the proof of Theorem 1.1 is given next.

Theorem 4.6 (Preprocessing efficient verifier for RS codes). Let F be a finite field of char-
acteristic 2 and L ⊆ F be an F2-affine space of dimension k and let a ≥ 3 be an integer. For
any proximity parameter δ0 > 0 there exists a succinct PCPP system for RS[F, L, 2−a] with
soundness 1/kc for a positive constant c independent of k, satisfying

• Proof length is 2k · poly(k) and alphabet is F

• Query complexity is kc
′

for positive constant c′ independent of k

• Preprocessing: Query is a projection according to the last bullet of Theorem 1.1

• Postprocessing: |Dec| = poly(k)

We point out that all points but for preprocessing were proved in [BS08, BGH+05].
Therefore our proof of the theorem in Section 6 will focus only on preprocessing.

4.3 Randomness efficient sampling via ε-biased sets

For boosting soundness in an efficient way, i.e., one that preserves 1-local preprocessing, we
need to use samplers based on ε-biased sets. After recalling the necessary information about
them we complete the proof of Theorem 1.1.

The following lemma is a well-known corollary of the expander mixing lemma (cf. [ASE92])
and the observation that a Cayley graph generated by an ε-biased set has normalized second
eigenvalue at most ε (cf. [NN90]). We state it without proof.

Lemma 4.7 (ε-biased hitting sets). Let G be a Cayley graph over vertex set {0, 1}n generated
by an ε-biased set S. Then for any V ⊂ {0, 1}n of density µ = |V |/2n, the set U of vertices
that have no edge to V has density

|U |
2n
≤ ε2

µ

We also use the existence of efficiently constructible ε-biased sets (cf. [NN90, AGHP92]).

Lemma 4.8 (ε-biased sets). Given ε ∈ (0, 1) and integer n there exists a deterministic
algorithm running in time poly(n, 1/ε) that outputs an ε-biased set S. Consequently, |S| ≤
poly(n, 1/ε).

4.4 Proof of Theorem 1.1

Recall the proof of [BS08, BGH+05]. On input x one invokes Theorem 4.2 with integer
a = c + 10 to obtain an ACSP instance as stated there (we use the notation from that
theorem). Verifier expects a PCP proof containing (i) a function pA : F→ F with PCPP πA
for RS[F,F, 2`

|F| ] where F is the finite field of size 2` and ` = log(n + T ) · O(log log(n + T ));

The function pA is supposed to be the evaluation of A on F, and (ii) a function pB : F→ F

12



with PCPP πB for RS[F,F, 2`+c

|F| ]. Now verifier applies (i) the RS-PCPP sub-verifier on each

of (pA, πA) and (pB, πB), and (ii) checks that (1) in Definition 4.1 holds for a random choice
of ξ ∈ F, and using pA, pB as proxies for A and B; all of these tests reuse randomness. If
all tests pass, verifier accepts, else she rejects. It is shown in [BS08] that this PCP has
perfect completeness, soundness 1/poly(n), query and decision complexities poly(n, log T ),
proof length (n+ T ) · poly log(n+ T ) and randomness complexity log `+O(log log `). Thus,
what is left is to argue is that we can repeat the process poly(n) times to boost soundness
to 1− 1/poly(n) and do this while maintaining the preprocessing as a 1-local computation,
or projection, and the decision complexity of poly(n, log T ) which can then be converted to
a 3CNF of size poly(n, log T ) using the Cook-Levin Theorem (cf. Claim 1.6).

The preprocessing of a single invocation of the verifier described above is a 1-local com-
putation, as argued for the ACSP verifier in Theorem 4.2 and for the RS-PCPP verifier in
Theorem 4.6. Let S ⊂ {0, 1}r be an ε-biased set for a suitably small ε = 1/poly(n) to be
fixed later. Lemma 4.8 implies |S| = poly(n). Given randomness R ∈ {0, 1}r we invoke the
verifier above (which has soundness 1/poly(n)) on R ⊕ s for each s ∈ S, where ⊕ denotes
xor. The transformation R 7→ R⊕ s is 1-local because s is fixed so the new verifier still has
a 1-local preprocessing computation. Postprocessing and query complexity can be seen by
inspection to be poly(n) and soundness is now boosted to 1− 1/poly(n) due to Lemma 4.7.
Indeed, let V ⊂ {0, 1}r be the set of randomness strings that cause the single-invocation
verifier to reject, and let U ⊂ {0, 1}r be the “bad” set of R such that R ⊕ s 6∈ V for every
s ∈ S. Lemma 4.7 implies that the density of U in {0, 1}r can be reduced to at most 1/nc1

by fixing ε = 1/nc2 for a constant c2 depending only on c1.
This completes the proof of Theorem 1.1.

5 Proof of Theorem 4.2

5.1 Algebraic preliminaries

In our proof we need to use selector polynomials and their efficient construction, defined
next.

Definition 5.1 (Vanishing and selector polynomials). For S ⊂ F the vanishing polynomial
of S is ZeroS(X) =

∏
s∈S(X − s). In words, it is the unique monic polynomial of degree

|S| whose set of roots, counted with multiplicitiy, is precisely S. For S ′ ⊂ S we define the
selector polynomial of S ′ in S to be

SelS′⊂S(X) , ZeroS(X)/ZeroS′(X)

noticing it has degree |S| − |S ′|, vanishes on S \ S ′ and is nonzero on S ′. We use Selβ∈S(X)
as a shorthand for Sel{β}⊂S(X).

Lemma 5.2 (Succinct affine selector polynomials). If S ′ ⊂ S are two Fq-affine subspaces
inside FqN of respective dimensions d′ < d, then SelS′⊂S(X) = ZeroS(X)/ZeroS′(X) is com-
puted by an arithmetic circuit over F of size poly(d).
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Proof. Follows from the fact that ZeroS(X),ZeroS′(X) are linearized polynomials, hence each
have d, d′ nonzero coefficients respectively.

5.2 Proof of Theorem 4.2

Notation For F a field of characteristic 2 and B = (β1, . . . , βn) linearly independent over F2

and α ∈ F, let span(B) be the span of B. For S, T ⊂ F let S+T = {α + β | α ∈ S, β ∈ T}.
For α ∈ F let α + S = {α}+ S = {α + x | x ∈ S}, noticing α + span(B) is the affine shift
of span(B) by α.

Proof of Theorem 4.2. The proof goes by arithmetizing the circuits and constraint satisfac-
tion problem of Theorems 2.1, 2.2, so we use the parameters and notation stated there.

Associate {0, 1} with elements of F2 in the natural way. Let N > `, let F be the field of
size 2N and let ζ1, . . . , ζN be a basis for it.

Embedding the inputs to D in F Embed the first `1 inputs ofD intoH1 = span(ζ1, . . . , ζ`1)
by mapping α = (α1, . . . , α`1) ∈ {0, 1}`1 to

∑`1
i=1 αiζi. Similarly map the last `2 input

bits of D into H2 = span(ζ`1+1, . . . , ζ`) by mapping β = (β1, . . . , β`2) to
∑`2

i=1 βiζ`1+i. Let
H ′ = span(ζ1, . . . , ζ`) be the direct sum of H1, H2 and let H = span(ζ1, . . . , ζ`+1) noticing H ′

is subspace of codimension 1 inside H. (Recall N > ` so H is well-defined.) From here on
we overload notation and treat α appearing in Theorem 2.2 as an element of H1. Likewise β
is an element of H2 and Si(β) will be viewed as an element of H ′. All arithmetic operations
appearing henceforth are in F.

Preprocessing variable selection functions For each i ∈ {1, 2, 3} and β ∈ H1 let

Vi,β(X) , X + Si(β), (2)

noticing it is a degree-1 polynomial. We also need the range-checking indexing function

Vrange(X) , X + ζ`+1 (3)

We set the index set of variables Y and addressing functions V to be

J =
{

(i, β) | i ∈ {1, 2, 3} , β ∈ {0, 1}`2
}
∪ {range} .

The proof of the next claim follows by inspection of (2), (3).

Claim 5.3 (Preprocessing). For every α ∈ H1 and β ∈ H2 we have Vi,β(α+β) = α+β+Si(β).
In particular, all preprocessing functions appearing in (2) and (3) are projections.
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Sub-polynomials of Q The polynomial Q will be composed of poly(log T, n) many poly-
nomials, each of constant degree and with a constant number of variables. We now define
these sub-polynomials. For β ∈ H2 let b1(β), b2(β), b3(β) denote the three sign-bits of the
clause depending on β. Let Qβ(Y1, Y2, Y3) be the constraint that arithmetizes the relevant
clause,

Qβ(Y1, Y2, Y3) , (Y1 − b1(β)) · (Y2 − b2(β)) · (Y3 − b3(β))

Additionally, we need the range-testing polynomial Qrange(Z) = Z2 − Z whose roots are
{0, 1}, i.e., Qrange(Z) = Zero{0,1}(Z).

Gluing the subpolynomials to obtain Q To “glue” together the sub-polynomials dis-
cussed above we use selector polynomials, each selecting an affine subspace of H. These
subspaces are defined for each β ∈ H2:

β +H1 = {α + β | α ∈ H1}

Notice that Selβ+H1⊂H is a selector polynomial for an affine subspace of H of codimension
O(log log T+log n) in H, thus can be computed by a small circuit (cf. Lemma 5.2). Similarly
let ζ`+1 + H1 denote the affine shift of H1 by ζ`+1 and notice this is a space of constant co-
dimension inside H. We now define

Q̂(X,Y) = Q̂ (X,Y = {Yi,β,a | i ∈ {1, 2, 3} , β ∈ H2, a ∈ F2} ∪ {Yrange}) =∑
β∈H2

Selβ+H1⊂H(X) ·Qβ(Y1,β, Y2,β, Y3,β) + Selζ`+1+H′⊂H(X) ·Qrange(Yrange) (4)

and
Q(X,Z,Y) = Q̂(X,Y)− Z · ZeroH(X) (5)

which conforms with (1).

Completeness and Soundness Follow from the next two claims.

Claim 5.4. Let A(X) be a polynomial. There exists a polynomial B(X) such that (A,B)
satisfy Q iff the polynomial

QA(X) = Q̂(X, {Yj ← A(Vj(X)) | j ∈ J})

vanishes for every h ∈ H, i.e., QA(h) = 0 for every h ∈ H.

Proof. Recall that (A,B) satisfy Q iff

Q(X,Z ← B(X), {Yj ← A(Vj(X)) | j ∈ J}) ≡ 0

Which means
QA(X) ≡ ZeroH(X) ·B(X)
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where equivalence is in the ring F[X]. One direction is immediate: the right hand side in the
last equation above vanishes on H by construction of ZeroH and hence QA(X) must vanish
on every h ∈ H too. In the other direction, if QA(X) vanishes on h ∈ H then it is divisible
by the polynomial (X − h). This is because F[X] is a unique factorization domain. Hence
QA(X) is divisible by

∏
h∈H(X − h) = ZeroH(X), which means there exists B(X) such that

QA(X) ≡ ZeroH(X) ·B(X).

Claim 5.5. QA(X) vanishes on every h ∈ H if and only if:

1. A(α + β) ∈ F2 for every α ∈ H1, β ∈ H2, and (recalling H ′ = H1 + H2 is identified
with {0, 1}` and F2 is identified with {0, 1})

2. the boolean assignment A : {0, 1}` → {0, 1} satisfies the succinct CSP defined by D.

Proof. The first observation is that for any h ∈ H there is at most one summand of (4) that
does not vanish. This follows from the definition of the selector polynomial and because the
sets β +H1 and ζ`+1 +H ′ are all mutually disjoint.

To prove part 1 we start with the very last term in (4) and notice that, for x ∈ H, the
selector polynomial selects only x of the form x′+ ζ`+1 for x′ ∈ H ′. The function Vrange adds
ζ`+1 to its input, thus (Yrange ← Vrange) evaluated on x′ + ζ`+1 is simply x′. Hence QA(X)
vanishes on x ∈ H ′+ζ`+1 iff Qrange(A(α+β)) = 0 for every α ∈ H1, β ∈ H2 which establishes
part 1.

Part 2 follows by inspection, using the same rationale as used in proving part 1. Notice
that the selector for β + H1 evaluates to 1 on x ∈ H if and only if x is of the form α + β
for α ∈ H1. This, together with Claim 5.3, means that (Yi,β ← Vi,β) evaluated on x is
simply α + β + Si(β). It follows from the definition of Qβ that the term corresponding to
x vanishes iff the xth clause is satisfied by the assignment given by A to its three variables.
This completes the proof.

Computational Efficiency Postprocessing complexity is equal to the size of Q in (5),
this size is poly(n), as implied by Lemma 5.2. Regarding preprocessing, it can be done via
projections as shown in Claim 5.3.

6 Preprocessing Complexity of the RS-PCPP verifier

In this section we prove Theorem 4.6. The completeness, soundness, query complexity,
randomness and decision time of the RS-PCPP verifier are already given by [BS08, BGH+05]
(cf. [BCGT13b]) and here we focus solely on showing that preprocessing can be done via
projections. This will be argued by following the proof in [BS08, Section 6] and specifying
the query-format to the PCPP oracle and the preprocessing done to the randomness by the
PCPP-verifier. We assume the reader is familiar with that proof (including the notation
there) and point out, using footnotes, the minor modifications needed for our proof.

We start by recalling the RS-PCPP from [BS08, Section 6]. We consider a system for
verifying proximity to RS[F, L, 2−a] where F is a field of characteristic 2 and size > 2k+a and
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L is an affine space1 of dimension k. The proximity-verification problem for RS[F, L, 2−a] is
reduced to 2 · 2dk/2e many instances of the proximity-verification problems for RS[F, L′, 2−a]
where L′ is an affine space of dimension ≤ dk/2e+ a.2 Applying the same kind of reduction
recursively — we stop it when dim(L′) ≤ 2a — leads after O(log k) many iterations to
constant-size domains L′, for which the proximity-verification problem is solved by querying
the relevant function on all of its domain and checking it has fractional degree less than
2−a. Consequently, the combination of p and its RS-PCPP oracle can be viewed as residing
in a tree. Each node v of the tree refers to a function fv : Lv → F where Lv is an affine
space of dimension k = kv, which we call also the dimension of v. The function p refers to
the root of the tree. Lv is specified by a shift b0 and a basis b1, . . . , bk, so a query to fv is
specified by (r1, . . . , rk) ∈ Fk2 and answered by f(b0 +

∑
i ribi). One thing that complicates

the situation is that the various functions residing in the tree must be consistent, i.e., they
must give the same value to certain pairs of points. (This is because the functions fu residing
in the sons of v interpolate certain values of fv, in a way explained later on.) We deal with
this by redirecting queries from fu to the relevant fu′ . In particular, our query-generating
preprocessing algorithm runs in two phases: In the down phase we use randomness to go
down the tree and reach a leaf, generating an initial set of queries. In the up phase we take
our query and, if needed, redirect it either to a sibling or to its father, and continue the
process. Thus, to prove Theorem 4.6 we will argue that each step of each of the phases is
a projection. To state the two claims we explain more the structure of the RS-PCPP proof
tree.

6.1 Overview of a single level of the RS-PCPP system

We continue to assume familiarity with [BS08, Section 6] and use the notation there. Assume
p : L → F belongs to RS[F, L, 2−a] and let P (X) be the polynomial whose evaluation is p
(i.e., p(x) = P (x) for all x ∈ L and deg(P ) < |L|/2a). Let ` = bk/2c and as in [BS08,
Equation (6.2)] let

L0 , span(b1, . . . , b`), dim(L0) = `

L′0 , c0 + L0 + span(c1, . . . , ca−1), dim(L′0) = `+ a− 1 (6)

L1 , b0 + span(b`+1, . . . , bk), dim(L1) = k − `

and q(X) , qL0(x) be the subspace polynomial vanishing on span(b1, . . . , b`). Notice L′0 ∩
L1 = ∅ so that we have a simpler version of [BS08, Equation (6.3)]: For β ∈ L1 let

Lβ , L′0 ∪ β + L0 + span(c1, . . . , ca−1), dim(Lβ) = `+ a (7)

and notice Lβ ⊃ β + L0.

1[BS08, Section 6] assumes L is a linear space. The generalization to affine-spaces is immediate, cf.
[BCGT13b].

2In [BS08, Section 6] a = 3, i.e., fractional degree is 1/8. This can be generalized to arbitrary constant a
as we assume here.
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By [BS08, Proposition 6.3] there exists a unique bivariate polynomial Q(X, Y ) satisfying
degX(Q) < 2`, degY (Q) < 2(k−`)−a and

Q(X, Y ) ≡ P (X) mod Y − q(X), or equivalently P (X) = Q(X, q(X)). (8)

Assuming p is the evaluation of P and using q and Q above, view p : L→ F as a partial
bivariate function p : T → F for T ⊂ F× F

T =
⋃
β∈L1

{(β + L0)× {q(β)}} . (9)

In what follows for T ⊂ F × F let the β-row of T be Rβ[T ] = {α | (α, β) ∈ T} and the
α-column is Cα[T ] = {β | (α, β) ∈ T}.

Next, as in [BS08, Definition 6.5] let f : S → F where

S =

( ⋃
β∈L1

{Lβ × {q(β)}}

)
\ T

is supposedly the evaluation of Q on S and in what follows we denote by f̂ : S ∪ T → F
the function that agrees with p on T and with f on S. Assuming p is the function residing
at the root v, there is one row-edge leaving v for each nonempty row of S ∪ T and one
column-edge leaving v for every α-column of S, where α ∈ L′0. The number and structure
of these outgoing edges is given by the following analog of [BS08, Proposition 6.6].

Proposition 6.1 (Structure of S and T ). The set S ∪ T is the disjoint union of q(β)-rows
for β ∈ L1. The q(β)-row of S ∪ T is the affine space Lβ. Similarly, for every α ∈ L′0, the
α-column of S ∪ T is the affine space q(L1), and it has no intersection with T .

If f̂ is indeed the evaluation of Q, then every row of f̂ is a polynomial of degree < 2`

and every column is of degree < 2(k−`)−a. This leads to the following recursive definition of
the RS-PCPP tree, which complements [BS08, Definition 6.5] by providing a more explicit
query-access to nodes in the tree.

Definition 6.2 (RS-PCPP tree node labels). Let v be a node in a RS-PCPP tree, and
assume it is labeled by affine shift b0, basis b1, . . . , bk, auxiliary shift c0 and auxiliary basis
c1, . . . , ca−1 where b0, . . . , bk, c0, . . . , ca−1 are linearly independent (in particular, b0 and c0
are nonzero). A query to the node is specified by r1, . . . , rk and the answer is interpreted
as f(b0 +

∑k
i=1 ribi). (Notice that the auxiliary shift and basis are not used in querying fv,

rather they are needed for the recursion specified next.)
If k ≤ 2a then v is a leaf. Otherwise, let L0, L

′
0, L1, Lβ be as in (6) and (7). Then v has

the following edges

1. v has 2k−` row-edges, each edge labeled by β ∈ L1, and the node u at the other end of the
edge is labeled by the affine shift β and basis b1, . . . , b`, c1, . . . , ca−1, (c0 + β), auxiliary
shift c′0 and auxiliary basis c′1, . . . , c

′
a−1 that are linearly independent of β, b1, . . . , b`, (c0+

β), c1, . . . , ca−1.
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2. Additionally, v has 2`+a−1 column-edges, each edge labeled by α ∈ L′0. The node u at the
other end of the edge is labeled by shift q(b0) and basis q(b`+1), . . . , q(bk), auxiliary shift
c′0 and auxiliary basis c′1, . . . , c

′
a−1 that are linearly independent of q(b0), q(b`+1), . . . , q(bk).

Intuitively, we assume the prover provides a function fv : Lv → F for each node v in our
tree. We associate Lv with Tv ⊂ F× F as in (9), view fv as a partial bivariate function with
domain Tv. We then define a set Sv as in Proposition 6.1 and assume the prover provides for
each q(β)-row of Sv∪Tv the evaluation of f̂ restricted to that row. This evaluation resides in
the node u at the end of the row-edge labeled by β. Similarly, the evaluation of f̂ restricted
to an α-column of Sv ∪ Tv resides in the node w at the end of the column-edge labeled by
α. By definition, the q(β)-row of Sv ∪ Tv — which resides in node u — has non-empty
intersection with Tv. On inputs in Tv we should require fv to equal fu. Similarly, every
element in the α-column — which resides in node w — is also an element of some q(β)-row,
so we require fw to equal fu for the relevant u. To enforce this consistency between functions
residing in different nodes of the RS-PCPP tree, we define a query generation preprocess
that traverses the RS-PCPP proof tree in two phases: In the down phase we use randomness
to go down the tree and reach a leaf, generating an initial set of queries. In the up phase we
take each query that was generated at the end of the down phase and, if needed, redirect it
as follows: If the query is to a column-node (i.e., w reached from v via a column edge) then
we refer the query to the proper row-sibling; if the query is to a row-node u (reached from
v) and furthermore resides in Tv we refer it to the father v of u. Thus, to prove Theorem 4.6
we will argue that each step of each of the two phases is a projection. We start by describing
the down phase.

Claim 6.3 (Down phase). At non-leaf v of dimension k = kv denote the k bits of initial
randomness by r = (r1, . . . , rk). The down step consists of

• Partitioning the bits into r′′ = (r1, . . . , r`) and r′′′ = (r`+1, . . . , rk)

• Appending a constant number a− 1 of new bits r′ = (r′1, . . . , r
′
a−1) to r′′.

• Tossing a coin r′0 and based on its outcome either use r′′ as a label for a column-edge
v → u and apply another down-step to u with randomness r′′′, or use r′′′ as a label for
a row-edge v → u′ and apply another down-step to u′ with randomness r′′.

This down phase process is initialized at the root with k bits of randomness, and continued
until a leaf u of dimension k ≤ 2a is reached. (Recall a is a constant.) All 2a elements of fv
are designated as queries and we apply the up phase to each one of them separately. The
up phase consists of O(log k) many steps, at most 2 up-steps at each level of the tree.

Claim 6.4 (Up phase). Let u be a node of dimension ku and let r = (r1, . . . , rk) be the
randomness used to query it. If u is the root, then the up-phase terminates and the query r
is sent to fu. Otherwise, let v be the father of u and let r′ be the bit-sequence specifying its
edge-label. A number a of the bits of r′ are examined in a non-adaptive manner and based on
their value, the up-step chooses one of three possibilities: (i) make query r to fu, (ii) redirect
the query r′ to the son u′ of v with edge v → u′ labeled r, or (iii) redirect the query r ◦ r′ to
v.
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Proof of Theorem 4.6. Proof length is proved in [BS08]. As shown there, a single invocation
of the RS-PCPP verifier has query complexity O(1) (over alphabet F) and soundness 1/kc

for a universal constant c.
We now argue that preprocessing can be achieved by a projection. First, notice that

generating R+ y from R is a projection according to the last bullet of Theorem 1.1. Having
fixed the initial randomness, the key point is that only O(log k) bits are examined in all
down-steps and up-steps. Hence, consider a modified verifier which fixes in advance every
possible setting for these O(log k) bits. The query complexity of the modified verifier is
poly(k). Soundness can only increase because of this modification. Crucially, once these
O(log k) bits are fixed in advance, the remaining preprocessing is a projection according to
the last bullet of Theorem 1.1. A down-phase consists of permuting the bits; at the leaf a
constant number of bits are flipped; and the up phase consists yet again of permuting the
bits. This completes the proof of Theorem 4.6.

6.2 Down phase — Proof of Claim 6.3

Assume f : L → F resides at node v; we have k bits of randomness r1, . . . , rk passed on
from v’s father and a new bits of randomness r′0, . . . , r

′
a; L is specified by shift b0 and basis

b1, . . . , bk for L, and v has an auxiliary shift c0 and auxiliary basis c1, . . . , ca−1 for. Then by
Definition 6.2 v has one row-son labeled by β for each β ∈ L1, and one column-son labeled
by α for each α ∈ L′0. We use the first bit of new randomness r′0 to select a row (r′0 = 0) or
column (r′0 = 1) edge. If a row-edge is selected we use r`+1, . . . , rk to select a β ∈ L1 (recall
from (6) that dim(L1) = k − `) and pass (r1, . . . , r`, r

′
1, . . . , r

′
a) as randomness to the row-

node uβ. (Definition 6.2 and (7) imply dim(uβ) = `+ a.) If a column-edge is selected we use
(r1, . . . , r`, r

′
1, . . . , r

′
a−1) to select a column α ∈ L′0 (recall from (6) that dim(L′0) = `+ a− 1)

and pass (r`+1, . . . , rk) to the column-node uα of dimension k − `.
Notice that in either case (row/column) the operations performed on r1, . . . , rk, r

′
0, . . . , r

′
a

consist of (i) partitioning the bits in a fixed way into a single bit (r′0) and two roughly
equisized sets R0, R1. Then, based on r′0 we either use R0 as an edge label and pass R1

as randomness to the next node, or vice versa (use R1 as and edge label and pass R0 as
randomness to next node). Thus, each down phase examines O(1) bits and then (possibly)
a fixed permutation of the remaining bits. This completes the proof of Claim 6.3.

6.3 Up phase — Proof of Claim 6.4

If u is the root, then query fu at (r1, . . . , rk). Otherwise, there are two cases to consider:

Column nodes In this case suppose u is an (k−`)-dimensional column node whose father
is an k-dimensional node v and the edge leading from v to u is labeled by α ∈ L′0 and the
query to fu is r1, . . . , rk−`. The crucial point is that the shift and basis for querying fu are
q(b0) and q(b1), . . . , q(b`), so the query to fu is q(β) where β = b0 +

∑k−`
i=1 riq(bi). On the

other hand, the shift for the row-sibling u′ of u down the edge labeled by r1, . . . , rk−` is β
and the basis is b1, . . . , b)`, c1, . . . , ca−1, (c0 + β). Thus, assuming fu is the restriction of f̂ to
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the α-column, and fu′ is the restriction of f̂ to the q(β)-row, we see that the answer of fu at
α should equal the answer of fu′ on query β and this is precisely case (ii) of Claim 6.4.

Row nodes In this case suppose u is a ` + a-dimensional row-node whose father is an k
dimensional node v and the edge leading from v to u is labeled by β and the query to fu is
labeled by α = β+

∑`
i=1 ribi+

∑a−1
j=1 r`+jcj+r`+a(c0 +β) where r1, . . . , r`+a is the randomness

used to specify the query. We need to redirect the query to fv if and only if α ∈ Lβ ∩ Tv
which, inspection reveals, happens iff r`+a = 1 and r`+1 = . . . = r`+a−1 = 0. This can be
determined by inspecting a bits of the randomness, and if needed, the query comprised of
randomness r1, . . . , r`−k is concatenated with the ` bits of randomness specifying the edge
β and the total k bits are redirected to the father node v. This completes case (iii) of
Claim 6.4.

We conclude that in each case, the up-phase step occurring at level i of the tree involves
at most 2 hops — one from column-node to a sibling row-node, the other from a row-node to
its father. In each case the processing needed to be done involves inspecting at most a bits,
and based on this redirecting the query by possibly permuting its randomness bits. This
completes the proof of Claim 6.4.
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