
April 28, 2013
This file contains the scribes and exercises done by the students of the Ph.D. core class

Theory of Computation at Northeastern University in Spring 2013, taught by Emanuele
Viola.

Disclaimer: This file has not been edited by the instructor, and it contains mistakes.

1

Lecture 1

1.1 Summary

During this lecture we continued going through ”Think like the pros” covering the topics of
”Proof by Contradiction” and ”Quantifiers as Games”. We explored multiple examples of
proof by contradiction such as irrationality of

√
2 and tiling of mutilated chessboards. We

also covered some examples in order of growth and sets and functions. �

1.2 Proof of infinite primes

Claim 1. There exist infinitely many prime numbers. Recall that x is prime if x is only
divisible by 1 or x.

Proof. By contradiction. Suppose there exist only finitely many primes. Call them p1, . . . , pk,
for some k. Consider the value:

q =
∏
i≤k

pi + 1

This value must be prime, contradicting the supposition. Indeed, suppose q is not prime;
then there must exist some pi > 1 dividing q. But this is impossible, because pi divides q−1
and pi > 1. �

1.3 Board tilings

Consider an 8× 8 board.

Question: Can you tile (completely cover the board with no overlap) the board with 2 × 1
pieces?
Answer: Yes, by placing four tiles in each row. �

Question: Remove 2 opposite corners. Can you tile with 2× 1 pieces?
Answer: No.

Proof. Color the board like a chess board, in black and white.

i. Note that we removed two squares of the same color, say white

ii. Also note that each 2 × 1 piece has one black and one white square Assume for con-
tradiction that the board can be tiled.

Then by ii. you have the same number of black and white squares, but by i. there are
fewer white than black squares. This is a contradiction. �

2

Exercises for PhD Core Theory of Computation (S ’13)

Exercise 1. Prove that 4
√

2 is irrational (using only what has been seen in class).

Solution:

Claim 2. @a, b ∈ Z : 2a4 = b4

Proof. Suppose, for later contradiction, that

i. ∃a, b ∈ Z : 2a4 = b4.

Now let c := a2 and d := b2. Since a and b are integers, c and d must also be integers. This
allows us to rewrite i. as:

ii. ∃c, d ∈ Z : 2c2 = b2.

However, if this is true than
√

2 is rational, which has been disproven in class. Therefore, ii.
is contradicted and i. cannot be true. �

End of solution.

Exercise 2. Prove that:

1. On an 8 × 8 board, if you remove any corner you cannot tile the board with 3 × 1
pieces.
Solution: Let’s color all squares with the three colors white, black and red like the

following picture:

w b r w b r w b
b r w b r w b r
r w b r w b r w
w b r w b r w b
b r w b r w b r
r w b r w b r w
w b r w b r w b
b r w b r w b r

When we place a straight tromino on the board it covers squares of all three colors.
Therefore, after placing all tromino pieces they must cover 21 red, 21 white and 21
black squares. As you can see from the figure, the board has 21 red squares, 21 white
squares, and 22 black squares. This means we should remove a black square in order
to be able to tile the board with straight tromino pieces. (Or remove a white or red
square if we colored the board in a different order).

3

Also, the final solution should still work if the board is reflected along its horizontal or
vertical axes, so after these transformations the removed square has to still be located
in a black square.

Since the black corners do not map on black squares when reflected therefore we can’t
remove any of the corners and tile the board with straight trominoes.

End of solution.

2. On an 8× 8 board, show that there exists a square such that, if removed, you can tile
the remaining squares with 3× 1 pieces.
Solution: There are 4 squares on the board which satisfy both criteria from the

solution to the previous part. The squares c3, c6, f3, and f6 are black and will be
placed on black squares after any reflection.

If we remove any of these black squares we will have 21 white squares, 21 red squares
and 21 black squares which can be tiled with 21 trominoes.

1 1 1 2 2 2 3 4
5 5 5 6 6 6 3 4
7 8 9 10 11 e 3 4
7 8 9 10 11 12 12 12
7 8 9 10 11 13 13 13
14 14 14 17 18 19 20 21
15 15 15 17 18 19 20 21
16 16 16 17 18 19 20 21

End of solution.

4

3. An 8× 8 board cannot be tiled with 15 pieces (of 4 squares, shaped like a T) and one
2× 2 square.
Solution: Consider coloring the board with the colors black and white like a chess-

board. We have two possible kinds of T-tetronimoes after coloring:

And we have two kind of squares after coloring:

Both the number of black squares and the number of white squares in our board are
32. We are using one 4 × 4 square which contains 2 black cells and 2 white cells, so
we are left with 30 black cells and 30 white cells which should be covered with the 15
T-tetronimo pieces. Each T-tetronimo contains either 3 black cells and 1 white cell or
3 white cells and 1 one black cell, and since we should cover the same number of black
and white cells we should have the same number of T-tetronimoes with 3 black cells
as T-tetronimoes with 3 white cells. But we are using 15 T-tetronimoes, which is an
odd number, therefore it is not possible to cover the remaining cells with them.

End of solution.

Exercise 3. Prove the following.

1. Prove that for every integer k > 0,
(
n
k

)
= Θ(nk).

Solution: By definition,
(
n
k

)
= Θ(nk) ⇔

(
n
k

)
= O(nk) ∧

(
n
k

)
= Ω(nk). I will prove

these separately.

Claim 3. ∀k > 0,
(
n
k

)
= O(nk). That is, ∀k > 0∃c, n0∀n ≥ n0,

(
n
k

)
≤ cnk.

Proof. Let c = 1, n0 = 1. This gives us ∀k > 0, n ≥ 1 :
(
n
k

)
≤ nk. To see that this is

true, we can use the hint:(
n
k

)
≤ (en

k
)k

5

≤ (e
k
)knk the first sentence is constant

≤ c1n
k

�

Claim 4.
(
n
k

)
= Ω(nk). That is, ∀k > 0∃c, n0∀n ≥ n0,

(
n
k

)
≥ cnk.

Proof. According to the hint:(
n

k(n)

)
≥ (n

k
)k

≥ (1
k
)knk the fisrt sentence is a constant

≥ c2n
k

�

End of solution.

2. Let k : N→ N be a function. Suppose that k(n) is ω(1). Prove that
(

n
k(n)

)
= o(nk(n)).

Solution: Since k(n) = ω(1), we know that ∀c > 0∃n0 : ∀n ∈ N, n ≥ n0 : k(n) > c.

In other words, if P∀ chooses any constant c then P∃ can choose n0 so that the value of
k(n) will be greater than c for all n > n0. This means that k(n) grows in faster than
constant time as n increases. This leads us toward the proof.

Claim 5. ∀c > 0∃n0 : ∀n ∈ N, n ≥ n0 :
(

n
k(n)

)
< cnk(n)

Proof. According to hint:(
n

k(n)

)
≤ (en

k(n)
)k(n)

< (en
c

)k(n)

< (e
c
)k(n)nk(n) if we choose c bigger than e then the first sentence is a constant

< c1n
k(n)

�

End of solution.

3. Let k : N → N be a function. Suppose k(n) is both ω(1) and O(
√
n). Prove that(

n
k(n)

)
= nω(1).

Solution: Since k(n) = ω(1), we know that ∀c > 0∃n0 : ∀n ∈ N, n ≥ n0 : k(n) > c.

We also know k(n) = O(
√
n) which means ∀c > 0∃n0 : ∀n ∈ N, n ≥ n0 : k(n) < c

√
n

6

Claim 6. ∀c1, c > 0∃n0 : ∀n ∈ N, n ≥ n0 :
(

n
k(n)

)
> c1n

c

Proof. We can follow:(
n

k(n)

)
≥ (n/k)k > (n/

√
n)k > (c1

√
n)c > cc1n

c/2 �

End of solution.

Hint: use that for integers n, k > 0 : (n/k)k ≤
(
n
k

)
≤ (en/k)k, where e < 2.7183.

Exercise 4. Let a = a0, a1, a2, . . . be a sequence of integers. Let us write a → ∞ if ∀t, for
sufficiently large i, ai ≥ t (this is a definition). Prove that, for any two sequences a and b, if
a→∞ and b→∞, then the sequence c = c0, c1, c2, . . . defined as ci := abi also →∞.

Solution:

Claim 7. ∀t,∃i0∀i > i0, ci > t

Proof. We are given the following three facts:

i. ∀t,∃i0∀i > i0, ai > t

ii. ∀t,∃i0∀i > i0, bi > t

iii. ci = abi

If we replace i with bi in i., we get the following:

∀t, ∃b0∀bi > b0, abi > t

From ii., we know that all sufficiently large b are greater than any given b0. Therefore, we
know that there exists some b0 such that for all bi > b0, abi > t. Since abi = ci, this tells us
that the claim is true and that c→∞. �

End of solution.

Exercise 5. Let A = {x|a(x)} , B = {x|b(x)} be sets. Prove that

A = B ⇔
(
A ∩ B̄

)
∪
(
Ā ∩B

)
= ∅

Solution: Given the rules for set equality in the slides, we know that A = B precisely
when a(x)⇔ b(x). This is also the case for the expression on the right, as can be shown by
converting the claims from set notation into logical notation:(

A ∩ B̄
)
∪
(
Ā ∩B

)
= ∅

→{x| (a(x) ∧ ¬b(x)) ∨ (¬a(x) ∧ b(x))} = ∅

7

This merged set is the disjunction of two sets: any elements x for which a(x) is true and
b(x) is false, and any elements x for which a(x) is false and b(x) is true. In other words, it
is the set of all elements for which a(x) and b(x) give different outputs. This merged set is
empty if and only if a(x)⇔ b(x), which is equivalent to A = B.

End of solution.

8

Lecture 2
We continued reading ”Think Like the Pros” from Induction to Counting.

2.4 Proof of the Sunflower Theorem

Definition 8. We say that sets A1, A2, . . . , Ak are a sunflower of size k if Ai ∩ Aj is equal,
for any i 6= j.

Theorem 9. Any family of > s!(k− 1)s distinct sets of size s contains a sunflower of size k.

Proof. By induction on s:
Base case:

s = 1. We have > (k − 1) sets of size 1. Recall that they are distinct. Any k of these
sets form a sunflower A1, . . . , Ak with Ai ∩ Aj = ∅, for any i 6= j.
Induction step:

Pick as many disjoint sets as you can. Call them D1, D2, . . . , Dt.
If t ≥ k,D1, D2, . . . , Dk is a sunflower of size k, with Di ∩Dj = ∅ for any i 6= j.
If t < k, first observe that the total number of elements in the disjoint sets has the upper

bound ∣∣∣∣∣⋃
i≤t

Di

∣∣∣∣∣ ≤ (k − 1)s,

because each set has s elements, the disjoint sets all have different elements, and there are
at most k − 1 of these sets. Next, observe that any set in the family intersects some Di.
This is true because each set Di intersects itself, and each set which is not some Di must
intersect at least one of them or else it would be disjoint from all of them and be one of the
Di sets. Combining these observations, and using the pigeonhole principle, there must exist
some element x that belongs to

total sets

elements in disjoint sets
>
s!(k − 1)s

s(k − 1)
= (s− 1)!(k − 1)s−1

sets. LetA1, A2, . . . , Au be these sets. By the inductive hypothesis, A1−{x}, A2−{x}, . . . , Au−
{x} contains a sunflower of size k. Since A1, A2, . . . , Au all contain x their intersections are
still equal, so they also contain a sunflower of size k. �

Exercises for PhD Core Theory of Computation (S ’13)

Exercise 6. Prove by induction that 13 + 23 + 33 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)2

Solution: By induction on n.
Base Case: n = 1, 13 = 12

9

Inductive Step: We assume that 13 + 23 + · · · + (n− 1)3 = (1 + 2 + 3 + · · · + n− 1)2. It
then follows that:

13 + 23 + 33 + · · ·+ n3 = 13 + 23 + · · ·+ (n− 1)3 + n3

= (1 + 2 + 3 + · · ·+ n− 1)2 + n3 by inductive hypothesis

=

(
n2 − n

2

)2

+ n3 sum of the first n− 1 numbers

=
n4 − 2n3 + n2

4
+ n3

=
n4 + 2n3 + n2

4

=

(
n2 + n

2

)2

= (1 + 2 + 3 + · · ·+ n)2 �

End of solution.

Exercise 7. Prove that any 2n × 2n board with any one square removed can be tiled with
L-trominos.

Solution: By induction on n.
Base Case: n = 1, there are 4 squares in total, so no matter which one is removed, the rest
can be tiled with an L-tromino.
Inductive Step: We assume the statement holds for k = n − 1. When k = n we can
split the board into 4 equal-sized pieces, each having 2n−1 × 2n−1 squares. By inductive
hypothesis, the piece with the removed square can be tiled.

Now put one L-tromino in the center of the 2n × 2n board so that each square of the
L-tromino touches one square of the remaining three 2n−1 × 2n−1 boards. We remove these
three touched squares. By inductive hypothesis, the three remaining boards can now be
tiled.

End of solution.

Exercise 8. Prove that any family of > s!(k − 1)s+1 (possibly equal) sets of size s has a
sunflower of size k.

Solution: The sets in our collection may be equal, so let us consider how many sets we
can have which are equal to each other.

• If any k sets A1, A2, . . . , Ak are equal to each other, they are a sunflower of size k. This
is because Ai ∩ Aj = Ai = Aj for any i 6= j.

10

• If we don’t have k sets in the entire collection which are equal to each other, we have
to consider how many distinct groups of equal sets we have in our collection. Note that
the size of each group is at most k − 1. We have at least s!(k − 1)s+1 sets in total, so
the number of distinct groups must be at least

s!(k − 1)s+1

k − 1
= s!(k − 1)s.

If we form a collection using one representative set from each group, we have a collection
of at least s!(k − 1)s sets which, by the proof given in class, must contain a sunflower
of size k. �

End of solution.

Exercise 9. Ramsey theorem can be equivalently stated in terms of colors. Let Kn be the
graph on n nodes with an edge between any two nodes. Ramsey theorem states that for any
integers s ≤ 2, t ≤ 2 there exists a number R(s, t) such that if we color the edges of Kn,
where n ≥ R(s, t) with two colors Red and Blue, there are either s nodes such that all edges
between them are Red, or t nodes such that all edges between them are Blue.

The exercise asks you to prove an extension to three colors: for any integers s ≤ 2, t ≤
2, u ≤ 2 there exists a number R(s, t, u) such that if we color the edges of Kn, where
n ≥ R(s, t, u) with three colors Red, Blue, and Green, there are either s nodes such that all
edges between them are Red, or t nodes such that all edges between them are Blue, or u
nodes such that all edges between them are Green.

Solution: This is very similar to the proof given in class for R(s, t). Let Q(w) be the
claim, “For all integers s ≥ 2, t ≥ 2, u ≥ 2, w = s+ t+u,∃R(s, t, u) ∈ Z such that any graph
on n ≥ R(s, t, u) vertices has s nodes such that all edges between them are Red, or t nodes
such that all edges between them are Blue, or u nodes such that all edges between them are
Green.” We prove this by induction on w.
Base Case: w = 6

In this case, s = t = u = 2. We can pick R(s, t, u) := 2. This is true because in any
complete graph of at least 2 nodes, the single edge in the graph must be colored either Red,
Green, or Blue. Therefore, Q(6) holds.
Inductive Step: We assume w > 6 and Q(w − 1) is true. We need to prove that Q(w) is
true. To do that, we need to handle several cases.

• If s = t = 2 then pick R(s, t, u) := u. Any graph Kn with n = u edges either has at
least at least one red edge, satisfying s = 2, or at least one blue edge, satisfying t = 2,
or all green edges, satisfying u.

• If s = u = 2 or t = u = 2, we can reason similarly to the case s = t = 2 to show that
Q(w) is true.

11

• If s = 2, t > 2, u > 2, then we have two cases to consider:

– If the graph contains a Red edge, then s = 2 is satisfied and Q(w) is true.

– If the graph does not contain any Red edges, then we pick R(s, t, u) := R(t, u)
from the two color version of this problem. Since that version has been proven
true in class, we know that Q(w) is satisfied here as well.

• If s > 2, t = 2, u > 2 or s > 2, t > 2, u = 2 we reason similarly to the case when
s = 2, t > 2, u > 2 to show that Q(w) is true.

• If s > 2, t > 2, u > 2 we pick R(s, t, u) := R(s−1, t, u)+R(s, t−1, u)+R(s, t, u−1)+1.
Consider any graph with at least R(s, t, u) nodes. Let x be the first node. Say x has
exactly g red edges, h blue edges, and i green edges. The number of nodes in this graph
is g+h+ i+1, which we know is at least R(s−1, t, u)+R(s, t−1, u)+R(s, t, u−1)+1.
This means that g ≥ R(s− 1, t, u) or h ≥ R(s, t− 1, u) or i ≥ R(s, t, u− 1). We know
show that in any of these cases Q(w) is true.

– If g ≥ R(s− 1, t, u), we apply the inductive hypothesis to the graph of the neigh-
bors of x. That is, g is at least R(s− 1, t, u); hence, either it has s− 1 nodes all
connected by red edges, in which case by adding x we get s nodes all connected
by red edges, or t nodes all connected by blue edges, or u nodes all connected by
green edges. In all of these cases, Q(w) is true.

– If h ≥ R(s, t − 1, u) or i ≥ R(s, t, u − 1), we reason similarly to show that Q(w)
is true.

This concludes our proof. Now go have a sandwich like a pro. �
End of solution.

12

Lecture 3

3.5 Summary

We continued reading ”Think Like the Pros” from Increasing Subsequence till the end of
Random Variables, Expectation, and Variance. We also discussed the solution to Buffon’s
Needle Problem using the linearity of expectation.

3.6 Buffon’s Needle Experiment

CAVEAT : We will use continuous probability space.
Experiment : Suppose you have a table with infinite number of parallel lines drawn on it,
which are equally spaced with distance of 1 inch. Suppose you also have a needle, which is
also 1 inch long. Throw the needle randomly on the table.
Question : What is the probability p that the needle intersects a line?

Solution: Let random variable X be the number of intersections. Since X can only take
value 0 and 1, E[X] = p.

Now suppose you throw a needle with length 2 inches. Let random variable Y be the
number of intersections produced by this needle of length 2. Consider dividing the needle
into two halves with length 1. Let random variable X1 be the number of intersections pro-
duced by the first half and X2 be the number of intersections produced by the second half.
Then Y = X1 +X2. Based on linearity of expectations: E[Y] = E[X1] +E[X2] = p+ p = 2p

Similarly for the following needle which is not straight, we still have:
E[# intersections of the needle with length 2] = 2p

13

Also we have E[#intersections of the needle with length 1/2] = p/2

So we’ve seen that for a polygonal needle the expected number of intersections is a linear
function p ∗ l of the length l of the needle.

Consider now a circular needle of radius 1/2. If you drop the needle on the table, you will
find that one of two things happens. (1) One line crosses the needle in two different points.
(2) Two lines tangent to the needle. Therefore, the needle always intersects two lines and
the expected number of intersections is 2. The length l of the needle = the circumference of
the circle = 2 ∗ π ∗ 1/2 = π. Hence 2 = E[X] = p ∗ l = p ∗ π. We get p = 2/π.

End of solution.

3.7 Exercises

Exercise 10. Prove ∀k ≥ 1, ∀n ≥ k, (n
k
)k ≤

(
n
k

)
≤ (en

k
)k.

Solution: Solution 1
First (n

k
)k ≤

(
n
k

)
. (

n

k

)
/(
n

k
)k = Πk−1

i=0

(n− i)k
(k − i)n

= Πk−1
i=0

nk − ik
nk − ni

≥ 1

14

Second
(
n
k

)
≤ (en

k
)k.

ln((
en

k
)k/

(
n

k

)
) =k + k lnn− k ln k − Σk−1

i=0 ln(n− i) + Σk
i=1 ln i

≥k + k lnn− k ln k

− (n lnn− n− (n− k + 1) ln(n− k + 1) + (n− k + 1) + lnn)

+ (k ln k − k + 1) (summation of log to integral)

=(n− k + 1) ln(n− k + 1)− (n− k + 1) lnn+ k

=(n− k + 1)(ln(n− k + 1)− lnn+
k

n− k + 1
)

=(n− k + 1)(ln(1− k − 1

n
) +

k/n

1− k−1
n

)

=(n− k + 1)(−k − 1

n
− (

k − 1

n
)2/2− ...+ k

n
(1 + (

k − 1

n
) + (

k − 1

n
)2 + ...))

(taylor expansion)

=(n− k + 1)(Σ∞i=0(
k − 1

n
)i(
k

n
− k − 1

n(i+ 1)
)) ≥ 0

End of solution.

Solution: Solution 2
First we will prove ∀k ≥ 1, ∀n ≥ k,

(
n
k

)
≥ (n

k
)k by mathematical induction on k.

Base Case: k = 1, ∀n ≥ 1,
(
n
1

)
= n ≥ (n

1
)1.

Inductive Hypothesis: Fix k ≥ 1. Assume that

∀n ≥ k,

(
n

k

)
≥ (

n

k
)k.

Inductive Step: We want to prove that for fixed k + 1,

∀n ≥ k + 1,

(
n

k + 1

)
≥ (

n

k + 1
)k+1.

Since n− 1 ≥ k, we have(
n

k + 1

)
=

(
n− 1

k

)
n

k + 1
(by definition)

≥ (
n− 1

k
)k

n

k + 1
(by the hypothesis)

≥ (
n

k + 1
)k

n

k + 1
(since

n− 1

k
≥ n

k + 1
)

= (
n

k + 1
)k+1.

15

Therefore we have proved that ∀k ≥ 1, ∀n ≥ k,
(
n
k

)
≥ (n

k
)k.

Next we will prove that ∀k ≥ 1, ∀n ≥ k,
(
n
k

)
≤ (en

k
)k by mathematical induction on k.

Base Case: k = 1, ∀n ≥ 1,
(
n
1

)
= n ≤ en.

Inductive Hypothesis: Fix k ≥ 1. Assume that

∀n ≥ k,

(
n

k

)
≤ (

en

k
)k.

Inductive Step: We want to prove that for fixed k + 1,

∀n ≥ k + 1,

(
n

k + 1

)
≤ (

en

k + 1
)k+1.

Since n ≥ k, we have(
n

k + 1

)
=

(
n

k

)
n− k
k + 1

(by definition)

≤ (
en

k
)k
n− k
k + 1

(by the hypothesis)

= (
en

k
)k
n− k
k + 1

· en
en
· (k + 1)k

(k + 1)k

= (
en

k + 1
)k+1 · n− k

n
·

(1 + 1
k
)k

e

≤ (
en

k + 1
)k+1 · 1 · 1 (since (1 +

1

k
)k ≤ e)

= (
en

k + 1
)k+1.

Therefore we have proved that ∀k ≥ 1, ∀n ≥ k,
(
n
k

)
≤ (en

k
)k.

End of solution.

Exercise 11. Prove ∀n, a, b, c such that n > abc, any sequence of n (possibly equal) numbers
has an increasing subsequence of length at least a, or a decreasing subsequence of length at
least b, or a constant subsequence of length at least c.

Solution: Let {a1, a2, · · · , an} be a sequence of n numbers. For every i define xi ≥ 1
as the length of the longest increasing subsequence ending with ai, yi ≥ 1 as the length of
the longest decreasing subsequence starting with ai, and zi ≥ 1 as the length of the longest
constant subsequence ending with ai.

Note that (xi, yi, zi) 6= (xj, yj, zj), for i < j. Indeed, if ai < aj, then xj > xi; if ai > aj,
then yi > yj; if ai = aj, then zj > zi.

So each triple (xi, yi, zi) can only be assigned to one i. But there are less than n triples
(xi, yi, zi) with xi < a, yi < b, zi < c. So some triple (xi, yi, zi) with either xi ≥ a, or yi ≥ b,
or zi ≥ c must be assigned to some i.

End of solution.

16

Exercise 12. Consider an equilateral triangle of side length 1.
Prove that no matter how you place 5 points inside it, two must be at distance ≤ 1/2.
Now generalize this to prove that for every integer k ≥ 1, if you place at least 4k + 1

points inside the triangle, two must be at distance ≤ 1/2k.

Solution: Partition the equilateral triangle of side length 1 into 4 small equilateral triangles
of side length 1/2 as in the following figure.

According to pigeonhole principle, there must be two points in the same equilateral
triangle of side length 1/2. The distance between these two points ≤ 1/2.

If we partition each of these equilateral triangles of side length 1/2 into 4 equilateral
triangles of side length 1/4, we get 42 equilateral triangles of side length 1/22.

By repeating this process, we can get 4k equilateral triangles of side length 1/2k. Ac-
cording to pigeonhole principle, there must be two points in the same equilateral triangle of
side length 1/2k. So the distance between these two points ≤ 1/2k.

End of solution.

Exercise 13. Prove that in any graph with 2n nodes and at least n2 + 1 edges, there is a
triangle (a.k.a. a 3-clique).

Hint: Induction + Pigeonhole principle.

Solution: We prove this claim by mathematical induction. Let the set of edges in the
graph be E, and the set of nodes in the graph be V .
Base Case: When n = 2, it is easy to verify that the only graph (up to isomorphism) with
4 nodes and 5 edges is:

17

Therefore, there is a triangle in the graph.
Inductive Step: Suppose the claim holds when n = k. That is, in any graph with 2k nodes
and at least k2 + 1 edges, there is a triangle.

When n = k+ 1, take any (a, b) ∈ E. Let V1 = {a, b}, V2 = V −V1. |V2| = 2k. There are
two cases.

Case 1. ∃y ∈ V2 such that (a, y) ∈ E, (b, y) ∈ E, so there is a triangle 4aby in the graph.
Case 2. ∀y ∈ V2, either (a, y) /∈ E or (b, y) /∈ E. So there are at most 2k edges with one

node in V1 and the other node in V2. So there are at least (k+1)2 +1−1−2k = k2 +1 edges
with both of its nodes in V2. According to the inductive assumption, there is a triangle in
the subgraph induced by V2.

End of solution.

Exercise 14. In this exercise you will show the existence of sets that are not regular without
using the pumping lemma. Unlike the pumping lemma, the argument you will be using
applies to a large number of definitions of “simple” sets. From a pedagogical point of view,
this exercise is beneficial because lets you practice the pigeonhole principle and quantifiers
and the distinction between finite and infinite.

Say that a set is t-regular if it is obtained as in Definition 10 where the integer k in that
definition is constrained to be equal to t.

For D ⊆ {0, 1}∗, say that a function f : D → {0, 1} is (t-)regular if there exists a
(t-)regular set S such that ∀x ∈ D, f(x) = 1⇔ x ∈ S.

(1) Prove that the number of t-regular sets is 2O(t lg t).
(2) Use (1) and the pigeonhole principle to prove that for sufficiently large t ∃ft : {0, 1}t →

{0, 1} that is not t-regular.
(3) Use (2) to prove that there exists a set S ⊆ {0, 1}∗ that is not regular.

Solution:
(1) Let N(t) be the number of different sequences (S1, S2, · · · , St). For each 1 ≤ i ≤ t,

we consider the number of choices for Si after choosing S1, S2, · · · , Si−1. Denote this number
as A(i). Si has the following choices:
i) one of ∅, {0}, {1} and ε, and there are 4 such choices;
ii) ∃p, q < i such that Si = Sp ∪ Sq, and there are no more than (i− 1)2 such choices;
iii) ∃p, q < i such that Si = Sp ◦ Sq, and there are no more than (i− 1)2 such choices;
iv) ∃p < i, Si = S∗p , and there are no more than i− 1 such choices.

So A(i) ≤ 2(i− 1)2 + i− 1 + 4 = O(i2). Therefore there exist constants t1 ≥ 2 and c > 1
such that A(i) ≤ ci2 for all i ≥ t1. When t ≥ t1,

N(t) =
t∏
i=1

A(i) = (

t1−1∏
i=1

A(i))(
t∏

i=t1

A(i))

18

Here
∏t1−1

i=1 A(i) is a constant, and we can denote it as M . Then

N(t) = M
t∏

i=t1

A(i) ≤M
t∏

i=t1

ci2

≤M
t∏
i=1

ci2 = Mct(t!)2

≤Mctt2t = 22t lg t+(lg c)t+lgM

Since 2t lg t + (lg c)t + lgM = O(t lg t), there exist constants t2 ≥ 1 and d > 0 such that
2t lg t+ (lg c)t+ lgM ≤ dt lg t for all t ≥ t2. Therefore N(t) ≤ 2dt lg t for all t ≥ max{t1, t2}.
Thus we have proved N(t) = 2O(t lg t). The number of t-regular sets ≤ N(t) = 2O(t lg t).

(2) Since the number of t-regular sets is 2O(t lg t), there exist positive constants c and t0
such that the number of t-regular sets ≤ 2ct lg t for all t ≥ t0.

Because t lg t = o(2t), there exists a constant t1, such that 2t > ct lg t for all t ≥ t1. Let
t2 = max{t0, t1}. Then for ∀t ≥ t2, the number of t-regular sets ≤ 2ctlgt < 22t = the number
of different functions from {0, 1}t to {0, 1}.

Let t ≥ t2 be fixed. Assume ∀ft : {0, 1}t → {0, 1} is t-regular. According to pigeonhole
principle, there are two different functions whose inverse images of {1} are the same set.
This implies these two functions are the same. We get a contraction. So the assumption is
not correct. So ∀t ≥ t2, ∃ft : {0, 1}t → {0, 1} that is not t-regular.

(3) We don’t know how to prove (3) using (2). Here is a direct proof of (3).
Let At be the set of all t-regular sets. Since every t-regular set is obtained by applying a

finite number of operations on ε, 0, 1, ∅, the number of different t-regular sets is finite. So
At is a finite set. Let A be the set of all regular sets. A =

⋃
t≥1At is a countable union of

finite sets, so A is a countable set.
The elements in {0, 1}∗ can be enumerated as ε, 0, 1, 00, 01, 10, 11, · · · . Therefore {0, 1}∗

is countably infinite. The set of all subsets of {0, 1}∗ is a power set of a countably infinite set.
So it is a uncountably infinite set. The cardinality of the set of subsets of {0, 1}∗ is strictly
larger than the cardinality of the set of all regular sets. So there exists a set S ⊆ {0, 1}∗
that is not regular.

End of solution.

Exercise 15. Prove that if E1 and E2 are independent, then ¬E1 and E2 are also indepen-
dent.

Solution: Since E1 and E2 are independent, P [E1 ∩ E2] = P [E1]P [E2]. Therefore,

P [¬E1 ∩ E2] = P [E2]− P [E1 ∩ E2]

= P [E2]− P [E1]P [E2]

= (1− P [E1])P [E2]

= P [¬E1]P [E2]

19

So ¬E1 and E2 are also independent.
End of solution.

Exercise 16. Prove that ∃ε > 0 such that ∀ large enough n, we can find a subset A ⊆
{1, 2, · · · , n} such that

(1) |A| > εn
1
3 , and

(2) ∀x, y, z ∈ A, x+ y 6= z.

Solution: Let ε = 1, t = 3. For each n > t, we have n2 > 8, then n
2
> n

1
3 . We can take

A = {x ∈ {1, 2, · · · , n} | x is odd}.
Then |A| ≥ n

2
> n

1
3 = εn

1
3 , and ∀x, y, z ∈ A, x+ y is even, z is odd, so x+ y 6= z.

End of solution.

Exercise 17. Prove that ∃ε > 0 such that ∀ n ≥ 2, ∀U containing n real numbers, we can
find a subset A ⊆ U satisfying

(1) |A| > εn
1
3 , and

(2) ∀x, y, z ∈ A, x+ y 6= z.

Solution: Let ε = 1/100. When n ≥ 2, we have

n1/3 − 10n1/3 =
9

10
n1/3 ≥ 9

10
· 21/3 > 1.

So there is an integer k ∈ [1
10
n1/3, n1/3). Let A be a set of size k, and A is generated by random

sampling from U without replacement. That is, the first element is randomly selected from
U , and the second element is randomly selected from the remaining n−1 elements of U , and
so on. We know each element in U has the probability k/n of being selected into A, and any
other element not in U has zero probability of being selected into A. Let random variable
Xi denote the ith element selected into A. First we know

|A| = k ≥ 1

10
n1/3 > 1/100n1/3 = εn1/3.

Next we want to prove that

Pr[∀x, y, z ∈ A, x+ y 6= z] > 0.

Equivalently, we can prove

Pr[∃x, y, z ∈ A, x+ y = z] < 1.

20

In fact,

Pr[∃x, y, z ∈ A, x+ y = z]

=Pr[∃1 ≤ i ≤ k, 1 ≤ j ≤ k : Xi +Xj ∈ A]

≤
k∑
i=1

k∑
j=1

Pr[Xi +Xj ∈ A]

=
k∑
i=1

k∑
j=1

(Pr[Xi +Xj ∈ U]
k

n
+ Pr[Xi +Xj /∈ U]0)

≤
k∑
i=1

k∑
j=1

k

n

=
k3

n
<
n

n
= 1.

End of solution.

Exercise 18. Perform Buffon’s experiment. Describes the tools used and report the ap-
proximations you got after 10/20/30 throws.

Solution: We drew several equally spaced parallel lines on a large paper. The distance
between two neighbouring lines is 4cm which is equal to the length of the needle we used.
We threw the needle randomly onto the paper 30 times. We got 6 intersections in the first
10 throws, and the approximation of π is 10/3=3.33. We got 14 intersections in the first 20
throws, and the approximation of π is 20/7=2.86. We got 19 intersections in the first 30
throws, and the approximation of π is 60/19=3.16.

End of solution.

Exercise 19. (Extra Problem) Give a discrete proof of Buffon’s Needle Problem. Specifi-
cally, for a parameter n, imagine throwing the needle uniformly at positions 0, 1/n, 2/n, ...,
n-1/n with angles 0, 2π/n, 4π/n, ..., 2π(n− 1)/n. Show that p = 2/π + o(1).

21

Lecture 4

4.8 Summary

In this lecture, we finished the topic in the Think Like the Pros, from Random Variables,
Expectation, Variance and all that (which is section 9.5 in Think Like the Pros). We
firstly introduced the concepts of random variables, expectation and independent etc, and
went through some examples (e.g., toss coins) to strengthen our understanding.

Then we discussed the topic of concentration of measure, which includes Markov’s inequal-
ity, Chebychev’s inequality, Chernoff bound. We also introduced the definition of Kullback-
Leibler or Relative Entropy, as well as some applications of above conclusions in the proofs
and exercises, e.g., Jenson’s inequality. The lecture ended at the discussion of examples of
bad proofs.

Definition 10 (Chernoff bound). Let X1, X2, ..., Xn be independent 0/1 r.v. such that,

If Pr[Xi = 1] = p, then ∀δ ∈ [0,∞)

Pr[
n∑
i=1

Xi ≥ n(p+ δ)] ≤ 2−nD(p+δ||p).

Definition 11 (Kullback-Leibler divergence or Relative Entropy). For discrete probability

distributions p(x), q(x), K-L divergence is D(p||q) =
∑

x p(x)log2
p(x)
q(x)

.

Fact: D(p||q) ≥ 0

Proof.

−Dp||q =
∑
x

p(x) lg
q(x)

p(x)

≤ lg(
∑
x

p(x)
˙q(x)

p(x)
(Jensen’s inequality)

= lg 1 = 0.

�

4.9 Exercises

Exercise 20. In this exercise you will use concentration inequalities to prove anti-concentration
inequalities, that is, the result that a certain random variable does deviate from its expecta-
tion. It is convenient to think of the experiment of tossing n {−1, 1} coins (instead of {0, 1}
coins). Let S be the sum. Prove:

(1) E[S] = 0.

22

(2) E[S2] = n.

(3) E[S4] = 3n2 − 2n. (This takes some patience.)

(4) The standard deviation of S2 is at most
√

2 · n.

Now the idea is that if it was the case that S is often very close to its expectation 0, then
also S2 would be often very close to 0. But since S2 has a much larger expectation (n) and
a standard deviations about the expectation (

√
2 · n), this would violate a concentration

inequality. Specifically:
(5) Use Cantelli’s one-sided Chebychev’s inequality to show this anti-concentration inequal-
ity:

Pr[|S| ≥
√
n/2] ≥ Ω(1).

Finally, answer this question:
(6) Could you have used Chebychev’s inequality to infer (5) from (1)-(4)?

Note: Similar bounds can be obtained by approximations of the binomial coefficients
such as

(
n
n/2

)
= Θ(2n/

√
n) for n even. One benefit of the proof in n/2 this exercise is that it

applies in other contexts as well. For example, if v is vector in R of length 1, with probability
Ω(1) you have that |

∑
i xivi| ≥ 1/2.

Solution: Toss n coins. Xi is the -1/1 outcome of the i-th coin. S :=
n∑
i=1

Xi.

xi =

{
−1 if xi is head
1 if xi is tail

(1) For Xi, by the definition of expectation, we have

E[Xi] = Pr[Xi = −1] ∗ (−1) + Pr[Xi = 1] ∗ 1 = −1/2 + 1/2 = 0

E[S] = E[
n∑
i=1

Xi]

=
n∑
i=1

E[Xi]

= 0.

(2)

E[S2] = E[
∑
i

x2
i + 2

∑
i<j

xixj]

= n+ 2

(
n

2

)
(−1/2 + 1/2)

= n.

23

(3)

E[S4] = E[
∑
i

x4
i +

(
4

2

)∑
i<j

x2
ix

2
j + 4

∑
i<j

x3
ixj + 4

∑
i<j

xix
3
j + 2

(
4

2

) ∑
i<j<k

x2
ixjxk

+2

(
4

2

) ∑
i<j<k

xix
2
jxk + 2

(
4

2

) ∑
i<j<k

xixjx
2
k + 4!

∑
i<j<k<l

xixjxkxl]

= n+

(
4

2

)(
n

2

)
+ 0 + 0 + 0 + 0 + 0 + 0

= 3n2 − 2n.

Here, I will explain
(

4
2

)∑
i<j

x2
ix

2
j , we have

(
n
2

)
ways to choose two different variables from

x1, x2, ..., xn, for each of these ways, we have
(

4
2

)
ways to choose which two out of 4 is xi.

Other terms in the equation is of the same reasoning.

(4) By the definition of σ,

σ2(S2) = E[S4]− E2[S2]

= 3n2 − 2n− n2

= 2n2 − 2n

.

The standard deviation is σ =
√

2n2 − 2n ≤
√

2n.

(5)

Pr[|S| ≥
√
n/2] = Pr[S2 ≥ n/4]

Because n/4 < µ = n, by Cantelli’s one-sided Chebychev’s inequality

Pr[X < µ− kσ] ≤ 1

1 + k2
,

we have Pr[S2 ≥ n/4] = 1− Pr[S2 < µ− kσ] ≥ 1− 1

1 + k2
.

Let n/4 = µ− kσ, where µ = n, σ ≤
√

2n. So k = Θ(1), therefore 1− 1
1+k2 = Ω(1).

(6) No. The Chebychev’s inequality is limited to the measure that is X > µ+ kσ, where
k > 0. In this case, n/4 < µ, so k < 0.

End of solution.

24

Exercise 21. Recall Section 9.7. It is possible to show that n = 6 cannot be changed to
0.49n, when sending strings of bits. However, suppose that instead of sending a string of n
bits you send a string of n symbols in [t] = {1, 2, . . . , t}. Suppose that the adversary changes
at most 0.49n symbols. Show that ∃t such that for sufficiently large n you can still send
2Ω(n) messages.

Solution: Similar to the proof in Section 9.7, we will prove that we can construct such a
set C.

Let C consist of k strings of n symbols in [t] = {1, 2, . . . , t} independently at random.
Then,

Pr[∃x, y ∈ C, x 6= y at distance < 0.98n]

≤ k2Pr[x, y at distance < 0.98n] (Union bound).

To bound Pr[x, y at distance < 0.98n], define zi to be a {0, 1} random variables as follows:

zi =

{
1 if xi = yi
0 otherwise.

Note that Pr[zi = 1] = 1/t. Now the probability Pr[x, y at distance < 0.98n] is the
probability that the sum of the variable zi is at least 0.02. By Chernoff bound,

Pr[
∑
i

zi ≥ 0.02n]

= Pr[
∑
i

zi ≥ n/t+ εn]

≤ 1/2ε
2n.

let t = 100, ε = 1/100, we can set k = 2Ω(n) and get the probability to be < 1, which
guarantees the existence of such set.

End of solution.

Exercise 22. In this exercise you will see another example where probabilistic reasoning
greatly simplifies counting. Suppose you toss n biased coins. The coins are independent,
and each comes up heads with probability p. What is the probability that you get an even
number of heads?

Hint: Think of the outcome of each toss as a number in {−1, 1}, and use E[X · Y] =
E[X] · E[Y] for independent random variables.

Solution: We define xi to be a output of each toss as follows:

xi =

{
−1 if xi is head
1 if xi is tail

25

We define X =
n∏
i=1

xi as a random variable that

X =

{
1 if the number of heads is even
−1 if the number of heads is old

Let Xk be the random variable that you get k heads when toss n biased coins. Obviously
Xk = 1 when k is even. So the probability is

Pr[Xk = 1] =

(
n

k

)
pkqn−k.

Therefore, the probability that you get an even number of heads is:

Pr[
n∑
k

Xk = 1] =
n∑

k is even

(
n

k

)
pkqn−k

=
1 + (1− 2p)n

2
.

End of solution.

The following is another solution for Exercise 22:

Solution: We define xi to be a output of each toss as follows:

xi =

{
−1 if xi is head
1 if xi is tail

We define X =
n∏
i=1

xi as a random variable that

X =

{
1 if the number of heads is even
−1 if the number of heads is old

We know that for the n coins, the number of heads is either odd or even. Therefore,

Pr[X = −1] + Pr[X = 1] = 1. (1)

By the definition of expectation, we have

E[X] = Pr[X = −1] ∗ (−1) + Pr[X = 1] ∗ 1. (2)

Since xi and independent,

E[X] =
n∏
i=1

E[xi] = (1− 2p)n. (3)

26

By (1),(2),(3), We have

Pr[X = 1] =
1 + (1− 2p)n

2
.

.
End of solution.

Exercise 23. Use calculus, prove:

(1) D(p||q) ≥ 2(p− q)2.

(2) Come up with some ε > 0 such that,

∀p ≤ ε,D(2p||p) ≥ εp.

Solution: (1)

D(p||q) = p ˙ln
p

q
+ (1− p) ˙ln

1− p
1− q

=p(̇ ln p− ln q) + (1− p)(̇ ln(1− p)− ln(1− q)). (*)

If p > q, we have

(∗) = p · lnx|pq + (1− p) · ln(1− x)|pq

=

∫ p

x=q

{p
x
− 1− p

1− x
}dx

=

∫ p

x=q

{ p− x
x(1− x)

}dx

≥4

∫ p

x=q

{p− x}dx = 2(p− q)2.(note that x(1− x) ≤ 1/4).

Else if p ≤ q, the proof is similar.
End of solution.

Solution: (2) Let F (p) = D(2p||p) − εp = D(2p||p) = 2p · ln 2p
p

+ (1 − 2p) · ln 1−2p
1−p − εp.

Since F (p = 0) = 0, so if we want to guarantee that ∀p ≤ εF (p) ≥ 0, we only need to make
sure that ∀p ∈ (0,min{1/2, ε})dF

dp
≥ 0.

dF

dp
= − 1

1− p
− 2 · ln 1− 2p

1− p
+ 2 ln 2− ε.

27

Now let x = 2− 1
1−p , then max{0, 2− 1

1−ε} ≤ x < 1 since 0 < p ≤ 1/2.

dF

dp
= x− 2− 2 lnx+ 2 ln 2− ε ≥ 0

⇐⇒ 1

2
x+ (ln 2− 1− 1

2
ε) ≥ lnx

⇐⇒ when x = 1,
1

2
x+ (ln 2− 1− 1

2
ε) ≥ lnx

⇐⇒ ln 2− 1

2
− 1

2
ε ≥ 0

⇐⇒ ε ≤ 2 ln 2− 1 (≈ 0.386).

So, pick any ε ∈ (0, 2 ln 2− 1), we can fulfill the requirement.
End of solution.

Exercise 24. Prove Chernoff Bound.

Solution:

Pr[
∑

Xi ≥ n(p+ δ)] ≤ Pr[eλ
∑
Xi ≥ eλn(p+δ)]

≤ E[eλ(
∑
Xi)]/eλ(n(p+δ))(Markov’s inequality)

(Note that E[eλ(
∑
Xi)] = E[

∏
i

eλXi] =
∏
i

E[eλXi] = (eλp+ (1− p))n.)

≤ (peλ + (1− p))n

eλ(n(p+δ))

= (
(peλ + (1− p))

eλ(p+δ)
)n. (*)

Let q = p+ δ, then (*) becomes pe(1−q)λ + (1− p)e−qλ.
See it as a function of λ, and take a log then compute its derivative:

d

dλ
log(pe(1−q)λ + (1− p)e−qλ) = −q +

pe(1−q)λ

pe(1−q)λ + (1− p)e−qλ
.

To get the maximum of (*), we let the derivative to be 0, so we have

q =
pe(1−q)λ

pe(1−q)λ + (1− p)e−qλ
=⇒ λ = log

q(1− p)
p(1− q)

.

Notice that q = p + δ > p, so λ > 0, which means that we get the maximum value of (*)

at log q(1−p)
p(1−q) . Now we put this value of λ back into log(pe(1−q)λ + (1 − p)e−qλ), and find the

following fact

log(pe(1−q)λ + (1− p)e−qλ) = −qlog q
p

+ (1− q)log1− p
1− q

= −D(q||p) = −D(p+ δ||p).

28

Now we get this result back into (*), and have Pr[
∑
Xi ≥ n(p+ δ)] ≤ e−nD(p+δ||p).

End of solution.

Exercise 25. Use Chernoff Bound to give a bound on the number of times need to perform
Buffon’s experiment to obtain α: |α− π| ≤ 1/1000 with probability ≥ 99.

Solution: Suppose we perform Buffon’s experiment n times, and get m intersections, then
we get α = 2n

m
as the approximation to π. If we want |α−π| < 1/1000 with probability 99%,

then equally we can make sure that |α − π| ≥ 1/1000 has probability 1%, which equals to
Pr[α ≥ π + 1/1000] + Pr[α ≤ π − 1/1000] ≤ 1/100.
Since m =

∑n
i=1Xi, where Xi denotes the # of intersections we get during one Buffon’s

experiment (Xi ∈ {0, 1}), we have to make the following stand

Pr[
n∑
i=1

Xi ≤
2n

π + 1/1000
] + Pr[

n∑
i=1

Xi ≥
2n

π − 1/1000
] ≤ 1/100. (*)

We know µ = 2
π
. According to Chernoff’s bound, we can get

Pr[
n∑
i=1

Xi ≤
2n

π + 1/1000
] ≤ 2−n·D(2

π+1/1000
|| 2
π

) = 0.6364n.

and Pr[
n∑
i=1

Xi ≥
2n

π − 1/1000
] ≤ 2−n·D(2

π−1/1000
|| 2
π

) = 0.6368n.

So, to make (*) stand, we let 0.6364n + 0.6368n ≤ 1/100, then we get n ≥ 12. Therefore, we
need to perform Buffon’s experiment at least 12 times to get the required approximation.

End of solution.

Exercise 26. A Small-Intersection System (SIS) is a collection of m sets S1, S2, . . . , Sm,

− |Si| ≥ s;

− Si ⊆ {1, 2, . . . , u};

− |Si ∩ Sj| ≤ αs for ∀i 6= j;

(1) give a construction with α = 0 for some u;

(2) give a construction with any u ≥ c · lg(m2), any u ≥ c ·s/α, for a constant c independent
from m, s, u, α.
Hint for (2): Think u = a · s, pick each set randomly with Pr[x ∈ S] = 2/e.

Solution: (1) If α = 0, then ∀i 6= jSi
⋂
Sj = Ø. So, if u ≥ m · s, then we can give a

simple construction that Si = s · (i− 1), s · (i− 1) + 1, ..., s · i− 1 where i ∈ 1, 2, ...,m. But
if u < m · s, then we cannot construct a SIS of m sets, because we are short of elements.

End of solution.

29

Definition 12. Random variables Xi, . . . , Xn are k-wise independent if any k of them are
independent.

Exercise 27. Consider the example we say after Chebyshev’s inequalities.

− Argue that example only needs 2-wise independent.

− Give a bound O(1/nc) for c > 1, if coins are 4-wise independent.

Solution: (1) When you toss n 0/1 coins, suppose that these n coin flips are 2-wise
independent. Let Xi be the output of the ith coin-flippings,

Xi =

{
1 if ith coin flip is head
0 if ith coin flip is tail

Define random variable X =
n∑
i=1

Xi, by Chebyshev’s inequality,

Pr[X ≥ 3n/4] = Pr[X ≥ µ+ kσ]

≤ Pr[(X − µ)2 ≥ k2σ2]

≤ 1/k2.

Because

σ2(X) =
n∑
i=1

σ2(Xi) +
∑
i 6=j

Cov(Xi, Xj). (4)

By definition, the covariance between any two 2-wise independent random variables is 0,

i.e.,
∑
i 6=j

Cov(Xi, Xj) = 0 when Xi and Yi are independent for any i 6= j, so in (4), σ2(X) =

n∑
i=1

σ2(Xi).

Meanwhile, for the 0/1 random variables Xi, if Pr[Xi = 1] = p, then σ2(Xi) = p(1− p).

Therefore σ2(X) =
n∑
i=1

σ2(Xi) = np(1− p) = Ω(n).

Let kσ = 3n/4, so k2σ2 = Ω(n2), and then k2 = O(n). So probability of getting ≥ 3n/4
heads is bounded by O(1/n) when toss n 2-wise independent coins.

(2) Set X =
n∑
i=1

Xi with mean µ and standard deviation σ, Y := X − µ. Since

30

Pr[Y ≥ kσ] ≤ Pr[Y 4 ≤ k4σ4]. By Markov’s inequality, Pr[Y ≤ kσ] ≤ E[Y 4]/k4σ4, because

Pr[Y 4] = E[(X − µ)4]

= E[(
n∑
i=1

(Xi − µi))4]

=
∑
i,j,k,l

E[(Xi − µi)(Xj − µj)(Xk − µk)(Xl − µl)]

=
∑
i

E[(Xi − µi)4]. (by 4-wise independent)

For the 0/1 random variables Xi, if Pr[Xi = 1] = p, then E[(Xi−µi)2] = σ2(Xi) = p(1− p).
Therefore

∑
i

E[(Xi − µi)4] = Ω(n2).

Let kσ = 3n/4, so k4σ4 = Ω(n4). So probability of getting ≥ 3n/4 heads is bounded by
O(1/n2) when toss n 4-wise independent coins, and hence the constant c = 2.

End of solution.

31

Lecture 5

5.10 Summary

In lecture we begin the unit on the computational power of various classes of languages,
following the slide deck entitled ’slides-regular’. Specifically, we focused on regular languages.
Formal definitions of Deterministic Finite Automata and Non-Deterministic Finite Automata
were given along with examples of each. Regular languages where defined as languages that
are accepted under some DFA. We saw how to convert a DFA into an NFA and proved the
surprising result that DFA’s and NFAs have the same computational power. We also went
over proofs that regular languages are closed under the complement and union operations.
�

5.11 Closure under the regular operations

Claim 13. The class of regular languages is closed under the complement operation.
Given DFA M = (Q,Σ, δ, q0, F) such that L(M) = A,
Construct DFA M ′ = (Q,Σ, δ, q0, F

′),
F ′ := F ,
∀ string w,w ∈ L(M ′)⇔ w /∈ L(M).

Proof. Let’s prove (⇒)
Suppose w ∈ L(M ′), so w = w1w2 . . . wk. ∃ sequence of k + 1 states r′0, r

′
1, . . . , r

′
k where

1) r′0 = q0

2) r′i+1 = δ(r′i, wi+1) ∀ 0 ≤ i < k
3) r′k ∈ F ′ = F
Since M and M ′ have same q0, δ, any sequence of states r0, r1, . . . , rk showing that w ∈ L(M)
must be identical to r′0, r

′
1, . . . , r

′
k. (by 1) and 2))

So in particular, r′k = rk and so w /∈ L(M). (by 3)).
�

Claim 14. The class of regular languages is closed under the union operation.
We have two DFAs, MA and MB for regular languages A and B. N is the constructed NFA.
DFA MA = (QA,Σ, δA, qA, FA),
DFA MB = (QB,Σ, δB, qB, FB),
NFA N = (Q,Σ, δ, q, F) where
Q := {q} ∪QA ∪QB, F := FA ∪ FB,
δ(r, x) := {δA(r, x)} if r in QA and x 6= ε,
δ(r, x) := {δB(r, x)} if r in QB and x 6= ε,
δ(q, ε) := {qA, qB}.
We have L(N) = A ∪B

Proof. First, let’s do L(N) ⊆ A ∪B.
Suppose w ∈ L(M), so w = w1w2 . . . wk, wi ∈ Σ∪{ε}. ∃ sequence of k+ 1 states r0, r1, . . . rk

32

where
1) r0 = q
2) ri+1 ∈ δ(ri, wi+1)
3) rk ∈ F
By definition of N , w1 = ε and r1 ∈ {qA, qB},
Without loss of generality, say r1 = qA, then w = w2w3 . . . wk and we have a sequence of k
states r1, r2, . . . rk which shows w ∈ A
Conversely, for L(N) ⊇ A ∪B.
Without loss of generality, suppose w = w1w2 . . . wk, ∃ a sequence r0 . . . rk satisfies 1) - 3).
For MA, w = w1w2 . . . wk, w0 = ε and r′ = r1 . . . rk, r0 = q which shows w ∈ L(N), since
δ(q, ε) ∈ qA.

Claim 15. The class of regular languages is closed under the “◦” operation.
Given two DFAs MA and MB which are:
DFA MA = {QA,Σ, δA, qA, FA} : L(MA) = A,
DFA MB = {QB,Σ, δB, qB, FB} : L(MB) = B,
Construct NFA N = {Q,Σ, δ, q, F} where:
Q := QA ∪QB, q := qA, F = FB,
δ(r, x) := {δA(r, x)} if r in QA and x 6= ε,
δ(r, ε) = {qB} if r in FA,
δ(r, x) := {δB(r, x)} if r in QB and x 6= ε.

Proof. First, we prove L(N) ⊆ A ◦B.
Suppose we have w ∈ L(N), so for w = w1w2 . . . wlwl+1 . . . wk ∈ Σ ∪ {ε}, ∃ a sequence of
k + 1 states r0, r1, . . . , rk where
1) r0 = qA,
2) ri+1 ∈ δ(ri, wi+1),
3) rk ∈ FB.
By the definition of N of NFA, ∃1 < l < k s.t. δ(rl−1, wl) = qB where wl = ε and rl−1 ∈ FA.
Therefore, we can partition the string w into two non-overlapped parts, w′ and w′′, using wl
as the boundary, namely,

w′ = w1w2 . . . wl−1, w′′ = wl+1 . . . wk. (5)

Recall the definition of the N , MA, and MB, we can find that w′ (starting with state qA and
ending with state rl−1 ∈ FA) can be accepted by MA and w′′ (starting with state qB and
ending with state rk ∈ FB) can be accepted by MB. Naturally, we have w′ ∈ L(MA) and
w′′ ∈ L(MB), which implies, w = w′w′′ ∈ A ◦B.

Second, we prove A ◦B ⊆ L(N).
Suppose we have two strings w′ = w1w2 . . . wl−1 and w′′ = wl+1 . . . wk and they are accepted

33

by MA and MB, respectively. Therefore, we know for these two strings, ∃ two state sequences
r1, r2, rl−1 and rl . . . rk that are accepted by MA and MB, respectively. By the definition of
N and 1), 2), 3), we know that ∃wl = ε s.t. δ(rl−1, wl) = rl where rl−1 ∈ FA and rl = qB.
Then the string w = w′w′′ can be accepted by L(N).
�

Claim 16. The class of regular languages is closed under the star operation. Given DFA
MA = {QA,Σ, δA, qA, FA} : L(MA) = A,
Construct NFA N = {Q,Σ, δ, q, F} where:
Q := {q} ∩QA, F := {q} ∪ FA,
δ(r, x) := {δA(r, x)} if r ∈ QA and x 6= ε,
δ(r, ε) := {qA} if r ∈ {q} ∪ FA.

If k = 1, then we have A∗ = A. ⇒ A is closed under the star operation. Next, we fo-
cus on the situation when k > 1.
First, we prove L(N) ⊆ A∗.
Suppose w ∈ L(N), so for w = w11w12 . . . w1l1w21 . . . w2l2 . . . wk1 . . . wklk ∈ Σ ∪ {ε}, ∃ a se-
quence of

∑
k lk + 1 states r0, r1, . . . , r1l1 , . . . , rklk where

1) r0 = q
2) ri+1 ∈ δ(ri, wi+1)
3) rklk ∈ FA
Then by the definition of L(N), we know that there are k − 1 transition functions s.t.

k − 1

δ(r1l1−1, w1l1) = w21, where r1l1−1 ∈ FA, w1l1 = ε, w21 = qA,

...

...
δ(rk−1lk−1−1, wk−1lk−1

) = wk1, where rk−1lk−1−1 ∈ FA, wk1 = ε, wk1 = qA.

Therefore, we can partition the string w into k strings w1, w2, . . . , wk using ε as the boundary,
where

w1 = w11 . . . w1l1 , w2 = w21 . . . w2l2 , . . . , wk = wk1 . . . wklk .

Based on the definition of MA, we know that each string in w1, w2, . . . , wk can be accepted
by MA. That is w = w1w2 . . . wk ∈ A∗. Therefore, we have L(N) ⊆ A∗.

Second, we prove L(N) ⊇ A∗

Suppose we have k words that are all accepted by MA, i.e., w1 ∈ A, . . . wk ∈ A and
w1w2 . . . wk ∈ A∗. Therefore, for these k strings, ∃k sequences of states that are all ac-
cepted by MA. Recall the definition of NFA N and 1), 2), 3) we know that ∃k− 1 transition

34

functions that can connect the states of these k strings s.t.

k − 1

δ(r1l1−1, w1l1) = w21, where r1l1−1 ∈ FA, w1l1 = ε, w21 = qA,

...

...
δ(rk−1lk−1−1, wk−1lk−1

) = wk1, where rk−1lk−1−1 ∈ FA, wk1 = ε, wk1 = qA.

Therefore, these k strings plus k − 1 transition functions can be accepted by L(N). Since
the connecting symbols w1l1 , w1l2 , . . . , wk−1lk−1

are nothing but ε, we can conclude that A∗ ⊆
L(N).

5.12 Exercises

Exercise 28. Sipsor 1.31

Claim 17. Regular languages are closed under reversal
∀w,w ∈ L(M)⇔ wR ∈ L(M ′).

Solution: Given DFA M = (Q,Σ, δ, q0, F) which accepts language A
Construct NFA M ′ = (Q′,Σ, δ′, q′0, F

′) where,
Q′ := Q ∪ {q′0} F ′ := q0

δ(rB, x) := rA if rA, rB ∈ Q and δ(rA, x) := rB ∈ δ
F ∈ δ(q′0, ε)
We will show that if A is regular then L(M ′) = AR.
Suppose w ∈ L(M), so w = w1, w2 . . . wk and ∃ a series of states r0, r1, . . . rk where
1) r0 = q0

2) ri ∈ δ(ri+1, wi+1)
3) rk ∈ F
By definition wR = wk, wk−1, . . . w1 and F ′ = r0

Thus ∃ a sequence of states in M ′r′k+1, r
′
k, r
′
k−1, . . . r

′
0

By definition of M , r′k+1 = q′0. For every state in M we can do the reverse transiton in M ′

since r′k ∈ δ(q′0, ε) and r′k−i ∈ δ(r′k, w′k).
Since r′0 = q0 by 1) and q0 ∈ F ′ it must be that wR ∈ L(M ′) and Regular languages are
closed under reversal.

End of solution.

Exercise 29. Sipsor 1.32

Let Σ3 = {

 ij
k

∀i, j, k ∈ {0, 1}}

35

Claim 18. If B = {q ∈ Σ∗3| the bottom row of w is the sum of the top two rows }
Then B is a regular language.

Solution: We will be working with BR which is equivalent to B being regular by Problem
1.31
Construct DFA M = (Q,Σ, δ, q0, F)
Q = {qA, qO}
Σ = {aijk|aijk ∈ Σ3}
δ(qA, x) := qA if x ∈ {a000, a101, a011}
δ(qA, x) := qO if x ∈ {a110}
δ(qO, x) := qO if x ∈ {a100, a0110, a111}
δ(qO, x) := qA if x ∈ {a001}
q0 := qA
F := qA
Suppose w ∈ L(M) and w = w1, w2, ..., wk ∃ a sequence of states r0, r1, ..., rk. We will be
working in Br so we will be processing w from least significant bit to most significant. As
we go along it is possible that the top two rows can overflow the bottom, but the converse is
not true. If at any point the bottom row is greater than the top then the string is rejected.
Thus at any state ri then wi∀0 ≤ i ≤ k may be in two possible states qA or qO. Ifri ∈ qA
then sequence the w1, w2, ...wi ∈ L(M). In otherwords, so far, the top two rows are equal
to the bottom. If ri ∈ qO it indicates that the top rows so far have overflowed the bottom
row. The only way to escape qO is if a later symbol is a001, correcting the overflow. After
processing wk, rk ∈ qA because there can not be underflow or overflow and since qA ∈ F it
must be that L(M) accepts Br and thus accepts B by problem 1.31.

End of solution.

Exercise 30. Sipsor 1.33
Let

Σ2 = {
[
0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
1

]
}

Here, Σ2 contains all columns of 0s and 1s of height two. A string of symbols in Σ2 gives
two rows of 0s and 1s. Consider each row to be a binary number and let

C = {w ∈ Σ∗2| the bottom row of w is three times the top row}.

For example,

[
0
0

] [
0
1

] [
1
1

] [
0
0

]
∈ C, but

[
0
1

] [
0
1

] [
1
0

]
/∈ C. Show that C is regular.You may

assume the result claimed in Problem 1.31.

Solution: According to Problem 1.31, if C is regular, so is CR. So we can show CR is
regular.
Multiplying by 3 in binary is equivalent to adding the multiplicand with the result of shift-
ing the multiplicand itself to the left by 1 bit. For a top row with n bits and a bottom
row with n bits, denote them as t = tn−1 . . . t1t0 and b = bn−1 . . . b1b0 separately. Read w in

36

reverse order. If the bottom row is three times the top row, everytime we take a least sig-
nificant bit ti from top row and a bit bi from bottom row, these conditions should be satisfied.

1) bi = ti
⊕

ti−1

⊕
ci,

2) bi = ti,
3) ci+1 = (ti ∧ ti−1) ∨ (ti ∨ ti−1) ∧ ci where
a
⊕

b = (a ∧ b) ∨ (a ∨ b), ci is the carry-in bit and t−1 = 0, c0 = 0.
Now we need to construct a DFA M with 4 states q0, q1, q2, q3 and a sink state.
q0 indicates a state with carry-in bit ci = 0 and ti−1 = 0,
q1 indicates a state with carry-in bit ci = 0 and ti−1 = 1,
q2 indicates a state with carry-in bit ci = 1 and ti−1 = 1,
q3 indicates a state with carry-in bit ci = 1 and ti−1 = 0.
Transition rules are shown on the graph.
∀w ∈ CR, 1) to 3) are satisfied, transition will stop at q0. ∀w /∈ CR, 1) to 3) are not satisfied
the transition will stop either at the sink state or q1, q2, q3, so CR ∈ L(M). CR is regular.
Based on Problem 1.31, C is also regular.

End of solution.

Exercise 31. Sipsor 1.34
Let Σ2 be the same as in Problem 1.33. Consider each row to be a binary number and let

D = {w ∈ Σ∗2| the top row of w is a larger number than the bottom row}.

For example,

[
0
0

] [
1
0

] [
1
1

] [
0
0

]
∈ D, but

[
0
0

] [
0
1

] [
1
1

] [
0
0

]
/∈ D. Show that D is regular.

Solution: The idea is that we start by comparing the most significant bit of two rows.
The larger numbered row will have a bigger bit compared to the smaller numbered row. We
continue the comparison until we can decide which row is larger or we run out of all bits.
Construct DFA M = (Q,Σ2, δ, q0, F) where

37

Q = {q0, q1, q2},
state q0 indicates the larger one between the top row and the bottom row has not been
decided, state q1 indicates the top row is the larger number and state q2 indicates the bottom
row is the larger number.

δ(q0,

[
0
0

]
) := q0,

δ(q0,

[
1
1

]
) := q0,

δ(q0,

[
1
0

]
) := q1,

δ(q0,

[
0
1

]
) := q2,

F := q1.
DFA M can only accept all the w ∈ D, so D is regular.

End of solution.

Exercise 32. Sipsor 1.36
Let Bn = {ak| where k is a multipe of n}.
Show that for each n ≥ 1, the language is regular.

Claim 19. Bn is a regular language ∀n ≥ 1

Solution: We can construct DFA Mn = (Q,Σ, δ, q0, F), such that L(Mn) = Bn

Q = qi|∀0 ≤ i ≤ n
δ(qi, a) := qi+i∀0 ≤ i ≤ n
δ(qn, a) := q0

F := qn
Suppose w ∈ L(Mn) and w = w1, w2...wn∗i where i ∈ N
there is a series of states r0, r1, ..., rn∗1, r(n ∗ 1) + 1, ..., rn∗i
r0 = q0 and there are n transitions such that δ(qi, a) = qi+1 thus rn = qn. By similar
reasoning rn∗j = qn∀0 ≤ j ≤ i and becuse qn ∈ F it must be that Mn accepts Bn

End of solution.

Exercise 33. Sipsor 1.37
Let Cn = {x|x is a binary number that is a multiple of n}.
Show that for each n ≥ 1, the language Cn is regular.

Solution: Construct a DFA M = (Q, {0, 1}, δ, q0, F)
Q := {q0, ...qn−1}
δ(qi, j) := q((i∗2+j) mod n)∀0 ≤ i ≤ (n− 1), j ∈ {0, 1}
F := {q0}
Begin by noting that

38

1) (a+ b) mod n = (a mod n) + (b mod n)
2) x is a multiple of n⇔ x mod n = 0
The general idea is to label each state by the current remainder. We then take each digit,
starting with the most significant, and based on the digit and the current value for the re-
mainder, calculate the new running remainder. States q0 to qn−1 are the current remainder
of ri’s state for xk−1xk−2...xi mod n after the DFA has taken (k − i) bits from x. If at the
end of the process we are in state q0 (the remainder is 0) then we know the full string was
divisible by n.
Suppose x ∈ L(M) where x = xk−1, xk−2, ..., x0 thus ∃ a series of states rk, rk−1, ...r0. We
start by taking the most significant bit, xk−1, and denoting the result of xk−1 mod n as rk−1

where rk−1 = qxk−1 mod n

The next digit of x is xk−2, so now we calculate xk−1xk−2 mod n, which corresponds to state
rk−2. If xk−2 is 0 then rk−2 = qrk−1∗2 mod n. Otherwise, if xk2 is 1 then rk−2 = qrk−1∗2+1 mod n,
this preserves our invariant that the label of our current state is the remainder of the string
processed so far. This process continues until we get r0. If r0 = q0, then x is a multiple of
n, otherwise x is not a multiple of n.

End of solution.

Exercise 34. Sipsor 1.41
For languages A and B, let the shuffle of A and B be the language

{w|w = a1b1 . . . akbk, where a1 . . . ak ∈ A and b1 . . . bk ∈ B, each ai, bi ∈ Σ∗}.

Show that the class of regular languages is closed under perfect shuffle.

Solution: Given two DFAs MA and MB which are:
MA = {QA,Σ, δA, qA, FA},
MB = {QB,Σ, δB, qB, FB},
Construct NFA N = {Q,Σ, δ, q, F} where
Q = {q} ∪QA ∪QB, F = {q} ∪ FB,
δ(r, x) = δA(r, x) if r ∈ QA and x 6= ε,
δ(r, x) = δB(r, x) if r ∈ QB and x 6= ε,
δ(r, ε) = qB if r ∈ FA,
δ(r, ε) = qA if r ∈ FB.

If k = 1, the current problem degenerates to the problem of operation “◦” in the class.
And if b1 = ∅, b2 = ∅, . . . , bk = ∅, the current problem degenerates to the problem of A∗ in
the class. Now we focus on the other situations when k > 1 and ∀bi ∪ibi 6= ∅.

Suppose w ∈ L(N), so for

w = w
(a)
11 w

(a)
12 . . . w

(a)
1la1︸ ︷︷ ︸

a1

w
(b)
11 w

(b)
12 . . . w

(b)

1lb1︸ ︷︷ ︸
b1

. . . w
(a)
k1 w

(a)
k2 . . . w

(a)
klak︸ ︷︷ ︸

ak

w
(b)
k1w

(b)
k2 . . . w

(b)

klbk︸ ︷︷ ︸
bk

∈ Σ ∪ {ε}

39

𝜀
𝜀

𝜀

𝜀

𝜀
𝜀

𝑞 𝑞𝐴

𝑞𝐵 𝐹𝐴
𝐹𝐴

𝐹𝐴

𝐹𝐵

𝐹𝐵
𝐹𝐵

𝑁

Figure 1: Illustration of NFA for the proof of problem 1.41.

, ∃ a sequence of
∑

k l
a
k+
∑

k l
b
k+1 states r

(a)
0 , . . . , r

(a)
1l1
, r

(b)
11 , . . . , r

(b)
1l1
, . . . , r

(a)
k1 , . . . r

(a)
klk
, r

(b)
k1 , . . . , r

(b)
klk

where
1) r0 = q,
2) ri+1 ∈ δ(ri, wi+1),
3) rklk ∈ FB,

We could finish our proof following the same way in the proof of Claim 15 and 16 by
using the above definition of NFA N . Or we can directly utilize Claim 15 and 16 to finish
our proof. We pick up the second one since we can prove Shuffle(A,B) is closed in one pass
based on Claim 15 and Claim 16.

Based on Claim 15, we know that A ◦ B is closed because both A and B are regular.
In addition, based on Claim 16, we know that C∗ where C = A ◦ B is closed because C is
regular. It is clear that C∗ = Shuffle(A,B). So we have Shuffle(A,B) is closed if both A and
B are regular.

End of solution.

40

Lecture 6
After reviewing some of the exercises from past lectures, we continued with the lecture

on regular languages and finite automata. We discussed a technique for proving whether
a language is regular, and then moved on to regular expressions, an equivalent but more
convenient formalism for describing regular languages.

6.13 The Myhill-Nerode Theorem

Recall that a language A is regular if there exists a DFA M such that L(M) = A. There
is a theorem due to John Myhill and Anil Nerode that defines a necessary and sufficient
condition for a language to be regular. Here we state it in terms of Boolean matrices.

Theorem 20. Given a language A ⊆ Σ∗, consider a matrix MA with one row and column
for every string in Σ∗, such that for any x, y ∈ Σ∗ the (x, y) entry is 1 iff xy ∈ A. Then A is
regular iff MA has finitely many distinct rows.

Proof. The proof of the “⇒” direction is left as an exercise. For the “⇐” direction, suppose
MA has finitely many distinct rows. Write [x] for the rows equal to row x. We define a DFA
M = (Q,Σ, δ, q1, F) that recognizes A in the following way.

1. The states Q = {[x] | x ∈ Σ∗} are the distinct rows.

2. Define δ so that for any [x] ∈ Q and any a ∈ Σ, δ([x], a) = [xa].

3. The start state is q1 = [ε].

4. The accept states F = {[x] | x ∈ A} are the rows for strings in the language.

The proof that L(M) = A is by straightforward induction. Intuitively, consider any string
x = x1x2 · · ·xk ∈ A. The machine evaluates δ([ε], x1) = [x1], δ([x1], x2) = [x1x2], and so on
until reaching [x] ∈ F . Thus if MA has finitely many distinct rows, A is regular. �

Exercise 35. Complete the proof of the above theorem.

Solution: For the “⇒” direction, suppose A is regular. Let M be a DFA recognizing A.
For each state qi, let [qi] be the set of strings x such that M ends at qi on input x. Then for
any x, y ∈ [qi] and any string z, it must be that xz and yz also end at the same state qj. So
if x, y ∈ [qi], then xz, yz ∈ [qj]; either xz, yz ∈ A and qj ∈ F , or xz, yz 6∈ A and qj 6∈ F .

Therefore x, y ∈ [qi] implies xz ∈ A iff yz ∈ A for any z. But recall [x] = [y] also means
xz ∈ A iff yz ∈ A for any z, so we have that x, y ∈ [qi] implies [x] = [y]. Since every
finite string maps to some [qi], and since no two strings that end up in a given [qi] map to
more than one distinct row of MA, the number of states in M must be no greater than the
number of distinct rows in MA. As A is regular and recognized by a finite automaton, MA

has finitely many distinct rows.
End of solution.

41

Exercise 36. Use this theorem to show that A = {0n1n | n ≥ 0} is not regular.

Solution: Let x = 0i and y = 0j, i > 0 and i 6= j, be two strings in {0, 1}∗. If [x] = [y],
then for any z we must have xz ∈ A iff yz ∈ A. But let z = 1i. Then xz ∈ A and yz 6∈ A, so
[x] 6= [y], i.e., [x] and [y] are distinct rows in MA. It follows that there are infinitely many
distinct rows in MA, because there are infinitely many strings such as x and y.

End of solution.

6.14 Regular Expressions

It is often tedious and complicated to describe a regular language with a finite automaton,
either by writing out the formal definition or drawing a graphical representation. Regular
expressions offer a more human-friendly alternative.

Regular expressions are built out of symbols from Σ and operations such as ∗, ◦, and ∪
that we have seen before. Indeed, they are equivalent to finite automata: we can convert a
regular expression into an equivalent NFA and vice versa. The transformation from a regular
expression to an NFA is simple in its base cases, and follows the closure constructions we saw
earlier for the operations in the inductive cases.

Exercise 37. Build (using the process seen in class) an NFA for (ΣΣ)∗ ∪ (ΣΣΣ)∗.

Solution: We begin with two-state machines for each Σ and end with the following:

start
ε Σ ε Σ

ε

ε Σ ε Σ ε Σ

ε

ε

ε

End of solution.

The conversion from a finite automaton to a regular expression is more involved. Given
a DFA, the first step is to turn it into a generalized NFA, or GNFA, that is like an NFA except
for the transition function—the transitions are labeled with regular expressions describing
strings instead of single symbols from the alphabet. The next step is to iteratively remove
states from the GNFA, updating the transition labels, until only two states and one transition
remain. The final label is the equivalent regular expression.

42

Exercise 38. A small intersection system (SIS) is a collection of m sets S1, S2, . . . , Sm such
that |Si| ≥ s, Si ⊆ {1, 2, . . . , u}, and |Si ∩ Sj| ≤ αs when i 6= j.

(1) Give a construction with α = 0 for some u.

(2) Give a construction with s ≥ c lg (m2) and u ≥ cs/α, for a constant c independent of
m, s, u, α. Hint: think of u = as, for a constant a, and pick each set randomly with
Pr[x ∈ Si] = 2/a. Apply the Chernoff bound.

Solution: Note this is originally Exercise 26.

(1) Let u = ms and Si = {s(i − 1) + j | 1 ≤ j ≤ s}. Then |Si ∩ Sj| = 0 when i 6= j and
S1, S2, . . . , Sm is an SIS. The numbers are simply distributed evenly across the m sets.
For example, if m = 3 and s = 2, then S1 = {1, 2}, S2 = {3, 4}, and S3 = {5, 6}.

(2)

End of solution.

43

Lecture 7

7.15 Summary

We continued going through slides-regular.pdf, beginning with the conversion of a DFA into
a GNFA, and a GNFA into a RE. We then discussed the Pumping Lemma, which can be
used to prove that some languages are not regular.

7.16 Converting DFAs into REs

Theorem 21. For any GNFA there is an equivalent Regular Expression.

Proof. By construction (and illustrated in the slides).

• If the GNFA contains exactly two states, then the label on the transition between them
is the Regular Expression.

• If the GNFA contains more than two states, then iterate the following process until we
are left with two:

1. Select some interior state qx (neither the start state nor the accept state), and
remove it from the GNFA.

2. Update the regular expressions for every pair of states qi and qj which were for-
merly connected through the removed state (that is, the path qi → qx → qj existed
in the prior version of the GNFA) so that the same strings are recognized.

�

So a DFA, NFA, GNFA, or RE accept exactly the same regular languages.
What is the point of these conversions? They show that the set of regular languages is

interesting: they have several characterizations. Also, they are used in practice all the time.

7.17 The Pumping Lemma

Which languages are not regular? We have already proved in the homework that the language
{0n1n : n > 0} is not regular. The most powerful way to prove that a language is not regular
is with the matrix proof, because it is exact. However, another commonly-used tool is the
Pumping Lemma.

The main idea of the pumping lemma is that most DFAs contain loops, and those loops
can be traversed any number of times (even zero). In fact, this is the only way that a DFA
can accept a string which has more characters than the DFA has states: you must have gone
through a loop. More interestingly, you didn’t have to go through that loop, and you could
have gone through it as many times as you want. (Expert tip: these loops correspond to
the Kleene ∗ in the corresponding regular expression. This is because neither concatenations
nor unions lead to loops.)

44

Let’s get a bit more formal. The definition is on page 262 of slides-regular.pdf. It boils
down to this: for any string w from a language L whose length |w| is larger than the number
of states in the DFA for L, you can segment w into three parts w = xyz such that the middle
part, y, could be replaced with any number of copies of itself and the resulting string must
still be in L.

Here is the proof, which is not found in the slides.

Proof. Let p be the number of states in some DFA for language L, and let w be any string
in L with length at least p. By the pigeonhole principle, during the computation of the DFA
on the first p symbols of w some state q∗ must repeat. That is, the path from start state q0

to accepting state qa which accepts w must look like this:

q0 → . . .→ q∗ → . . .→ q∗ → . . .→ qa.

Let’s call y the label on the self-loop which starts and ends on q∗, x the label leading from
q0 to q∗, and z the label leading from q∗ to qa. The string xyiz must be accepted for any
i ≥ 0, because if you can repeat the loop once you can repeat any number of times. �

This is not useful for proving that something is regular, but its contrapositive is useful
to prove that it is not. We went through several examples of using the Pumping Lemma to
prove that a language is not regular in class; these examples can be found in the slides.

7.18 Fun stuff about DFAs: 2DFAs

Why are DFAs so weak?

1. They have a finite number of states. This is a weakness, but even if you relaxed this
you couldn’t get to languages like {0n1n}.

2. You can only go in one direction: the transitions are one-way.

What happens if you allow two-way access to input? Let’s define a 2DFA, which allows
you to go backward and forward through the input. The main difference to a DFA is that
each transition is labeled with a symbol and either L or R, indicating whether you read the
symbol to the left or to the right of the current position in the input string in order to travel
along that edge. We also put end markers, #, on either end of the string. That is, if the
input is w we will call it #w#. The acceptance condition is still that you must be in an
accept state when the input string is over.

Note that DFA closure under reversal is a special case of this: you can go to the end,
and then come back.

Theorem 22. 2DFAs are equivalent to 1DFAs.

Proof. Rough sketch only:
Consider some boundary between two symbols in the input string. You might go back and

forth across this boundary several times, and then eventually accept the string. The resulting

45

sequence of states is called a crossing sequence: a sequence of states that corresponds to
crossing a boundary on a 2DFA.

If the 2DFA accepts w, how long can the crossing sequences be? It can be at most
O(# of states), because otherwise the 2DFA would never stop and so would not accept w.
That is, if you are ever at the same state a second time while in the same position in the
input sequence, you will repeat that sequence forever and never accept the string. Since each
crossing sequence is of finite length, you can construct a 1DFA whose states are the crossing
sequences. In the transition function, you use:

δ(crossing sequence, a) = {compatible crossing sequences}. �

7.19 Fun stuff about DFAs: PFAs

Next, we discussed Probabilistic Finite Automata (PFAs). First, we consider one-way PFAs,
defined as follows. Given a state and symbol, you have a probability distribution over which
state to go to next. You read a symbol and sample a random number from 0 to 1 and go to
the corresponding state.

Definition 23. We say a 1PFA accepts or recognizes L if for all inputs x, if x ∈ L then
Pr[1PFA accepts x] >= 99%, and if x 6∈ L the probability <= 1%.

Note that we define a 1PFA such that it must give a string a probability which is either
≥ 99% or ≤ 1% (or whatever you use for your definition). Note also that as an exercise,
we show that the specific numbers 99% and 1% are not important. That is, you can pick
any numbers for the thresholds as long as your 1PFA accepts strings which achieve higher
probability.

You could think of a DFA as a 1PFA with probabilities 1 and 0.
Example:

q0start q1 q2

q3

0, 1/2 0, 3/4
0, 1

0, 1/4

Pr[accepts string 00] = 1/2 + 1/2 ∗ 3/4
So, to summarize, a 2DFA is the same as a regular 1DFA. A 1PFA is also the same as a
1DFA. Surprisingly, if you combine the two you get extra power.

Theorem 24. There exists a 2PFA M such that L(M) = {anbn, n ≥ 0}.

Proof. The proof is a series of exercises. M does the following:

1. Check that the input is of the form a ∗ b∗. Let us say the input w = anbm.

2. Reject if 0 < |n−m| < k, for some k constant to be set later.

46

3. Scan input repeatedly, tossing a coin for each symbol. Success for a: always come up
with 1, but some coin for b is 0. Success for b: All coins for b are 1, but some coin for
a is 0. If ∃L successes for a before any for b, or ∃L successes for b before any for a,
reject. Otherwise, accept. (L is a constant to be set depending on k.)

4. Proof completed in exercises.

�

7.20 Exercises

Exercise 39. Convert the following NFA into a RE:

q0start

q1 q2

q3

a

a

a

b

a, b

Solution: The first step of this process is to convert the NFA into a GNFA. This is easy
to do, in this case: we just have to create epsilon transitions from the two accept states to
a single new accept state:

q0start

q1 q2

q3

qa

a

a

a ε

b

a, b

ε

The next step is to reduce the GNFA one node at a time, until we are left with just
q0 and qa. The regular expression for the single remaining transition will be our answer.
Here is the process, taken step by step. We remove the nodes in descending numerical order
(arbitrarily):

q0start

q1 q2

qa

a

a

a ε

b{a, b}∗
q0start

q1

qa

a a(aa)∗

b{a, b}∗ q0start qa
{aa(aa)∗, b{a, b}∗}

This gives us our answer: {aa(aa)∗, b{a, b}∗}.
End of solution.

47

Exercise 40. Think Like The Pros: Exercise 10. Prove that {x|x = wtw for some w, t ∈
{0, 1}({0, 1}∗)} is not regular (this is [S problem 1.46d]).

Solution:

Proof. By pumping lemma:

∀p ≥ 0, ∃w ∈ L, |w| ≥ p,∀x, y, z : w = xyz, |y| > 0, |xy| ≤ p,∃i ≥ 0 : xyiz 6∈ L

• Adversary moves p

• You select w = 0p10p

• Adversary moves xyz

• You select i = 0

Since |xy| ≤ p, y must consist of all zeros. When we remove it, the string contains fewer
zeros to the left of the 1 than to the right. Therefore, xz 6∈ L and this language is not
regular. �

End of solution.

Exercise 41. Think Like The Pros: Exercise 11. Prove or disprove the claim: There exists a
function f(n) = ω(n), with range the positive integers, such that {1f(n)|n > 0 is an integer}
is regular.

Solution:

Claim 25. There is no such function f(n).

Proof. To see this, one must consider the possible string lengths in a given regular language.
The language specified above really consists of f(n) 1s, for arbitrary positive integer n.
However, the pumping lemma suggests that each string in a regular language is part of
a family of similar strings whose lengths are a linear function of the number of times we
have traversed some loop in that language. Since f(n) = ω(n), and since f(n) returns only
positive integers, no linear function returning positive integers can produce exactly the range
of f(n). A more formal proof follows, using the pumping lemma.

• Adversary moves p

• You select w = 1f(n), for any n such that f(n) ≥ p

• Adversary moves xyz

48

• Note that |w| = i|y| + |xz|, for i = 1. That formula will give us the length of our
selected string for any value of i we select. The language can only be regular if for any
value of i, there is some value of n for which f(n) = i|y|+ |xz|.
Two facts combine to prevent this. Since f(n) = ω(n), for any constant c there is a
corresponding constant n0 such that for any n ≥ n0, f(n) > cn. The domain and range
of f(n) are integers, and at some point f(n) will never come back down to any given
value, so there is only a finite number of values of f(n) which are smaller than any
value. In particular, for sufficiently large n there are more possible values of |w| than
of f(n). Therefore, there must be some i such that |w| 6∈ Range(f); we pick one such
i and win.

�

End of solution.

Exercise 42. Show that the set of languages accepted by a 1PFA does not change if we
replace 99% and 1% with any a, b such that 1 > a > b > 0.

Solution: if 1PFA accept a regular language L then it means: ∀x ∈ L : Pr[1PFA Accepts
x] ≤ 1 and Pr[1PFA Accepts x] > 0. so as long as we can find finite number of steps which
start from initial state and follow a probability distribution according to observed alphabet
in the input string toward the final state we can claim: Pr[x ∈ L] > 0 so by changing the
threhold values a, b we only remove some strings from L and add it to another set with lower
threshold values. but the overall strings accepted by the 1PFA will be the same.

End of solution.

Exercise 43. Show that 1PFAs accept exactly the regular languages. Some hints:

• Prove this using the theorem we showed last time. That is, given a 1PFA for L, show
that the matrix ML discussed last time has finitely many rows. This means that the
language has a 1DFA.

• Row x of ML will correspond to a probability distribution on states after reading x.

• You need to discretize the probabilities. That is, consider two probabilities equal if
they differ by a tiny bit.

Solution: if we construct the ML matrix for a given 1PFA, similar to the DFA approach,
only with considering this fact that, for every string x which 1PFA ends at state qi we have a
set of different probailities for that row. so by discretizing the probabilities to bins with equal
sizes, we only need to duplicate each row for the total number of created bins, representing
the strings created with different probability values, and as we have finite number of rows
for the equivalent DFA, then multiplying that with a constant factor bins will still remain
as a finite number.

End of solution.

49

Exercise 44. Write a DFA to reject a string w = anbm if 0 < |n−m| < k, for some constant
k.

Solution:
End of solution.

Exercise 45. Complete the proof that a 2PFA can accept languages which a DFA can’t.
You just have to analyze why it works. That is, show that if the number of as is the same
as the number of bs we will accept with high probability, and otherwise we will reject with
high probability.

Solution: Since in the second step we have already filtered out the strings in which
0 < |n−m| < k, we can assume that either n = m or |n−m| > k.
if n = m then both a s and b s have the same chance of success, therefore both the probability
of L successes for a before any for b and the probability of L successes for b before any for a
are (1

2
)L. Since our machine rejects in case we get L consequtive successes, the probability

of accepting a string with n = m will be 1− (1
2
)L. By selecting a big enough value for L we

can get high probability of acceptance for n = m. For example by selecting L = 4 we get
the probability of acceptance of 0.9375.
Now let’s consider the case where |n − m| > k. The chance of success for as will be (1

2
)n

since we need all n as to be get head in coin flips and the chance of success for bs will be
(1

2
)m. Therefore unlike the previous case as and bs have different chances of success and the

probability of success for a compared to both as and bs will be:
1
2
n

1
2
m

+1
2
n = 1

1
2
m−n

+1
and the chance of rejecting the string because of L consequtive successes for a will be

(1
1
2
m−n

+1
)L

and if n > m then we can simplify to

(2k

2k+1
)L

We can see that selecting large values for k results in higher probability of rejecting strings
with unequal number of as and bs.

End of solution.

50

Lecture 8

Exam 1 for PhD Core Theory of Computation, February 11, 2013

1. Prove by induction that the number of subsets of a set of size n is 2n.

Solution:

Base case:

n = 1. For set of size 1, its subsets are ∅ and itself. So there are 2 = 21 subsets in
total.

Induction step:

Suppose the number of subsets of a set of size n − 1 is 2n−1. For any set S of size n,
pick any element si from the set. The subsets of S fall into two categories:

(a) Subsets that don’t contain si. There are the same number of these as the number
of subsets of set S − {si}, which is 2n−1 by assumption.

(b) Subsets that do contain si. Each of these is the union of {si} and some subset of
S − {Si}. The number of such subsets is also 2n−1.

Based on the above, the number of subsets of set of size n is 2n−1 + 2n−1 = 2n.
End of solution.

2. Recall that the degree of node in a graph is the number of its neighbors. (As in class,
we consider simple graphs with no self-loops.) Prove that in any graph there are two
nodes with the same degree.

Solution:

Proof. Consider a graph of n nodes. The degree of any node must be an integer in
{0, 1, . . . , n − 1}. Suppose no two nodes have the same degree; then there must be
some node in the graph with each degree in 0, 1, . . . , n− 1. This is impossible because
if any node has degree n − 1, it means there are edges between this node and every
other node in the graph, so no node can have degree 0. Therefore, there are two nodes
with the same degree. �

End of solution.

3. Let C ⊆ {0, 1}n be a set of size |C| ≤ 2n/ lgn. Prove that, for all large enough n,
there is a string x ∈ {0, 1}n such that for every string y ∈ C, x has Hamming distance
≥ n/3 from y. (Recall that the Hamming distance between x and y is the number of
bit positions where they differ.)

Solution:

51

Proof. Pick y ∈ C randomly.

Pr[∃x ∈ {0, 1}n, y ∈ C, x 6= y at distance < n/3]

≤ 2n/ lgnPr[x, y at distance < n/3] (Union bound).

To bound Pr[x, y at distance < n/3], rewrite x as x1x2x3 . . . xn and y as y1y2y3 . . . yn,
and define zi to be a {0,1} random variable that is 1 if and only if xi = yi. Note
Pr[zi = 1] = 1/2. Now the probability Pr[x, y at distance < n/3] is the probability
that the sum of the variables zi is at least 2n/3. By a Chernoff bound, this probability
is at most 1/2n/36.

Pr[∃x ∈ {0, 1}n, y ∈ C, x 6= y at distance < n/3] ≤ 2n/ lgn

2n/36
= 2

n(36−lgn)
36 lgn

If we choose n0 = 236, then for any n > n0, Pr[∃x ∈ C, x 6= y at distance < n/3] < 1,
which guarantees that any two strings in C have hamming distance ≥ n/3.
�

End of solution.

4. Recall that sets A1, A2, ·, Ak are a sunflower of size k if Ai ∩Aj is equal, for any i 6= j.
Prove that any family of > s!(k− 1)s distinct sets of size s contains a sunflower of size
k.

Solution:

Proof. By induction on s:

Base case:

s = 1. We have > (k − 1) sets of size 1. Recall that they are distinct. Any k of these
sets form a sunflower A1, . . . , Ak with Ai ∩ Aj = ∅, for any i 6= j.

Induction step:

Pick as many disjoint sets as you can. Call them D1, D2, . . . , Dt.

If t ≥ k,D1, D2, . . . , Dk is a sunflower of size k, with Di ∩Dj = ∅ for any i 6= j.

If t < k, first observe that the total number of elements in the disjoint sets has the
upper bound ∣∣∣∣∣⋃

i≤t

Di

∣∣∣∣∣ ≤ (k − 1)s,

because each set has s elements, the disjoint sets all have different elements, and there
are at most k−1 of these sets. Next, observe that any set in the family intersects some
Di. This is true because each set Di intersects itself, and each set which is not some Di

52

must intersect at least one of them or else it would be disjoint from all of them and be
one of the Di sets. Combining these observations, and using the pigeonhole principle,
there must exist some element x that belongs to

total sets

elements in disjoint sets
>
s!(k − 1)s

s(k − 1)
= (s− 1)!(k − 1)s−1

sets. Let A1, A2, . . . , Au be these sets. By the inductive hypothesis, A1 − {x}, A2 −
{x}, . . . , Au − {x} contains a sunflower of size k. Since A1, A2, . . . , Au all contain x
their intersections are still equal, so they also contain a sunflower of size k. �

End of solution.

5. Prove that ∀n, a, b such that n > ab, any sequence of n distinct numbers has an
increasing subsequence of length at least a, or a decreasing subsequence of length at
least b.

Solution:

Proof. By contradiction:
For every i define xi ≥ 1 as the length of the longest increasing subsequence ending
with ai, and yi ≥ 1 as the length of the longest decreasing subsequence starting with
ai. Note that (xi, yi) 6= (xj, yj) for i < j. Indeed, if ai < aj then xj > xi, while if
ai > aj when yi < yj. So each pair (xi, yi) can only be assigned to one i. But there are
less than n pairs (xi, yi) with both 1 ≤ xi < a and 1 ≤ yi < b. So some pair with one
component larger must be assigned to some i. �

End of solution.

6. Prove that for all large enough n, for every set U containing n real numbers, we can
find a subset A ⊂ U satisfying

(1) |A| > n
1
4 , and

(2) ∀x, y, v, w ∈ A, x+ y + v + w 6= 17.

Solution:

Proof. By probabilistic method. Choose k items from U independently, at random.
Call these items a1, a2, . . . , ak. Let A be the set of these items: A = {a1, . . . , ak}. We
need to show that the probability of violating either (1) or (2) is less than 1; this will
show that some set A exists with the properties we want.

53

The probability of selecting any particular element from U is 1
n
. In order to show that

A is sufficiently large we will show that none of our k elements have the same value,
so that |A| will equal k. We can talk about the specific size of k later. For any ai and
aj where i 6= j, Pr[ai = aj] = 1

n
. By union bound, then, Pr[ai = aj] for any i 6= j is at

most the number of events times the probability for each event, or ≤
(
k
2

)
1
n
.

Now we need to find the probability of (2). Given any three elements x, y, and v, let us
assume that the fourth number w such that the sum of all four equals 17 is a member
of U . The probability of selecting this number is 1

n
. Given that, we need to find the

probability that a bad fourth number will be selected for every set of three numbers
in A. This works the same as above: we apply union bound and get ≤

(
k
4

)
1
n
.

Now we can find the probability that |A| < k or that any x, y, v, w ∈ A sum to 17 with
a final application of union bound. Our probability of failing is at most

(
k
2

)
1
n

+
(
k
4

)
1
n
. We

need this to be less than 1, so we set
(
k
2

)
1
n

+
(
k
4

)
1
n
< 1, which is true when

(
k
2

)
+
(
k
4

)
< n.

We can expand and simplify that, getting: (
k

2

)
+

(
k

4

)
< n

k(k − 1)

2
+
k(k − 1)(k − 2)(k − 3)

24
< n

k4 − 6k3 + 23k2 − 18k < 24n

If we take the fourth root of both sides of this equation, we find that we need a value
smaller than k to be less than a value larger than 2n1/4. This leaves us with plenty of
room for k itself to be larger than n1/4. �

End of solution.

7. State the inequalities by Markov, Chebyshev, and Chernoff. Give definitions of all the
quantities involved in these inequalities.

Solution:

Markov’s inequality:

Pr[X ≥ kµ] ≤ 1

k

Let X be a non-negative random variable with mean µ. Then for every k > 0, we have
the above inequality.

Chebyshev’s inequality:

Pr[X ≥ µ+ kδ] ≤ 1

k2

54

Let X be a non-negative random variable with mean µ and standard deviation σ. Then
for every k > 0, we have the above inequality.

Chernoff’s inequality: Let X1, X2, ..., Xn be independent 0/1 r.v. such that,

If Pr[Xi = 1] = p, then ∀δ ∈ [0,∞)

Pr[
n∑
i=1

Xi ≥ n(p+ δ)] ≤ 2−nD(p+δ||p).

D(p||q) =
∑

x p(x)log2
p(x)
q(x)

, where p(x), q(x) are discrete probability distributions.
End of solution.

8. Give NFA and RE for the language of strings over Σ = a, b such that either the number
of a is divisible by 2, or the number of b is divisible by 3.

Solution:

Ma∪b =

Therefore the corresponding RE: RE = (b∗ab∗ab∗)∗ ∪ (a∗ba∗ba∗ba∗)∗ .
End of solution.

55

Lecture 9

9.21 Summary

We solved the second part of Exercise 26. Then we started context-free slides and continued
till context free pumping lemma.

9.22 Small-Intersection System (SIS)

Exercise 46. A Small-Intersection System (SIS) is a collection of m sets S1, S2, . . . , Sm ⊆
{1, 2, . . . , u} where the followings hold,

(1) |Si| ≥ s;

(2) |Si ∩ Sj| ≤ αs for ∀i 6= j;

Give a construction when u=es for e, sufficiantly large, depending on α and s ≥ c·lg(m)/α
for a constant c which is unversal.

Hint: Pick each set randomly with Pr[x ∈ S] = 2
e
.

Solution:
For a set Si, let

X i
j =

{
1 if j ∈ Si
0 otherwise

Note E[|Si|] = E[
∑u

j=1X
i
j] =

∑u
j=1E[X i

j] = u ∗ 2
e

= e ∗ s ∗ 2
e

= 2s
We want to show that with probability > 0 both (1) and (2) holds. To do so we can prove
the following instead:
Pr[Not(1) or Not(2)] < 1

Note Pr[Not(1) or Not(2)] ≤ Pr[Not(1)] + Pr[Not(2)]

So we prove that each term is < 1
2

:
(1)
Pr[∃i : |Si| < s] ≤
m.Pr[|Si| < s] =
m.Pr[

∑u
j=1Xj < s] =

m.Pr[
∑u

j=1Xj <
1
e
.u] ≤ m.2−D(1

e
|| 2
e

)u

(2)
Pr[∃i 6= j||Si ∩ Sj| > αs] ≤
m2Pr[|S1 ∩ S2| > αs]
m2Pr[|S1 ∩ S2| > αs] = m2.P r[|S1 ∩ S2| ≥ α

e
.u

56

By chernoff bound, above probability is ≤ m2.2−D(α
e
||(2
e

)2)u

So we want each bound to Pr < 1
2
. With similar proofs to what has done in exercises:

m2.2−D(α
e
||(2
e

)2)u ≤ m.2−Ω(1
e

)u = m.2−Ω(s)

m2.2−D(α
e
||(2
e

)2)u ≤ m2.2−Ω(α
e

)u = m2.2−Ω(α)s < 1
2

End of solution.

9.23 Some Previous Exercises

Exercise 47. Convert the following NFA into a RE:

q0start

q1 q2

q3

a

a

a

b

a, b

Solution: Add a new start state with an ε arrow to the old start state and a new accept
state with an ε arrow from all old accept states.

qsstart q0

q1 q2

q3

qa
ε

a

a

a

b

a ∪ b

ε

ε

Remove q0 and update labels.

qsstart

q1 q2

q3

qa

a

a

a

b

a ∪ b

ε

ε

Remove q1 and update labels.

qsstart

q2

q3

qa

aa

b

a ∪ b

aa

ε

ε

57

Remove q2 and update labels.

qsstart

q3

qa
aa(aa)∗

b

a ∪ b

ε

Remove q3 and update labels.

qsstart qa
aa(aa)∗ ∪ b(a ∪ b)∗

We get the regular expression aa(aa)∗ ∪ b(a ∪ b)∗.
End of solution.

Exercise 48. Think Like The Pros: Exercise 10. Prove that {x|x = wtw for some w, t ∈
{0, 1}({0, 1}∗)} is not regular (this is [S problem 1.46d]).

Solution:

Proof. By pumping lemma:

∀p ≥ 0, ∃w ∈ L, |w| ≥ p,∀x, y, z : w = xyz, |y| > 0, |xy| ≤ p,∃i ≥ 0 : xyiz 6∈ L

• Adversary moves p

• You select w = 1p001p0

• Adversary moves x, y, z

• You select i = 2

y only has 1 and |y| > 0, so xyyz = 1p+|y|001p0 /∈ L. �

End of solution.

Exercise 49. Think Like The Pros: Exercise 11. Prove or disprove the claim: There exists a
function f(n) = ω(n), with range the positive integers, such that {1f(n)|n > 0 is an integer}
is regular.

Solution:

Claim 26. There is no such function f(n).

First we prove a lemma.

58

Lemma 27. If f(n) = ω(n), and
(
ni
)∞
i=1

is a subsequence of
(
n
)∞
n=1

, then f(ni) = ω(i).

Proof of the above lemma.
∀c > 0, ∃n0 such that f(n) > cn for all n ≥ n0. Pick i0 such that ni0 ≥ n0. So

f(ni) > cni ≥ ci for all i ≥ i0.
Proof of the claim.

• Adversary moves p

• You select w = 1f(n), for some n such that f(n) ≥ p

• Adversary moves xyz

• We prove by contradiction that ∃i, xyiz /∈ L. Consider the set(not sequence) {xyiz|i =
1, 2, · · · }. If for each i = 1, 2, · · · , xyiz ∈ L, then there exists a subsequence

(
ni
)∞
i=1

of (1, 2, · · ·) such that {xyiz|i = 1, 2, · · · } = {1f(ni)|i = 1, 2, · · · }. The length of string
in the increasing sequence

(
xyiz

)∞
i=1

is Θ(i). So f(ni) = O(i). This contradicts the
lemma.

End of solution.

Exercise 50. Show that 1PFAs accept exactly the regular languages. Some hints:

• Prove this using the theorem we showed last time. That is, given a 1PFA for L, show
that the matrix ML discussed last time has finitely many rows. This means that the
language has a 1DFA.

• Row x of ML will correspond to a probability distribution on states after reading x.

• You need to discretize the probabilities. That is, consider two probabilities equal if
they differ by a tiny bit.

Solution: Suppose the accept and reject thresholds are a and b, respectively. Suppose the
PFA P has c non-halting states. Label them with 1, 2, · · · , c. Choose an ε small enough
such that cε < a− b. Partition [0, 1]c into finite number of small cells of dimension at most
ε. So if g, h ∈ [0, 1]c are in the same cell, ‖g− h‖∞ ≤ ε, where ‖ · ‖∞ is the maximum norm.

For a string x, let p(x) be a vector in [0, 1]c. The i-th entry of p(x) is the probability
that P starts in initial state and ends in state i after reading x. Let q(x) be another vector
in [0, 1]c. The i-th entry of q(x) is the probability that P starts in state i and ends in accept
state after reading x. Then for two strings x and y, p(x)qT (y) =Pr[P accepts xy].

59

Now suppose p(x) and p(x′) are in the same cell, then ‖p(x) − p(x′)‖∞ ≤ ε. Then for
any string y,

|Pr[P accepts xy]− Pr[P accepts x′y]| = |p(x)qT (y)− p(x′)qT (y)|
= |(p(x)− p(x′))qT (y)|

= |
c∑
i=1

(pi(x)− pi(x′))qi(y)|

≤
c∑
i=1

|(pi(x)− pi(x′))qi(y)|

≤
c∑
i=1

ε = cε

So if P accepts xy, Pr [P accepts xy]> a, Pr [P accepts x′y]> a− cε > b. So P also accepts
x′y.

Therefore we have proved if x and x′ are in the same cell, [x] = [x′]. So the number
of equivalence classes is no more than the number of cells, which is finite. According to
Myhill-Nerode theorem, the language accepted by P is regular.

End of solution.

Exercise 51. There exists a 2PFA M such that L(M) = {anbn, n ≥ 0}.

Solution: The proof is a series of exercises. M does the following:

1. Check that the input is of the form a ∗ b∗. Let us say the input w = anbm.

The following DFA recognizes {anbm|n,m ≥ 0}.

q0start q1
b

a b

2. Reject if 0 < |n−m| < k, for some k constant to be set later.

Define a DFA (Q,
∑
, δ, q0, F), where

• Q = {0, 1, · · · , k − 1} × {0, 1, · · · , k − 1}
•
∑

= {a, b}
• δ((i, j), a) = (l, j), where l ∈ {0, 1, · · · , k − 1} and l ≡ i+ 1 mod k
δ((i, j), b) = (i, p), where p ∈ {0, 1, · · · , k − 1} and p ≡ j + 1 mod k

• q0 = (0, 0)

• F = {(i, i)|i = 0, 1, · · · , k − 1}

60

Then this DFA accepts w = anbm if n ≡ m mod k. If 0 < |n−m| < k, then this DFA
rejects w.

3. Scan input repeatedly, tossing a coin for each symbol. Success for a: always come up
with 1, but some coin for b is 0. Success for b: All coins for b are 1, but some coin for
a is 0. If ∃L successes for a before any for b, or ∃L successes for b before any for a,
reject. Otherwise, accept. (L is a constant to be set depending on k.)

After step 1 and 2, there are two kinds of strings coming to step 3.

• w = anbm with n = m

• w = anbm with |n−m| > k and n ≡ m mod k

If n = m, Pr[2PFA accepts w]≥ 1 − (
1

2
)L−1. If |n − m| > k, Pr[2PFA accepts w]≤

1− (1− 1

2k + 1
)L.

First we can choose L large enough to make 1− (
1

2
)L−1 ≥ the accept threshold. Next

we can choose k large enough to make 1− (1− 1

2k + 1
)L ≤ the reject threshold.

4. Compose the DFA in step 1, the DFA in step 2 and the 2PFA in step 3 together, we
get a 2PFA which recognize {anbn|n ≥ 0}.

End of solution.

Exercise 52. Show that the set of languages accepted by a 1PFA does not change if we
replace 99% and 1% with any a, b such that 1 > a > b > 0.

Solution:
Let’s generalize the problem a little bit for cleaner solution. Let’s define two sets of

PFAs; PFA1 whose accepting probability is α and PFA2 whose accepting probability is β,
where 0 < α, β < 1. What we want to prove is that the two have same accepting power: for
∀M1 ∈ PFA1, ∃M2 ∈ PFA2 such that L(M1) = L(M2).

Claim 28. For ∀M1 ∈ PFA1, create M2 ∈ PFA2 by duplicating M1 but substituting ∀
transition probability p in M1 to plogαβ. Then L(M1) = L(M2).

Proof. For ∀ string w, if it arrives at final state with probability of P (w) in M1, it will
arrive at final state with probability of P (w)logαβ in M2. Since 0 < α, β < 1, f(x) = xlogαβ

is a monotonically increasing function. Because 0 5 P (w) 5 1, 0 5 f(P (w)) 5 1, and
all converted probabilities in M2 are valid probabilities. Because f(x) is monotonically
increasing and f(α) = β, L(M1) = L(M2). �

End of solution.

61

9.24 Context Free Grammar Exercises

Exercise 53. Give context-free grammar for L={w | w has as many a as b}.

Solution:

Claim 29. Define a grammar G=(V, Σ, R, S) as follows, then L=L(G). Only definition of
rules are presented below, because others are trivial.

S → ε|SS|aSb|bSa

Proof. ⇐) All rules in G produces same amount of a and b. ∴⇐.
⇒) Proof by induction on length of string, |w|.

Base case: ε ∈ L(G). trivial.
Induction step:

Induction hypothesis: For ∀v ∈ L, s.t. |v| < |w|, v ∈ L(G).
Case 1. w is in the form axb, where x ∈ {a, b}∗. Since w ∈ L and |x| < |w|, x ∈ L and

x ∈ L(G) by induction hypothesis. Therefore, w can be produced by using rule S → aSb
and w ∈ L(G).

Case 2. w is in the form bxa, where x ∈ {a, b}∗. Similar to Case 1.
Case 3. w is in the form axa, where x ∈ {a, b}∗. Since w has same number of as and bs,

when reading w from beginning, there must exists a point in the middle of w where there
are same number of as and bs. Split w into two strings x and y at the point, e.g. w = xy.
Then, x, y ∈ L, and by induction hypothsis, x, y ∈ L(G). w can be created by using rule
S → SS and therefore w ∈ L(G).

Case 4. w is in the form bxb, where x ∈ {a, b}∗. Similar to Case 3. �

End of solution.

Exercise 54. Give context-free grammar for L={w | w has twice as many a as b}.

Solution:

Claim 30. Define a grammar G=(V, Σ, R, S) as follows, then L=L(G). Only definition of
rules are presented below, because others are trivial.

S → ε|SS|aSbSa|aSaSb|bSaSa

Proof. ⇐) All rules in G produces twice the amount of a than b. ∴⇐.
⇒) Proof by induction on length of string, |w|.

Base case: ε ∈ L(G). trivial.
Induction step: Induction hypothesis: For ∀v ∈ L, s.t. |v| < |w|, v ∈ L(G).

Case 1. w is in the form bxb, where x ∈ {a, b}∗.

62

Since w has twice the amount of a than b, when reading w from the beginning, there
must exists a point in the middle of w where the last character read is a and the number
of a is twice that of number of b [count(a)=2 × count(b)]. Split w into two strings x and y
at the point (w = xy). Then, x, y ∈ L, and by induction hypothsis, x, y ∈ L(G). w can be
created by using rule S → SS and therefore w ∈ L(G).

Case 2. w is in the form axa, where x ∈ {a, b}∗.
Similar to Case 1, when reading w from the beginning, there must exist a point in the mid-

dle of w where the last character read is b and count(a)=2*count(b) or count(a)=2*count(b)-
1.

If count(a)=2 × count(b), similar to Case 1., we can split w into two strings x and y
at the point (w = xy), where x, y ∈ L and by induction hypothsis, x, y ∈ L(G). w can be
created by using rule S → SS and therefore w ∈ L(G).

If count(a)=2 × count(b)-1, we can split w as follows: (w = axbya). Then, x, y ∈ L,
and by induction hypothsis, x, y ∈ L(G). w can be created by using rule S → aSbSa and
therefore w ∈ L(G).

Case 3. w is in the form axb, where x ∈ {a, b}∗.

Figure 2: Change of count of a and b when a=1 and b=-2.

Similar to Case 1, as in the graph above, there must exist a point in the middle of w
where the last character read is a and count(a)=2*count(b)+2 and we can split w as follows:
(w = axayb), where x, y ∈ L and by induction hypothsis, x, y ∈ L(G). Then, w can be
created by using rule S → aSaSb and therefore w ∈ L(G).

Case 4. w is in the form bxa, where x ∈ {a, b}∗. Similar to Case 3, we can split w as
follows: (w = bxaya) and w ∈ L(G). �

End of solution.

Exercise 55. Give context-free grammar for L={w | w has as many a as b and each prefix
of w has at least as many a as b }.

Solution:

Claim 31. Define a grammar G=(V, Σ, R, S) as follows, then L=L(G). Only definition of
rules are presented below, because others are trivial.

S → ε|SS|aSb

63

Proof. ⇐) Prefix of any rule in G has at least as many a as b. ∴⇐.
⇒) Proof by induction on length of string, |w|. Base case: ε ∈ L(G). trivial.

Induction step: Induction hypothesis: For ∀v ∈ L, s.t. |v| < |w|, v ∈ L(G).
Case 1. If there is a point in w, where count(a)=count(b).
Split w into two strings x and y at the point, e.g. w = xy. Then, x, y ∈ L, and by

induction hypothsis, x, y ∈ L(G). w can be created by using rule S → SS and therefore
w ∈ L(G).

Case 2. If there is no point in w, where count(a)=count(b).
Then count(a) > count(b) at all points in w except the end, and w must start with a

and end with b: w = axb where x ∈ L from the assumption of the Case 2. By induction
hypothsis x ∈ L(G), and w can be created by using rule S → aSb and therefore w ∈ L(G).
�

End of solution.

Exercise 56. Give context-free grammar for L={ambncpdq|m+ n = p+ q}.

Solution:

Claim 32. Define a grammar G=(V, Σ, R, S) as follows, then L=L(G). Only definition of
rules are presented below, because others are trivial.

S → aSd|P |Q|R
P → aPc|R
Q→ bQd|R
R→ ε|bRc

Proof. ⇐) All the strings generated by the rule is in the form of ambncpdq and all the rules
in G preserves the equation m+n=p+q. ∴⇐.
⇒) For ∀w ∈ L, w can be produced by G as follows.

(1) Apply S → aSd for min(m,q) times. Then,

(a) If m = q, apply S → R.

(b) If m > q, apply S → P, apply P → aPc for (m-q) times, and apply P → R.

(c) If m < q, apply S → Q, apply Q → bQd for (q-m) times, and apply Q → R.

(2) Apply R → bRc for min(n,p) times. Then, apply R → ε.

�

End of solution.

64

Exercise 57. Prove L={0n1n0n1n|n = 0} is not context-free.

Solution:

Proof. by Context-Free Grammar Pumping Lemma.
For ∀p = 0, let w = 0p1p0p1p. However w is divided into uvxyz, because |vxy| 5 p, vxy

cannot cover all 4 parts of alternating 0s and 1s of the string. Given that |vy| > 0, setting
i = 0 will make the resulting string not to be in L. ∴ L is not a context-free language.
�

End of solution.

65

Lecture 10

10.25 Summary

In this lecture, we mainly discuss the topic of Turing machine, decidable and undecidable
problems.

10.26 Exercises

Exercise 58. Pick your favorite language,

(1) write your decider D for {ω ∈ Σ∗|ωhas even number of a},

(2) run D on itself and tell us the output,

(3) write a program that on input a program M , outputs a program M ′, where

M ′(ω) =

{
0 if ω = ”hello”,
M(ω) otherwise

(4) run it on D and output answer.

Solution: All of the following programs are written in JAVA.
Note: we include the source code in the folder 2013-02-20-g4-source-code. There are

three files:

(1) Decider.java is the decider D.

(2) Program.java is the program which operates on a input program M .

(3) MainFunc.java is the program used to test the above two programs.

You can use javac command to compile them and java command to execute them.
(1) Listing 1 is the decider D:

Listing 1: Decider D� �
1 public class Decider {
2 /**
3 * Decider D for L={w|w has even number of a}
4 *
5 * @param w
6 * a string
7 * @return int: 1: even number; -1: odd number
8 */
9 public static int decider(String w) {

10 int count = 0;

66

11 for (int i = 0; i < w.length (); i++) {
12 if (w.charAt(i) == a) {
13 count ++;
14 }
15 }
16 if (count % 2 == 0) {
17 return 1;
18 } else {
19 return -1;
20 }
21 }
22 }
� �

(2) Run D on itself, it returns 1, which means there are even number of a. Actually,
there are four a’s. Noting that we count the line public class Decider.

(3)

Listing 2: Program M� �
1 /**
2 * @param M
3 * : the file name of the program
4 * @param progName
5 * : program name
6 */
7 public static void program(String M, String progName) {
8 try {
9 File file = new File(M);

10 if (!file.exists ()) {
11 System.out.println("File " + M + "does not exist.");
12 } else {
13 File outfile = File.createTempFile(M, ".temp");
14

15 FileInputStream fis = new FileInputStream(file);
16 BufferedReader in = new BufferedReader(new InputStreamReader(
17 fis));
18

19 FileOutputStream fos = new FileOutputStream(outfile);
20 PrintWriter out = new PrintWriter(fos);
21

22 String line;
23

24 Pattern pattern = Pattern.compile(progName);
25 Matcher matcher;
26 while ((line = in.readLine ()) != null) {
27 matcher = pattern.matcher(line);

67

28 if (matcher.find()) {
29 Pattern p = Pattern.compile("String w");
30 Matcher m = p.matcher(line);
31 if (!m.find()) {
32 line = line.substring(0,line.indexOf("(") + 1)
33 + "String w, "
34 + line.substring(line.indexOf("(") + 1);
35 }
36 out.println(line);
37 out.println("\t\t" + "if(w.equals (\" hello \")){");
38 out.println("\t\t\t" + "return 0;");
39 out.println("\t\t" + "}");
40 } else {
41 out.println(line);
42 }
43 }
44 out.flush();
45 out.close();
46 in.close();
47

48 file.delete ();
49 outfile.renameTo(file);
50 }
51 } catch (IOException e1) {
52 e1.printStackTrace ();
53 }
54 }
� �

(4) Run program on D, the output is shown in Listing 3. Line 10 − 12 are the new added
code:

Listing 3: The output after running program on D� �
1 public class Decider {
2 /**
3 * Decider D for L={w|w has even number of a}
4 *
5 * @param w
6 * a string
7 * @return int: 1: even number; -1: odd number
8 */
9 public static int decider(String w) {

10 if(w.equals("hello")){
11 return 0;
12 }
13 int count = 0;

68

14 for (int i = 0; i < w.length (); i++) {
15 if (w.charAt(i) == a) {
16 count ++;
17 }
18 }
19 if (count % 2 == 0) {
20 return 1;
21 } else {
22 return -1;
23 }
24 }
25 }
� �

End of solution.

Exercise 59. Rice’s theorem:
Let S be a set of languages, suppose ∃ TM MY : L(MY) ∈ S and ∃ TM MN : L(MN) 6∈ S,

(1) show LS = {M |L(M) ∈ S} is undecidable,

(2) also show assumptions are necessary.

Solution:

(1) (i) Let us assume that ∅ ∈ S.
Assume D decides LS. We build D′ to decide ATM

D′ := ”on input (M,w) construct machine

M ′ := ”on input w′ run M on w if M accepts w,

return MN(w′)”

return D(M ′).”

Suppose M accepts w, then L(M ′) = L(MN) 6∈ S ⇒ Reject.
Suppose M rejects or loops on w, then L(M ′) = ∅ ∈ S ⇒ Accept.

(ii) what if ∅ 6∈ S
Think of the complement of S : S̄, note LS is decidable⇔ LS̄ is decidable. Repeat
the argument with LS̄. Note ∅ ∈ S̄.

(2) Let’s consider what if we drop one of the two assumptions:

- If we drop ”∃ TM MY : L(MY) ∈ S”, then S = Ø, which means {M |L(M) ∈ S} can
be decided by a TM that rejects any input at the first step.

69

- If we drop ”∃ TM MN : L(MN) 6∈ S”, then for any TM M, L(M) ∈ S. Then
{M |L(M) ∈ S} can be decided by a TM that accepts any input at the first step.

Apparently we cannot drop them at the same time either. So, both of the assumptions
are necessary for the statement to be true.

End of solution.

70

Lecture 11

11.27 Summary

In this lecture, we continue discussing the topic of Turing machine, decidable and undecidable
problems, and give a sketch proof of Hilbert’s tenth problem.

11.28 Exercises

Exercise 60. 2PDA is a PDA with an extra stack (in total 2 stacks). Prove that Accept
2PDA is undecidable.

Solution:

Proof. Sketch: we first show that 2PDA can simulate a TM, and second use “ATM is
undecidable ⇒ A2PDA is undecidable”

We first push two special symbols $ to two stacks to mark the bottoms. After that, PDA
reads the entire input and push it symbol by symbol to the second stack. And then all these
symbols are moved to the first stack. The motivation behind is we want to use the first stack
to represent the portion to the right of the tape head while use the second stack to represent
the portion to the left of the tape head. When tape head moves right, we pop one symbol
from stack one and push it into stack two. Similarly, we pop one symbol form stack two
and push it into stack one to simulate tape head moving left. Note when stack one only has
a symbol $ and tape head will move right, we need to push a blank here since the head is
beyond the right margin.

Therefore, we can see that a 2PDA can totally simulate operations of a TM. If A2PDA is
decidable, then ATM is decidable. However, we know that ATM is undecidable ⇒ A2PDA
is undecidable. �

End of solution.

Exercise 61. QDA is a DFA with a queue. Prove that Accept QDA is undecidable.

Solution:

Proof. Sketch: similar to the last one, but show QDA can simulate TM.
We use two special symbols, say $ and φ to help us to simulate the left and right moves

of a TM through a queue. After we start the simulation, we first push φ and then the entire
input into the queue. Clearly, φ stands for the leftmost position of the tape. When the
tape head moves right, we pop the top of the queue, overwrite it if necessary, and push this
symbol to the end of the queue (including the special symbol φ if the tape head moves right
from the first symbol). For a left move, push $, and keep popping and pushing symbols until
$ is found. Then we know that the previous popped symbol is the one to the left of the tape
head.

71

Therefore, we can see that a QDA can totally simulate operations of a TM. If AQDA is
decidable, then ATM is decidable. However, we know that ATM is undecidable ⇒ AQDA
is undecidable. �

End of solution.

Exercise 62. Show ∀L
L is turing recognizable ⇔ ∃ decidable language L′ where L = {w|∃y : 〈w, y〉 ∈ L′}

Solution:

Proof. ⇒
Suppose L is recognizable and L(M) = L meaning M is a machine that recognizes the
language L. We can define L′ = {〈w, y〉|M accepts w in y steps}. Obviously this is decidable
because we can run M for y steps and if it accepts we accept, otherwise we reject. This
computation must halt with an answer in a finite number of steps, so it is decidable.

Proof. ⇐
Suppose there is a decidable language L′ thus ∃ a machine M ′ : L(M ′) = L′ meaning M ′

decides L′. We can use it to construct machine M which recognizes L.

Define M :=

on input w

For each string y in order

if M’ accepts <w,y> then accept

Thus M will accept L within a finite amount time so L is recognizable
End of solution.

Exercise 63. GOTO programs (for register machines)
Machines have a finite number of registers R1, R2...Rn, each of which hold an integer.
Possible instructions are:

• inc Rj

• dec Rj

• goto l

• if Rj = 0 goto l

• halt

Simulate Ri = Rj with a GOTO Program

72

Solution:
1: If Rj = 0 goto 5
2: dec Rj

3: inc R0

4: goto 1
5: if R0 = 0 goto 10
6: inc Rj

7: inc Ri

8: dec R0

9: goto 5
10: halt

End of solution.

11.29 Hilbert’s tenth problem

H10 : {p(x1 . . . xn)|∃a1 . . . an such that p(a1 . . . an) = 0}
We now give main idea that H10 is undecidable.

Register machine is a machine with finite number of registers R1, R2 . . . each holding an
integer.
GOTO program for register machine has these instructions:
INC Rj : increments register Rj by 1
DEC Rj : decrements register Rj by 1
GOTO l : goto line l
IF Rj = 0 GOTO l : goto line l if register Rj is 0
HALT : ends the program

Example for a GOTO program looks like this:
1: INC R0

2: IF R0 = 0 GOTO 5
3: DEC R0

4: GOTO 2
5: HALT

Define HGOTO := {G : G is a GOTO program that halts when started with Rj = 0,∀i}

Fact: HGOTO is undecidable.
We reduce HGOTO to H10, i.e. given a GOTO program, we compute a polynomial P:
P ∈ H10⇔ G ∈ HGOTO

Firstly, we actually work with systems of polynomials. i.e. given P1, P2, . . . Pl do they have

73

a common solution?

Question: How do you reduce a system to a single polynomial?
P1, P2 ⇒ P 2

1 + P 2
2

Variables: We will encode tuples in base B = 2b (which is large enough)
Wj : contents of Rj through computation
Nl : indicators of the time when instruction l is executed
Example: W0 = (0, 0, 0, 1, 1, 0)
N2 = (0, 1, 0, 0, 1, 0)

We need to express x C y. x C y indicates every ’bit’ of ’y’ is less than or equal to
that ’bit’ of ’x’.
Example:
1001 C 1101
11 6 01
Fact: x C y ⇔

(
y
x

)
is odd, and latter can be written as a pollynomial.

T = ΣBi = (1, 1, 1, 1, 1, 1, 1, 1, 1)

The program starts with the first instruction 1 C Ni

For instruction i: GOTO l
We can have B ∗Ni C Nl

For instruction i: INC Rj

We can have B ∗Ni M Ni+1

Wj = B ∗ (Wj + Σi:INCRjNi − Σi:DECRjNi)

For instructioni: IF Rj = 0 GOTO l
We can have B ∗Ni C Nl +Ni+1

B ∗Ni C Ni+1 +B ∗ T − 2Wj

74

Lecture 12
The first exercise is about Turing machines that print or enumerate the strings of a

language.

Exercise 64. Say that a TM is a printer if it takes no input and prints strings. A language
is printable if there exists a printer TM that prints it. Prove that for every language L

1. L is Turing-recognizable if and only if it is printable; and

2. L is decidable if and only if it is printable in lexicographic order.

Solution: We begin by proving both directions of the first part. If L is Turing-recognizable
then there is some Turing machine M that recognizes it. Let the strings w of L be indexed
from 1 to |L|. We can construct a TM P that prints L in the following way.

1. No input. Let i = 1.

2. For each j in the range 1 ≤ j ≤ min{i, |L|},

3. Run M for i steps on input wj.

4. If M is in an accept state, print wj.

5. Increment i and go to stage 2.

Clearly P prints exactly those strings of L that M accepts in any finite number of steps.
Since M recognizes L, it follows that P prints L and L printable.

For the other direction, if L is printable then there is some TM P that prints it. We can
construct a TM M that recognizes L in the following way. On input w, run P . If P ever
prints w, then accept. The set of strings that M accepts is L, so L is Turing-recognizable.

To prove the second part, first suppose L is decidable. Then there is some TM M that
decides it. Construct a TM P that enumerates all strings in Σ∗ in lexicographic order. Say
P runs M on each string w and prints w only when M accepts. Then we have that L is
printable in lexicographic order.

If L is printable in lexicographic order, then there is a TM P that prints it in lexicographic
order. If L is infinite, then for any string w ∈ L there is a string w′ ∈ L that comes after
w in lexicographic order. In this case, we can construct a TM M that decides L in the
following way. On input w, run P . If P prints w, accept ; if P prints w′ that comes after
w in lexicographic order, reject. If L is finite, then we can simply construct a TM M that
encodes L as a table and checks whether an input w is in the table.

This distinction is necessary because if L is finite, there is no guarantee that P will ever
print a string w′ that comes after a given w in lexicographic order, and we have to reject if
w 6∈ L, not loop forever. In either case, we have a TM M that halts on all inputs, accepting
all strings in L and rejecting all strings not in L. This shows L is decidable.

End of solution.

75

Let x, y ∈ {0, 1}n. How can we represent the pair 〈x, y〉 as a string over {0, 1} unam-
biguously, i.e., such that we can recover x and y from the string alone? We can’t simply
concatenate x and y, because there would be no way to know where x ends and y begins.
One solution is to duplicate each bit in x and insert the delimiter 01 before y:

〈x, y〉 = x1x1x2x2 · · ·x|x|x|x|01y

The length of this representation is |〈x, y〉| = 2|x| + |y| + c, where c is a constant. A more
efficient solution is to begin the string with the length of x as a binary number, encoded as
before with each bit duplicated, and then to insert the delimiter 01 before xy. The length
of this representation is |〈x, y〉| = 2 lg |x|+ |x|+ |y|+ c.

Exercise 65. Do better.

Solution: We can do slightly better by repeating the strategy and encoding the length of
the length of x with duplicated bits, and following that with 01, the length of x, and finally
xy. This representation gives |〈x, y〉| = 2 lg lg |x|+ lg |x|+ |x|+ |y|+ c.

End of solution.

For a string x ∈ {0, 1}∗, we’ll define a description of x as an encoding 〈M,w〉 ∈ {0, 1}∗
of a TM M and string w such that M halts with x on its tape when run on input w. The
Kolmogorov complexity K(x) is the length of the shortest description of x. We say that a
string x is incompressible if K(x) ≥ |x|.

Fact 33. ∃c.∀x.K(x) ≤ |x|+ c.

Proof. Construct a TM M that immediately halts on its input. Then 〈M,x〉 is a description
of x that is only greater in length than x by some constant-length encoding of M . �

Fact 34. ∃c. ∀x.K(xx) ≤ K(x) + c.

Proof. Let 〈M,w〉 be a minimum-length description of x. Construct a TM M ′ that runs w
on M to produce x, and then outputs two copies of x. Then 〈M ′, w〉 is a description of xx
that is only greater in length than 〈M,w〉 by some constant-length encoding of M ′. �

Fact 35. ∃c. ∀x, y.K(xy) ≤ 2 lg K(x) + K(x) + K(y) + c.

Proof. Let 〈M,w〉 and 〈M ′, w′〉 be minimum-length descriptions of x and y, respectively.
Construct a TM N that runs M on w and M ′ on w′ to produce x and y, and then outputs
xy. We can encode M by duplicating the bits of 〈M,w〉 and inserting a delimiter before
〈M ′, w′〉. This gives a description of xy not greater than 2 lg K(x) + K(x) + K(y) + c. �

Fact 36. There is an incompressible string of length n for all n.

Proof. Recall the number of strings of length n is |{0, 1}n| = 2n, and the sum of the number
of strings of length i = 0 to n − 1 is

∑n−1
i=0 2i = 2n − 1. If all strings of length n were

incompressible, then there would have to be a string of length less than n describing each
string of length n. But 2n > 2n − 1, so some string of length n cannot be described by any
possible string of length less than n. Thus there is an incompressible string of length n. �

76

Exercise 66. Prove ∃c.∀x.K(x2 + 17) ≤ K(x) + c.

Solution: Let 〈M,w〉 be a minimum-length description of x ∈ {0, 1}∗. We can construct
a TM N that reads a number y in binary as input and halts with the binary representation
of y2 + 17 as output. Note that |〈N, y〉| is some constant-length description of N plus y. We
can construct a TM M ′ that runs M on w to produce x, and then runs N on x to produce
x2 +17. Thus 〈M ′, w〉 is a description of x2 +17 that is only greater than 〈M,w〉 in length by
some constant; the minimum-length description K(x2 + 17) must be no more than K(x) + c
for some c and any x.

End of solution.

Exercise 67. Prove that the set of incompressible strings is undecidable.

Solution: Assume the set of incompressible strings is decidable. Recall from Exercise 64
that a language is decidable iff there is a TM P that prints each string in the language in
lexicographic order. Therefore we can construct a TM P ′ that, on input n, runs P until it
prints an incompressible string of length n and then halts with that string as output. We
also know from Fact 36 that there is an incompressible string of length n for every length
n, which means P ′ halts on all n. Therefore 〈P ′, n〉 is a description of some incompressible
string x of length n, i.e., K(x) ≥ n, and moreover |〈P ′, n〉| ≥ n.

But note that 〈P ′, n〉 is just some constant-length encoding of P ′ plus lg n bits encoding n
in binary. That is, |〈P ′, n〉| = lg n+c. Clearly n > lg n+c for any constant c and sufficiently
large n, so we have a contradiction. This shows our initial assumption was false.

End of solution.

Exercise 68. Prove that K(x) is not computable.

Solution: Assume K(x) is computable. Then there is a TM M that, on input x, halts
with K(x) as its output. Further, we can construct a TM M ′ that, on input x, runs M on x
to produce K(x), and then accepts if K(x) ≥ |x| and rejects otherwise. But M ′ is a decider
for the set of imcompressible strings, which contradicts Exercise 67. Therefore our initial
assumption was false, and K(x) is not computable.

End of solution.

Exercise 69. Prove ∀c.∃x, y.K(xy) > K(x) + K(y) + c.

Solution: In class; to appear below.
End of solution.

77

Lecture 13

13.30 Summary

We covered material from slides-complexity.pdf, first reviewing the material covered before
Spring Break and then proceeding to the definition of P and several examples of reductions
of 3SAT onto various other problems.

13.31 New Scribes Rules

For the rest of the semester, the scribes-exercises.tex updates will be handled as follows. We
are using Subversion to manage versions of each file, and we should avoid sending multiple
e-mails to the class for successive versions of the same lecture notes. Instead, we should
e-mail Emanuele when we are ready for him to review our work, and only e-mail the class
with the final version. If we wish, we can simply commit the final version to Subversion and
notify the class when it’s done.

The group responsible for a given lecture should continue working on the problems until
they are solved, even if this continues past the due date for the notes.

Finally, Emanuele will go over the completed scribes notes at the beginning of class and
comment on the solutions provided.

13.32 Complexity: P

We reviewed the material from last time, and continued through the reduction of 3SAT onto
SUBSET-SUM. All the notes today were in the slides, but here are some highlights:

• A language which is only decidable in some huge amount of time is useless. We analyze
this by calculating the runtime for a TM as a function of the size of the input. For
some input w, we typically denote |w| as n.

• The runtime of an algorithm depends to some extent on the language in which it’s
implemented. In particular, the locality of Turing Machines prevents them from being
able to access arbitrary memory locations in constant time. Therefore, many algo-
rithms which are linear (say) in Java are quadratic on a TM. However, an algorithm
which is polynomial in Java is still polynomial on a TM.

• We define the language TIME(t(n)) = {L : L can be decided by a TM that runs for
at most t(n) steps on an input of size n}.

• We define P =
⋃
c TIME(nc).

• This class studies what is NOT in P . It turns out that about the only thing we can
prove is not in P is ATM (and other undecidable languages), and about the only kind
of proof which has been shown to demonstrate that a language is not in P is the proof
for ATM’s undecidability.

78

• There is a class of interesting languages known as NP-complete, which are not believed
to be in P . These languages are interesting partly because if any one of them is ever
shown to be in P , then all of them must be in P . They are also interesting because
they have a lot of applications for business and science.

• We explain the concept of reduction: for two languages A and B, if we can prove that
A ∈ P =⇒ B ∈ P then we call that proof a reduction of B to A.

• We went over several algorithms in NP-complete, including 3SAT, CLIQUE, and
SUBSET-SUM and saw reductions of 3SAT to the latter two.

13.33 Exercises

Exercise 70. Find a Turing Machine R which on input φ computes graph Gφ and integer
tφ such that φ ∈ 3SAT ⇐⇒ (Gφ, tφ) ∈ CLIQUE

Solution: Since there is no limitation on the running time of R, it can simply try all
possible assignments for φ to find a satisfying assignment. If there is one then R can choose
some arbitrary tφ and construct a complete graph Gφ with tφ nodes. If there is no satisfying
assignment for φ then R can return the same Gφ with a tφ equal to one more than the number
of nodes in the graph. (Gφ, tφ) is in CLIQUE if and only if φ has a satisfying assignment.

End of solution.

Exercise 71. Find a polynomial time reduction of 3SAT to INDEPENDENT-SET.

Solution: This proof is very similar to the reduction in the slides of 3SAT to CLIQUE.
The only difference is the manner in which we select our edges.
INDEPENDENT-SET is defined as {(G, t) : G is a graph containing an independent set of size t}.

For any 3CNF φ, we define Gφ and tφ as follows. tφ is simply the number of clauses in φ.
Gφ = (V,E) is a graph with one vertex per variable in φ, so |V | = 3tφ. We add edge (u, v)
to E if vertices u and v are in the same clause or if they are logically inconsistent (e.g. x
and ¬x).

Claim 37. φ ∈ 3SAT ⇐⇒ (Gφ, tφ) ∈ INDEPENDENT-SET

Proof. ⇒ Suppose there is some variable assignment which satisfies φ. That means that
there must be at least one variable in each clause which can be simultaneously satisfied, so
these variables are not logically inconsistent. Since the variables are in separate clauses and
logically consistent, we must not have edges connecting their corresponding vertices in Gφ.
Therefore, we have an independent set of size tφ in Gφ.
⇐ Suppose there is an independent set of size tφ in Gφ. The vertices in this set must

not have come from the same clause, and they must not be logically inconsistent: otherwise,
they would have an edge between them. Therefore, these vertices correspond to a valid
assignment of variables which satisfies φ. �

79

We can evaluate the runtime of this reduction by examining the size of the data structure
Gφ = (V,E). There is one vertex per variable, so |V | = O(|φ|). There can be at most a
quadratic number of edges, so |E| = O(|φ|2). Since |φ|2+|φ| ∈ P , this reduction is polynomial
time.

End of solution.

Exercise 72. Find a polynomial time reduction of 3SAT to SYSTEM.

Solution: This reduction can be easily achieved using the following approach.
For each variable x in the 3SAT problem φ, we will add two variables xt and xf to the

system problem S representing the possible assignments to x. We will also add the following
constraints to S: 0 ≤ xt ≤ 1, 0 ≤ xf ≤ 1, and xt + xf = 1. Note that these constraints force
xt and xf to act like Boolean variables with opposite values.

For each clause (x1 ∨ x2 ∨ x3) in the 3SAT problem we will also add the constraint
x1 + x2 + x3 ≥ 1, using the appropriate variables xt and xf for the clause.

Claim 38. φ ∈ 3SAT ⇐⇒ S ∈ SYSTEM

Proof. ⇒ Suppose there is some variable assignment which satisfies 3SAT. That means that
there must be at least one variable xt or xf in each clause which equals 1, so the sum for the
clause constraint xi + xj + xk ≥ 1 will be satisfied. Thus, we have a satisfiable assignment
for the corresponding SYSTEM.
⇐ Suppose there is a variable assignment for S ∈ SYSTEM such that 0 ≤ xi, xj, xk ≤ 1

and xi + xk + xj ≥ 1. Since we have integer assignments, we can conclude that at least one
of these variables is equal to one. We can set the corresponding variable in φ to either true
or false depending on whether the variable which is 1 is a xt variable or a xf variable and
satisfy the clause in φ. Since every constraint in S is simultaneously satisfied, every clause
in φ is also satisfied. Therefore, these integer assignment can lead to a valid answer to the
equivalent 3SAT problem. �

Our reduction converts each variable to a constant number of constraints in O(|φ|) time,
and converts each clause to the corresponding linear inequality in O(|φ|). This gives us a
polynomial runtime of O(|φ|) for the reduction.

End of solution.

80

Lecture 14

14.34 Summary

In this lecture, we finished one more example of reduction of 3SAT onto 3COLOR, proved
all the covered examples are in NP, closed the NP circle and introduced EXP.

14.35 Exercises

Exercise 73. Prove the claim ∀c ∃x, y : K(xy) ≥ k(x) + k(y) + c

Proof. High-level idea: We note that a string describes its own length. Let Z be an incom-
pressible string of length at least n. We will try to break Z into xy so that it satisfies the
claim.

Z = l v w

Suppose |Z| = n, |l| = log(n)
2

, |v| = 1l (in binary) and |lv| = 1l + log(n)
2

. That is, we call

Z’s first log(n)
2

bits l, and interpret 1l as the length of v.

Then consider the number in binary and we get 1l ∈ {2
log(n)

2 , . . . , 2
log(n)

2
+1 − 1}. In other

words, 1l = θ(
√
n). The Kolmogorov complexity of v satisfies K(v) ≤ |v| + c. Next, we

construct a TM on input v that computes as follows:

1. First compute on(record) v

2. Then compute |v| = 1l

3. Output lv

Hence, K(lv) ≤ |v| + c. Also, we have K(w) ≤ |w| + c and K(lvw) ≥ n. Therefore
K(lv) +K(w) ≤ |v|+ |w|+ c = n− Ωlog(n). �

Exercise 74. Without using the Cook-Levin theorem, prove that the following language is
NP-complete: {(M,x, 1t) : M is a Turing machine: ∃y ∈ {0, 1}t : M(x, y) accepts within t
time steps}.

Solution: We call this language L. We first show that L ∈ NP, then we prove that if L ∈
P, P = NP.

1. Input w = (M,x, 1t), y ∈ {0, 1}t, |y| ≤ |w|, construct a Turing machine M ′, which
checks if M(x, y) accepts within t steps. M ′ will check no more than t ≤ w steps. This
will take polynomial time for M ′, so L ∈ NP .

2. For any NP language A, there is an integer c and a Turing machine MA that runs in
polynomial time nc such that w ∈ A ⇐⇒ ∃y, |y| ≤ |w|c,MA accepts (w, y).

81

We construct w′ = (MA, w, 1
nc), and have:

w ∈ A ⇐⇒ ∃y, |y| ≤ |w|c,MA accepts (w, y) within nc steps ⇐⇒ w′ ∈ L.
As the reduction from w to w′ is polynomial, we can conclude that any language in
NP is polynomial time reducible to L. If L is in P, then P = NP.

End of solution.

Exercise 75. Suppose P=NP, give an algorithm that on input a satisfiable 3CNF ϕ, outputs
a satisfying assignment in time poly(|ϕ|).

Solution: Let the set of variables in ϕ be x1, x2, · · · , xk

Algorithm 1 Find-Assignment(ϕ)

Array A[1 · · · k]
for i = 1 to k do
ϕ0 ← ϕ ∧ (xi ∨ xi ∨ xi)
ϕ1 ← ϕ ∧ (xi ∨ xi ∨ xi)
if ϕ0 is satisfiable then
ϕ← ϕ0 A[i]← 0

else if ϕ1 is satisfiable then
ϕ← ϕ1 A[i]← 1

else
REJECT

end if
end for
return A

If P=NP, then there exists a polynomial time algorithm T that determines whether a 3CNF
is satisfiable or not. For each variable xi we construct ϕ0 and ϕ1 which constrain xi to a
particular value. We call T to find out whether ϕj is satisfiable. If it is, we remember our
choice in array A and replace ϕ with the satisfiable ϕj so future assignments will have to
work with past decisions. Since we call T k times, the running time of our algorithm is still
polynomial.

End of solution.

Exercise 76. Suppose that there exists a decider for 3SAT that runs in time t(n). Describe
an algorithm that you can actually run that provides a satisfying assignment for 3SAT with
running time tc(n), for some constant c.

Solution: From exercise 75 we know that if there exists a decider for 3SAT that runs in
time t(n), there is an algorithm that outputs a satisfying assignment whose running time is
tc(n). We go through all algorithms in some sorted order in a brute force search to find a
correct decider. At step 1, we run algorithm 1 for one step; at step 2, we run algorithm 1

82

one step further, and run algorithm 2 for 2 steps; at step 3, we run algorithm 1 one step
further, run algorithm 2 one step further, and run algorithm 3 for 3 steps, and so on.

Since we know that the input is satisfiable, and by the assumption that some correct
algorithm exists, at some step i we will get a satisfying assignment. Note that the value
of i does not depend on the size of the input: it can be treated as a constant. At that
point, we will have run i algorithms for i steps each. The algorithms which output possible
satisfying assignments will be verified in polynomial time, with at most i total verifications
run. Therefore, the total running time will be O(i2 + itc(n)) for some c.

End of solution.

83

Lecture 15

15.36 Summary

In this lecture, we started with proving P 6= EXP . We finished the proof of Cook, Levin
Theorem and then we covered Interactive Proof Systems section till Graph Labeling.

15.37 Exercises

Exercise 77. Prove Quadratic Programming ∈ P ⇒ 3SAT ∈ P.

Solution:
On ∀ input φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ . . . ∧ (ai ∨ bi ∨ ci) ∧ . . . ∧ (ak ∨ bk ∨ ck) of

3SAT, generate R(φ), set of quadratic conditions as follows:
For each literal x, x+ ¬x = 1 x2 + (¬x)2 = 1 x,¬x = 0
For each clause (ai ∨ bi ∨ ci), ai + bi + ci = 1

Claim 39. φ ∈ 3SAT ⇐⇒ R(φ) ∈ Quadratic Programming

Proof. ⇒ Satisfying assignment of 3SAT will satisfy all the quadratic conditions. Trivial.
⇐ All literals should have value of 0 or 1 from first set of quadratic conditions and all

negating literals, e.g. x,¬x, should have different value. Therefore, if there is a set of literals
that satisfy Quadratic programming conditions, we can convert any literal with value of 1
to True and 0 to False, and that should satisfy 3SAT.

The conversion generates constant factor more equations compared to the length of input.
�

End of solution.

Exercise 78. Reduce 3SAT to Hilbert’s tenth problem in polynomial time.

Solution: We give TM R that on input φ

• computes a polynomial P such that φ ∈ 3SAT ⇔ P has an integer solution.

• runs in polynomial time.

Definition of R:
On input φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ . . . ∧ (ak ∨ bk ∨ ck),

• compute

¬φ =(¬a1 ∧ ¬b1 ∧ ¬c1) ∨ (¬a2 ∧ ¬b2 ∧ ¬c2) ∨ . . . ∨ (¬ak ∧ ¬bk ∧ ¬ck)
=(d1 ∧ e1 ∧ f1) ∨ (d2 ∧ e2 ∧ f2) ∨ . . . ∨ (dk ∧ ek ∧ fk).

84

Here di, ei, fi are literals and ¬φ is in disjunctive normal form.
For example, if φ = (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z), then

¬φ =(¬x ∧ ¬y ∧ ¬z) ∨ (¬¬x ∧ ¬¬y ∧ ¬z)

=(¬x ∧ ¬y ∧ ¬z) ∨ (x ∧ y ∧ ¬z).

• Construct a polynomial P containing all the variables in ¬φ.

For each clause in ¬φ, construct a quadratic term in P by

– replacing ”∧” with ”×”,

– replacing ”¬” with ”1-”,

– squaring the term.

And P=sum of all these quadratic terms.

For example, if ¬φ = (¬x∧¬y∧¬z)∨ (x∧ y∧¬z), then P = [(1−x)(1− y)(1− z)]2 +
[xy(1− z)]2.

It is easy to see that R runs in polynomial time.
⇒:
If φ ∈ 3SAT, there is an assignment such that φ = 1, then ¬φ = 0. We claim that this
assignment is an integer solution to P . Because ¬φ = 0, every clause in ¬φ is 0. So in every
clause, there is a literal = 0. So every quadratic term in P is 0, and therefore P = 0. For
example, (x = 1, y = 0, z = 0) is an assignment such that ¬φ = (¬x∧¬y∧¬z)∨(x∧y∧¬z) =
0. It is also a solution to P = [(1− x)(1− y)(1− z)]2 + [xy(1− z)]2.
⇐:
If P has an integer solution, we can transform it to an assignment for ¬φ by changing all
variable values which are neither 0 nor 1 to 1. For example, (x = 1, y = 0, z = −5) is a
solution to P = [(1− x)(1− y)(1− z)]2 + [xy(1− z)]2, then we transform it to (x = 1, y =
0, z = 1) as an assignment for ¬φ. We claim that ¬φ = 0 with this assignment. P = 0
implies that every quadratic term in P is 0. So for every quadratic term either

• there is a variable v = 0, and v appears in that quadratic term and the corresponding
clause, or

• there is a variable v = 1, and 1− v appears in that quadratic term, ¬v appears in the
corresponding clause.

In either case, the corresponding clause = 0. So ¬φ = 0. So φ = 1.

End of solution.

Exercise 79. Prove Independent set ∈ P ⇒ Clique ∈ P.

85

Solution: For ∀ input φ of Clique, create a new graph ¬φ that negates the edges: if
(x, y) ∈ φ, then (x, y) /∈ ¬φ, and vice versa. Then φ ∈ Clique ⇔ ¬φ ∈ Independent set.
Conversion takes linear time compared to the size of input.

End of solution.

Exercise 80. Prove NAE-3SAT ∈ P ⇒ 3SAT ∈ P.

Solution: On ∀ input φ = (a1∨b1∨c1)∧ (a2∨b2∨c2)∧ . . .∧ (ai∨bi∨ci)∧ . . .∧ (ak∨bk∨ck)
of 3SAT, generate Q(φ), input of NAE-3SAT as follows:

For each clause (ai ∨ bi ∨ ci), generate two clauses (ai, bi, xi) ∧ (ci,¬xi,“False”).
The conversion takes linear time compared to the size of input.

Claim 40. φ ∈ 3SAT ⇐⇒ Q(φ) ∈ NAE-3SAT

Proof. ⇒ For any satisfying set of literals, let xi = ¬(ai ∨ bi) for each clause.
⇐ Proof by contradiction. If all literals of a clause is False, neither setting xi to True

nor False satisfies both clauses in NAE-3SAT. Trivial. �

Since Q(φ) is not a valid NAE-3SAT clause with constant “False”, we substitute it to a
global variable α, and Q(φ) = (ai, bi, xi) ∧ (ci,¬xi, α)

Claim 41. φ ∈ 3SAT ⇐⇒ R(φ) ∈ NAE-3SAT

Proof. ⇒ For any satisfying set of literals, set α to be “False” and follow the proof of previous
claim.
⇐ Let t be a satisfying NAE-3SAT assignment of R(φ). If α = “False” in the assignment,

follow the proof of previous claim. If α = “True”, you can find an alternative solution of
NAE-3SAT, ¬t, which negates all the literals in t and α become “False”. Then, follow the
proof of previous claim. �

End of solution.

Exercise 81. Prove MAX-CUT ∈ P ⇒ NAE-3SAT ∈ P.

Solution: For input φ = (a1, b1, c1) ∧ (a2, b2, c2) ∧ . . . ∧ (ai, bi, ci) ∧ . . . ∧ (al, bl, cl) of NAE-
3SAT, create graph R(φ) of MAX-CUT as follows:

For each clause (ai, bi, ci), create a graph where each literal is a node and there is an
edge between two literals if they are not identical (i.e. “clause subgraph”). Between “clause
subgraph”s, connect nodes that negates each other. For instance, a node x in clause i (or
“clause subgraph” i, from viewpoint of R(φ)) and node ¬x in clause j gets an edge between.
Count the number of inter-clause edges as you generate the graph and let k be the total
number of inter-clause edges. The conversion takes quadratic time to create edges between
literals.

Claim 42. φ ∈ NAE-3SAT ⇐⇒ (R(φ), k + 2l) ∈ MAX-CUT

86

Proof. ⇒ If φ ∈ NAE-3SAT, all clause subgraph of R(φ) must have at least 2 edges since not
all three literals of a clause should be identical. Now, let’s bisect the nodes R(φ) following
the satisfying assignment of φ: all nodes with True assignment into one set and all nodes
with False assignment into another set, cutting all edges that connects True literals and False
literals. Then, two edges of each clause subgraph must be cut since φ satisfies NAE-3SAT,
and all k inter-clause edges will be cut since edges were created only between nodes that
negate each other. Therefore, you can find a cut of k + 2l edges.
⇐ Proof by contradiction. Assume there is no satisfying assignment of NAE-3SAT.
Case 1. There is a clause where all three literals are identical in φ. Then, there exists no

edge in the “clause subgraph” of three identical literals. Since there are k inter-clause edges
and you can cut at most 2 edges per “clause subgraph”, you can never find a cut of k + 2l
or more.

Case 2. There is no clause where all three literals are identical in φ. Then, for any cut
that cuts all k inter-clause edges, there must be a “clause subgraph” where all literals have
same assignment, True of False, since φ does not satisfy NAE-3SAT. Since you cannot cut
more than 2 edges per “clause subgraph” and there are at most k inter-clause edges, there
is no cut of k + 2l or greater. �

End of solution.

87

Lecture 16

16.38 Summary

In this lecture, we firstly solved Exercise 76 and then finished the section of Interactive Proof
Systems. After that, we continued to learn Zero-knowledge system and cover the contents
in complexity-misc slides.

16.39 Exercises

Exercise 82. (1) Formalize languages with deterministic, interactive proof systems.

(2) Show such languages are exactly NP.

Solution:

(1) We name this kind of languages as DIPS and formalize this language as follows:
Let V, P : {0, 1}∗ → {0, 1}∗ be functions. A k-round interaction of V and P on input
x ∈ {0, 1}∗ is the sequence of the following strings a1, a2, . . . , ak ∈ {0, 1}∗ defined as
follows:

a1 = V (x)

a2 = P (x, a1)
...

...

a2i+1 = V (x, a1, . . . , a2i)

a2i+2 = P (x, a1, . . . , a2i+1)

Now we denote 〈V, P 〉(x) as the output of V at the end of the interaction with P on
input x, and obviously ai is the exchanged information between V and P .

Definition 43. We say that a language L has a k-round deterministic interactive proof
system if there is a deterministic Turing Machine V that on input x, a1, a2, . . . , ai runs
in time polynomial in |x|, and can have a k-round interaction with any TM P such that:

• x ∈ L⇒ ∃P : 〈V, P 〉(x) = 1

• x 6∈ L⇒ ∀P : 〈V, P 〉(x) = 0

The class DIPS contains all languages that have a k-round deterministic interactive
proof system, where P is polynomial in the input length.

(2) we show that DIPS = NP in the following:

88

(i) NP ⊆ DIPS: this is true in trivial since each NP language has a 1-round proof
system.

(ii) Now we prove that if a L has an interactive proof system of this type then L ∈
NP . The certificate for membership is just the transcript (a1, a2, . . . , ak) causing
the verifier to accept. To verify this transcript, check that indeed V (x) = a1,
V (x, a1, a2) = a3, . . ., and V (x, a1, . . . , ak) = 1. If x ∈ L then there indeed exists
such a transcript. If there exists such a transcript (a1, a2, . . . , ak) then we can define
a prover function P to satisfy P (x, a1) = a2, P (x, a1, a2, a3) = a4, etc. We see that
〈V, P 〉(x) = 1 and hence x ∈ L. Therefore, L ∈ NP .

End of solution.

Exercise 83. Argue in no more than 10 lines that:

polynomial-time on TM = polynomial-time on k-tape TM

= polynomial-time on RATM

Solution:
Simulate a k-tape TM N via a TM M : M uses cells i, k + i, 2k + i, ... to encode the i-th
tape of N . For every symbol a in N ’s alphabet, M also includes â to show the position of
head. Each step of N is done in polynomial steps in M , so polynomial-time on N will still
be polynomial on M .

Simulate a k-tape RATM R with a k-tape TM N : Encode each cell of tapes in pairs like
(address, value), where value is the actual value of the original cell. Each random access to
a cell can be simulated in this way: scan the whole tape to find the matching address, if find
it then read or write the corresponding value, else if not find the address then write a new
pair of (address, value). So each random access of R will be done in polynomial steps in N ,
therefore polynomial-time on R will still be polynomial-time on N .

Simulate a 1-tape TM M via a 1-tape RATM R: Ignore the indexing tape. Done.
End of solution.

Non-deterministic TM: δ maps to subset of Q×Γ×{L,R}. It accept if there is a computation
path that leads to accept state.

Definition 44. NTIME(t(n)) = {L: L is decided by a non-deterministic TM that runs in
time ≤ t(n)}.

Definition 45. NTIME(t(n)) = {L: ∃M : ∀x of length n s.t. x ∈ L⇔ ∃y, y ≤ t(n), M(x, y)
accepts in ≤ t(n)}.

89

Exercise 84. Prove the two definitions are equivalent (feel free to use multiple tapes, if that
helps).

Solution:
”⇐”: Assume L ∈ NTIME(t(n)) according to Def2, then ∃M as described in Def2. Construct
a non-derterministic TM N as follows.

N = ”on input x,

non-deterministically generate a string y with length ≤ t(n),

run M(x, y)

If it accepts, ACCEPT.

Otherwise, REJECT.”

If a string w ∈ L, then N will accept it in time 2t(n), because ∃y that can be generated in
time t(n) and M(w, y) accepts in time t(n). Else if w /∈ L, then these is no such a y that
makes M(w, y) accept, so N will reject. So L ∈ NTIME(2t(n)) according to Def1.

”⇒”: Assume L ∈ NTIME(t(n)) according to Def1, then ∃ a non-deterministic TM N
as described in Def1. If a string w ∈ L, then N accepts w in time t(n) according to Def1, so
there is a computation path that leads to accept state. Encode this computation path using
a binary number y: since |Q × Γ×{L,R}| is a constant, each step of the computation path
can be encoded in a constant c bits. So |y| ≤ ct(n). We use yi to denote the ith c bits of y,
which encodes the ith step of N ’s computation. Construct a TM M as follows.

M = ” on input (x, y)

run N on x step by step

at step i, yi indicates which operation to take

If N accepts, ACCEPT.

otherwise, REJECT.”

Now we prove that L ∈ NTIME(t2(n)):
If a string w ∈ L, then M will eventually accept (w, y). In M , simulating a step of N

takes O(t(n)) steps. So, M will accept in O(t2(n)). In addition, |y| ≤ ct(n) ≤ t2(n) if n is
sufficiently large.

Else if w /∈ L, then N has no computation path to accept in time t(n). So there is no
such a y that M accepts (w, y) in time O(t2(n)).

Therefore, L ∈ NTIME(t2(n)) according to Def2.
End of solution.

Exercise 85. Prove the two definitions are equivalent, up to a small change in t(n) (no more
than t −→ t2).

90

Solution: As shown in Exercise 83, the two definitions are equivalent up to a small change
in t(n). If one is t(n), the other is at most O(t2(n)).

End of solution.

91

Lecture 17

17.40 Summary

Exam 2.

17.41 Exercises

Exercise 86. Let M be a Turing machine. Show that the language
{C#DR : configuration C does not yield configuration D}
is context-free. Recall that DR is the reverse of D.

FAQ: What if C or DR are ill-formed strings that do not correspond to configurations,
such as 0011 or 0q711q5q5q3? Answer: you are free to treat those any way you like.

Solution: Sketch: We take advantage of the power of CFG as well as locality of TM
computation, and show that for TM M if its configuration Ci (as C in this problem) does
not yield Ci+1 (as D in this problem), we can have Ci#C

R
i+1 is CFG.

We write the TM computation as: C1#CR
2 #C3#CR

4 . . ., and build a CFG GC such that:
L(GC) = ∆∗abc(∆− {#})t#(∆− {#})tfed∆∗ for any t ≥ 0 and any 6 symbols

a b c

d e f

that are inconsistent with TM transition function δ. This CFG indeed exists and can be built
based on the CFG for w#wR shown in the class. We detail it here: Let GC = (V,Σ, R, S)
be a CFG:

V is a finite set of variables, V = {S,A,B,C}, and S is the start variable

Σ is a finite set of terminals and Σ = {x, y, a, b, c, d, e, f},
where y, a, b, c, d, e, f ∈ {∆}, x ∈ {∆−#},
∆ is the alphabet for the configuration.

R is based on the following rules:

S → yS|Sy|C Remark: S ⇒∗ ∆∗abc(∆− {#})t#(∆− {#})tfed∆∗

C → abcBfed Remark: C ⇒∗ abc(∆− {#})t#(∆− {#})tfed
B → ABA|# Remark: B ⇒∗ (∆− {#})t#(∆− {#})t

A→ x|ε

End of solution.

92

Exercise 87. Let Σ = {a, b} and consider the language ΣkaΣ∗, for a constant k. Show that
it cannot be decided by a DFA with ≤ k states. Hint: one way to solve this is to think of
the proof of the pumping lemma.

Solution: We prove by contrapositive. Suppose it can be decided by a DFA with ≤ k
states. For a string w = bka in language Σka, we know it contains k + 1 symbols. Inspired
by the proof of pumping lemma, and using pigeonhole theory, we are aware of that with ≤ k
states and k+ 1 symbols, there must be some repeat states q∗ during computing bka by the
DFA. Suppose the initial state to compute bka is q0 and the state to accept it is qa (assume
qa 6= q∗), we then have:

q0 → . . .→ q∗ → . . .→ q∗︸ ︷︷ ︸
self-loop

→ . . .→ qa.

Let y be the label on the self-loop from q∗ to q∗. If the self-loop part can be repeated
once, then it can be repeated many times. Therefore, we can pump more b from w, for
example, bk+|y|a(|y| > 0), and it also can be computed by the DFA. Therefore, any string w′

in language bk+|y|aΣ∗ can be accepted by this DFA. However, w′ is not in language ΣkaΣ∗.
This conflicts with the assumption that DFA decides ΣkaΣ∗.

End of solution.

Exercise 88. Let x be uniform in {0, 1}n, and let K be Kolmogorov complexity.
Show Prx[K(x) ≥ n− 1] ≥ 1/2.

Solution: There are 20 + 21 + 22 + ... + 2n−2 < 2n−1 unique strings of size < n − 1. We
need to represent 2n strings altogether. Thus Prx[K(x) < n − 1] < 2n−1

2n
or, equivalently,

Prx[K(x) ≥ n− 1] ≥ 1/2
End of solution.

Exercise 89. Let L and L′ be two Turing-recognizable languages. Suppose that L∩L′ and
L ∪ L′ are decidable. Show that L and L′ are decidable.

Solution: Since L and L′ are recognizable ∃ TM M and M ′ that recognize them. Since
L∩L′ and L∪L′ are decidable ∃ deciders D∩ and D∪ that decided them. We will show how
to build a decider DL which decides L (the decider for L′ is almost identical.

DL := on input w
1) Run D∪(w)
reject if reject
2) Run D∩(w)
accept if accept
3) Run (M,w) and (M ′, w) simultaneously, doing one step of each machine
accept if M accepts

93

reject if M’ accepts

DL works in the following manner. 1) If w is not in L ∪ L′, then it can’t be in L or L′

and we reject. 2) If w is in L∩L′, then it must be in both L and L′ and we accept. 3) If we
have not accepted or rejected at this point then we know that w is in L or L′, but not both.
Since L and L′ are recognizable either M or M ′ must accept within a finite number of steps.
We run each (M,w) and (M ′, w) and accept or reject accordingly. Thus, DL decides L and
L (as well as L′) is decidable.

End of solution.

Exercise 90. A vertex-cover of size k of a graph is a set C of k nodes such that every edge in
the graph touches at least one node in C. Show that {(G, k)| graph G has a vertex cover of size k }
is NP-complete. Hint: reduce from 3-SAT. For every variable x construct a 2-node graph
with nodes x and ¬x; for every clause construct a triangle; connect equal nodes.

Solution: Reduce from 3SAT. Construct the graph as mentioned in hint.
If there is a satisfying assignment in 3SAT, we pick the true literals into our vertex cover. By
choosing one node for each literal, we can cover the edges between literals in 2-node graphs.
Note that 3SAT is satisfied, we can also cover at least an edge between 2-node graph and
each triangle. Now we need 2 nodes (or less) in each triangle to cover the rest of edges. We
can pick any 2 nodes in each triangle as long as the left node in triangle is the true literal in
3SAT assignment. Assume there are n variables, m clauses, vertex-cover size k = n+ 2m.
Reverse direction:
Assign value true to literials whose vertex in 2-node graph is in vertex cover. Since k =
n+ 2m, for each clause at least one edge connecting its triangle to 2-node graphs is covered
by a literial vertex. We have at least one node in each triangle whose value is true so the
value of each clause is true. Thus, we have found a satisfying assignment to 3SAT.

End of solution.

Exercise 91. Let H10 be Hilbert’s 10th problem of determining if a given polynomial in
multiple variables has an integer solution.
(1) Is H10 ∈ NP?
(2) Find the flaw in the following proof that H10 ∈ NP: the witness is the integer solution,
it takes polynomial-time to check it.

Solution:
(1)We know from the exercises and slides that H10 ∈ undecidable, and NP ⊂ decidable.
Therefore, we can infer that H10 /∈ NP.
(2) The definition for NP is:
{L : ∃ integer c,∃ TM that runs in time nc: w ∈ L⇔ ∃y, |y| ≤ |w|c,M accepts (w, y)}
Since the witness integer y = (y1, y2, . . . , yn) can be arbitrarily large, the length of witness
|y| may not be polynomial, which may violate the definition in NP |y| ≤ |w|c so we can not

94

use the TM M that is defined in NP to accept the input w in poly time.
End of solution.

Exercise 92. Show that the following language is undecidable:
{(M,M ′) : M and M ′ are TM and L(M) = L(M ′)}.

Solution:

Suppose there exists a decider for language L(M,M ′), named D.
Construct a decider D′(M,w)
Construct TM M1

on input x
run M on w
if M accepts w, return ACCEPT
else return REJECT

Construct TM M2

on input x
return ACCEPT

return D(M1,M2)

Turing Machine M1 accepts an input if Turing Machine M accepts input w. Turing Machine
M2 accepts all the languages. From the definition of D′, we know that “M accepts w ⇔ D′

accepts (M,w)”. However, the fact is that ATM is not decidable. Therefore, we can infer
that D′ does not exist and the assumption that language L(M,M ′) is decidable is incorrect.

End of solution.

95

Lecture 18
A Boolean circuit is a directed acyclic graph where each nonsource vertex, called a gate,

is labeled with one of ∧, ∨, or ¬. The inputs and outputs of a circuit are the source and
sink vertices, respectively. The size of a circuit is the number of vertices in the graph.

If x ∈ {0, 1}n and C is a circuit with n inputs and m outputs, then the output of C on
x, written C(x), is defined as follows. Let every input vertex vi have the value xi, and let
every vertex labeled with a logical operator have the value got by applying that operator to
the values of its incoming vertices. Then C(x) is given by the values of the sink vertices. If
f : {0, 1}n → {0, 1}m is a function, then we say that

C computes f ⇐⇒ C(x) = f(x) for all x ∈ {0, 1}n

Claim 46. Every function f : {0, 1}n → {0, 1} can be computed by a circuit of size O(2n).

Proof. Let f : {0, 1}n → {0, 1} be any function. Note that

f(x1, . . . , xn) = (xn ∧ f(x1, . . . , xn−1, 1)) ∨ (¬xn ∧ f(x1, . . . , xn−1, 0))

We can construct a circuit for f by simply evaluating this recursive equation and turning ∧
and ∨ operators into gates. The number of ∧ and ∨ gates for f(x1, . . . , xn) is given by the
recurrence G(n) = 2G(n− 1) + 3, where G(0) = 0, which means G(n) = 3(2n − 1). We add
2n inputs for the values of f and n gates connecting each xi to ¬xi. Thus for every function
f : {0, 1}n → {0, 1} we can construct a circuit of size O(2n) that computes it. �

Exercise 93. Prove ∃f : {0, 1}n → {0, 1} requiring circuits of size 2Ω(n).

Solution: Recall that there are 22n functions from {0, 1}n to {0, 1}. We can show that
there are 2O(k lg k) circuits of size k in the following way. Encode each circuit as a string over
{0, 1} by using 4 lg k bits to identify each gate: its (up to two) inputs plus its type (e.g., ∧,
∨, ¬). Since there are 24k lg k possible strings of length 4k lg k, there aren’t more than that
many circuits of size k. Let k = 2n/(5n). Then the number of circuits of size k is at most

24k lg k ≤ 22n4n/5n = 22n4/5 < 22n

That is, there is some function that requires circuits larger than 2n/(5n). But note that
2n/(5n) ≥ 2cn for some c > 0 and sufficiently large n, for example, for c = 1/100 and n > 5.
Therefore 2n/(5n) ≥ 2Ω(n), and some function requires circuits of size 2Ω(n).

End of solution.

Exercise 94. Exhibit a function f : {0, 1}∗ → {0, 1} that is not decidable but has circuits
of polynomial size.

Solution: Consider the undecidable function that determines whether its input is in the lan-
guage {1n | n’s binary expansion encodes a pair 〈M,x〉 such that M halts on input x}. We
describe a circuit family of linear size for this function. Define the circuit for inputs of length
n to be a tree of ∧-gates that computes ∧ over all input bits if 1n is in the language, and
the circuit that always outputs 0 otherwise.

End of solution.

96

Lecture 19

19.42 Summary

Today we completed the circuits slides and started on the space slides. We got through the
first 10 slides, finishing on the Space Complexity Theorem.

19.43 Exercises

Definition 47. Circuit-SAT = {C : C is a circuit and ∃y : C(y) = 1}

Exercise 95. Reduce Circuit-SAT to 3SAT.

Solution: Assign a variable to each wire in the circuit and replace each gate in the circuit
with 3-SAT clauses which guarantee the logic operation of that gate.

1. For NOT gate: if wire x is the input and wire y is the output then use these clauses
to guarantee that x = ¬y:
(x ∨ y ∨ y) ∧ (¬x ∨ ¬y ∨ ¬y).

2. For OR gate: if x and y are inputs and z is the output use the following clauses to
ensure that z = x ∨ y:
(z ∨ ¬x ∨ y) ∧ (z ∨ x ∨ ¬y) ∧ (¬z ∨ x ∨ y) ∧ (z ∨ ¬x ∨ ¬y) .

3. For AND gate: if x and y are inputs and z is the output use the following clauses to
ensure that z = x ∧ y:
(¬z ∨ x ∨ y) ∧ (¬z ∨ ¬x ∨ y) ∧ (¬z ∨ x ∨ ¬y) ∧ (z ∨ ¬x ∨ ¬y)

To make sure that the final output of the circuit is also TRUE we should also add the clause
(w ∨ w ∨ w) in which w is the output wire. Finally combine all clauses with ∧ operation.
⇒ If we have a TRUE assignment for the 3SAT problem then it also satisfies all gate
operations in the circuit and also guarantees that the output is true.
⇐ If the Circuit-SAT problem has a satisfying assignment then the output is TRUE therefore
all clauses in 3SAT problem will have at least one TRUE variable and 3-SAT problem will
be satisfied too.
The process of constructing the 3SAT problem takes polynomial time in size of the circuit.

End of solution.

Exercise 96. 1. Prove ∃c,∀k,ΣcP does not have circuits of size nk.

2. Prove PH ⊆ EXP .

Solution:

97

1. First we show that there are languages which can’t be accepted by circuit of size nk:
For each gate we have have 3 choices which results in 3n

k
choices and also we have n2k

choices for connecting all gates. Therefore we have total of 3n
k
n2k circuits of size nk.

But since there are 22n possible languages with input size n, there must be languages
which can’t be described by circuits of size nk .
Now we use quantifiers to find a unique circuit with size bigger than nk which accepts
languages which can’t be accepted by circuits of size nk.

x ∈ Lk ⇔ ∃C1 circuit of size n2k

∀C2 circuits of size nk

∃w input of size n
C1(w) 6= C2(w)
∀C3 circuits of size nk, C3 6= C1

∃C4 circuit of size nk

∀w inputs of size n
C3(w) = C4(w)
C1(w) = TRUE

Consider the machine M which runs the circuit with inputs of size n and does compar-
isons. M runs in polynomial time in size of its inputs. Therefore our language with 4
quantifiers is in

∑
4 P .

2. The proof is similar to the proof of NP ⊆ EXP .
Suppose L ∈

∑
i P .∑

i P = {L : ∃ poly-time M, polynomial q(n) :
x ∈ L⇔ ∃y1 ∈ {0, 1}q(n)∀y2 ∈ {0, 1}q(n) . . . Qyi+1 ∈ {0, 1}q(n)M(x, y1, . . . , yi+1) = 1}

Let TM M’ := ”On input w,
for all tuples {〈y1, y2, . . . , yi+1〉 : |yk| ≤ |w|q(n)}, run M(w, y1, y2, . . . , yi+1)
If for all tuples {〈y2, y4, . . . , yi+1〉 : |yk| ≤ |w|q(n), k is even},
there exists a tuple {〈y1, y3, . . . , yi+1〉 : |yk| ≤ |w|q(n), k is odd},
which M accepts (w, y1, y2, . . . , yi+1), then ACCEPT;
otherwise REJECT”

M’ accepts w↔ ∃y1,∀y2,∃y3, . . . , |yi| ≤ |w|q(n) , M accepts (w, y1, y2, . . .).

M’ runs in time 2|w|
q(n)i+1

|(w, y1, y2, . . . , yi+1)|q(n) ≤ 2|w|
q(n)i+1+1

which is exponential
therefore L ∈ EXP
We can use similar proof for L ∈

∏
i P .

End of solution.

98

Exercise 97. Prove E ⊆ P/POLY ⇐⇒ EXP ⊆ P/POLY . Hint: use the padding
technique.

Solution:
⇐ Since E ⊆ EXP therefore if EXP ⊆ P/POLY → E ⊆ P/POLY
⇒ consider L ∈ EXP therefore there is a M which decides L in time 2n

c
for some c.

Consider language L’={〈x, 0nc〉 : x ∈ L}
Define machine M’ which first checks the input y to see if it is in form 〈x, 0nc〉. If it is not
REJECT otherwise run M(x).
M’ takes time 2|y| so L′ ∈ E and therefore L′ ∈ P/Poly
Now to find if input x ∈ L we use the P/Poly circuit which decides L’ to decide 〈x, 0nc〉
Therefore L ∈ P/Poly

End of solution.

Exercise 98. Write a definition of NSPACE(lg n) using pairs. Something like: ∃y that
makes the machine accept (x, y). Prove that 3SAT is in NSPACE(lg n). This should
explain why we don’t use that definition

Solution: We define NSPACE(lg n) as the set of languages such that ∃M, y : L(M) ∈
SPACE(lg n), x ∈ L ⇐⇒ M accepts (x, y). It is easy to show that 3SAT is in this set.
For a given problem x and satisfying assignment y, we can read the problem one clause at
a time and check that it is satisfied by the assignment. This requires a constant amount
of memory (to remember the variables in one clause), which is less than lg n for sufficiently
large n.

End of solution.

Exercise 99. Show TIME(t) ⊆ SPACE(t) for RATMs: the TIME machine is random
access, and the SPACE machine is sequential. Hint: using technique similar to proof earlier.
It’s OK to use O(1) work tapes.

Solution: We can simulate a RATM by using a normal TM with an extra work tape. This
second tape should contain a list of (address, value) pairs for any location accessed by the
RATM. We simply do a linear-time lookup when an address is read, adding a new entry
with a blank value if we don’t find it. Similarly, we do a linear-time lookup when an address
is written, updating an existing entry with the new value.

The TM described can only touch one cell per operation, so if it runs in tsim(n) time it
can only use tsim(n) space. It does take a polynomial factor more time than a RATM would
take, because it needs to scan the second tape, but we can resolve this problem by observing
that these extra operations do not contribute to the amount of space the TM is using. They
are just spent searching for already-written data. Therefore, the space it consumes is at
most t(n). �

End of solution.

99

Definition 48. The Space Hierarchy Theorem states that ∀f, g : f(n) = o(g(n)), SPACE(f(n))
is strictly contained in SPACE(g(n)).

Exercise 100. Prove the Space Hierarchy Theorem. Hint: You have to simulate a TM. You
can use that the overhead in the simulation is a constant factor.

Solution: Let Mf be a Turing Machine running in space f(n), and Mg be a Turing Machine
running in space g(n). By the same reasoning presented in the slides, Mf has at most 2O(f(n))

distinct configurations and Mg has at most 2O(g(n)).
If f(n) = o(g(n)) then there is some constant c for which g(n) > cf(n) for any value of

n. This can be used to show that Mg can have strictly more configurations than Mf :

2O(g(n)) > 2cO(f(n)) = (2O(f(n)))c

Since Mg has more configurations, SPACE(g(n)) must strictly contain SPACE(f(n)). �
End of solution.

100

Lecture 20

20.44 Summary

In this lecture, we reviewed some previous exercises, and finished the discussion of space
complexity.

20.45 Exercises

Exercise 101. Prove whether ∃f : {0, 1}n → {0, 1} requiring circuits of size 2Ω(n).

Solution: Suppose such a function exists. Then ∃n0, ε such that the size of the required
circuit s ≥ 2εn for all n > n0. Consider a circuit of size s. Each gate in the circuit has an
in-degree of at most 2. There are at most s3s such circuits, which is the upper bound on
the number of functions on n variables with circuits of size s. For s = 2εn, this number is at
most 23εn2εn . For any ε ∈ (0, 1), this number < 22n , which is the total number of functions on
n variables, for sufficiently large n. By pigeonhole principle, there must exist some function
requiring circuits of size ≥ 2εn.

End of solution.

Definition 49. A function f : {0, 1}∗ → {0, 1}∗ is computable in SPACE(s(n)) if the
function f ′(x, i) : {0, 1}∗ → {0, 1}, f ′(x, i) := f(x)i is in SPACE(s(n)).

Exercise 102. Consider the alternative definition where TMs are equipped with a write-
only tape that does not count towards space, where the TM is supposed to write f(x). Show
the two definitions are equivalent when, say, |f(x)|=poly|x|, s(n) = O(lg n).

Solution:
⇒
If f ′(x, i) : {0, 1}∗ → {0, 1}, f ′(x, i) := f(x)i is in SPACE(s(n)), then ∃ a TM M which
computes f ′, then on input x, M can compute f(x) bit by bit, using f ′(x, i) := f(x)i. Every
time it halts, it writes the result on the write-only tape, and moves the head one cell right.
Since the output tape does not count towards space, the total space needed is s(n).
⇐
If TM N writes f(x), then it works as a normal TM, while at some states, it writes f(x)i
on the output tape, and moves the head of output tape one cell right. We can define M
for f ′(x, i) such that M takes (x, i) as input, and halts when f(x)i is produced, that is,
f ′(x, i) = f(x)i. It is obvious that f ′(x, i) is in SPACE(s(n)).

End of solution.

Exercise 103. Prove that multiplication can be computed in L.

Solution: We can use the same idea of grade-school multiplication. Suppose the two
operands are a and b, m indicates the result, i, j, k is the bit index from right to left, then

101

we have:
mi =

∑
j+k=i ajbk + c, where c is the carry bit from the previous column. Its initial value is

0. j, k take O(lg n) space, while c takes constant space, so total space needed is O(lg n).
End of solution.

Exercise 104. Prove that for any language A, A ∈ NL ⇐⇒ A ∈ NL.

Solution: LetM be the non-deterministic TM for A, A = L(M). LetG be the computation
graph of M on input w. We have:

w ∈ A ⇐⇒ G ∈ PATH

If |w| = n, then |G| = 2O(lgn). Testing if G ∈ PATH will take space

lg |G| = lg 2O(lgn) = O(lg n)

End of solution.

Exercise 105. Prove that QBF is in PSPACE.

Solution: Consider the following algorithm:

Algorithm 2 A QBF Solver.

Solve-QBF(Q1x1Q2x2...Qnxnϕ(x1, x2, ..., xn))
if ϕ has no quantifier Q bounded then

return the evaluation of ϕ(x1, x2, ..., xn)
end if
if Q1 is ∃ then

return Solve-QBF(Q2x2...Qnxnϕ(0, x2, ..., xn))⋃
Solve-QBF(Q2x2...Qnxnϕ(1, x2, ..., xn))

end if
if Q1 is ∀ then

return Solve-QBF(Q2x2...Qnxnϕ(0, x2, ..., xn))⋂
Solve-QBF(Q2x2...Qnxnϕ(1, x2, ..., xn))

end if

Because each recursive Solve-QBF call consumes a quantifier and there are at most n
quantifiers, the space is bounded by O(n2).

End of solution.

Exercise 106. Explain why the ∀ quantifier is needed in the proof that QBF is PSPACE-
hard

102

Solution: The ∀ quantifier appears in the following formula:

ϕ(c, c′)t = ∃d : ∀(a, b) ∈ {(c, d), (d, c′)} : ϕ(a, b)t/2

It allows us to reuse the ϕ expression at the end for both (c, d) and (d, c′). If we didn’t do
this, then each recursive step would double the amount of space we need to use for the QBF
expression we are writing.

End of solution.

103

Lecture 21

21.46 Summary

In this lecture, we learned Randomized Complexity system.

21.47 Exercises

Exercise 107. (1)For RP, can replace 1/2 with 1/nc, or 1− 1/2m for m = nc, for any c.
(2)For BPP, can replace (2/3, 1/3) with (1/2 + 1/nc, 1/2− 1/nc) or (1− 1/2m, 1/2m)

Solution:

(1)
1

2
⇒ 1− 1

2m
:

If L ∈ RP . Define M ′:
Run M nc times independently. If M(x,R) = 1 for at least once, accept. Otherwise,

reject.
Clearly, M ′ runs in polynomial time. If x /∈ L, M will always reject x, so M ′ will always

reject x. If x ∈ L, PrR[M ′(x,R) = 1] = 1− (1− 1

2
)n
c

= 1− (
1

2
)n
c
.

1

nc
⇒ 1

2
:

If ∃ poly-time randomized M :

x ∈ L⇒ PrR[M(x,R) = 1] ≥ 1

nc
x /∈ L⇒ PrR[M(x,R) = 1] = 0
We can define poly-time randomized M ′:
Run M nc times independently. If M(x,R) = 1 for at least once, accept. Otherwise,

reject.
Clearly, M ′ runs in polynomial time. And if x /∈ L, M will always reject x, so M ′ will

always reject x. If x ∈ L, PrR[M ′(x,R) = 1] = 1− (1− 1

nc
)n
c ≥ 1− 1

e
≥ 1

2
.

(2) (2/3,1/3)⇒ (1− 1/2m, 1/2m):
If L ∈ BPP , define M ′:
Run M k = d48m ln 2e times. If M accepts x more than k/2 times, accept. Otherwise,

reject.
Clearly, M ′ runs in polynomial time. We show the error rate of M ′ ≤ 1/2m.
Define xi = 1 if in the i-th time M made the correct judgement; xi = 0 if in the i-th

time M made the wrong judgement, i = 1, 2, ..., k. E(xi) = p ≥ 2/3. By Chernoff Bound,
the error rate of M ′ is

Pr[
k∑
i=1

xi < k/2] ≤ Pr[
k∑
i=1

xi < (1− 1

4
)
2

3
k] ≤ 1

e
1
48
k
≤ 1

2m
.

(1/2 + 1/nc, 1/2− 1/nc)⇒ (2/3, 1/3):

104

If ∃ poly-time randomized M :
x ∈ L⇒ PrR[M(x,R) = 1] ≥ 1/2 + 1/nc

x /∈ L⇒ PrR[M(x,R) = 1] ≤ 1/2− 1/nc

Define M ′:
Run M k = dln 3(2 + nc)nce times. If M accepts x more than k/2 times, accept. Other-

wise, reject.
Clearly, M ′ runs in polynomial time. We show the error rate of M ′ ≤ 1/3.
Define xi = 1 if in the i-th time M made the correct judgement; xi = 0 if in the i-th time

M made the wrong judgement, i = 1, 2, ..., k. E(xi) = p ≥ 1/2 + 1/nc. By Chernoff Bound,
the error rate of M ′ is

Pr[
k∑
i=1

xi < k/2] ≤ Pr[
k∑
i=1

xi < (1− 2

2 + nc
)(

1

2
+

1

nc
)k]

≤ exp(−1

2
(

2

2 + nc
)2(

1

2
+

1

nc
)k)

≤ 1

3
.

End of solution.

Exercise 108. Show that the following are equivalent.

(1) L ∈ RP ∩ co-RP

(2) There is a randomized poly-time machine M for L :
∀ x, ∀ R, M(x,R)∈ {L(x), ?}
∀ x, PrR [M(x,R) = ?] 5 1/2

(3) There is a randomized machine M for L :
∀ x, ∀ R, M(x,R) = L(x)
the expected running time of M on x is poly(n)

Solution:

1. (1) ⇒ (2).

From (1), ∃ MRP , Mco−RP .

Create M? on input x that uses MRP and Mco−RP and operates as follows:

• if MRP (x)=1, emit 1

• else if Mco−RP (x)=0, emit 0

• else emit ?

Claim 50. M? satisfies (2)

105

Proof. Case 1. Input x ∈ L.

Then, M? ∈ {1, ?} since Mco−RP never rejects x from the definition of co-RP. MRP will
accept x with probability = 1/2 from definition of RP. Therefore, PrR [M(x,R) = ?]
5 1/2.

Case 2. Input x /∈ L. Vice Versa. �

2. (2) ⇒ (1).

From (2), ∃ M?.

Claim 51. L ∈ RP

Proof. Create MRP that uses M? and emits 0 when M? emits ?. If input x ∈ L, MRP

rejects x with probability less than 1/2 from the definition of M?. If input x /∈ L, MRP

always rejects. �

Claim 52. L ∈ co-RP

Proof. Vice versa of above proof �

3. (2) ⇒ (3).

From (2), ∃ M?.

Create MLV on input x that uses M? and operates as follows:

• if M?(x)=1, emit 1

• else if M?(x)=0, emit 0

• else run M?(x) again recursively.

Claim 53. MLV always gives correct result.

Proof. Trivial because M? always returns correct result unless the result is ? and MLV

never stops unless M? returns non-? result. �

Claim 54. MLV expects to finish in poly(n) time.

Proof. Let one run of M? takes q(n) time which is poly(n) time. PrR [M(x,R) = ?]
5 1/2 from the definition of M?.

Therefore, expected runtime 5 Σ∞i=0
q(n)
2i

= 2 ∗ q(n) = poly(n) �

4. (3) ⇒ (2).

From (3), ∃ MLV .

Create M? on input x that uses MLV and operates as follows:

Run MLV for 2*µ time where µ is the expected run time of MLV . Return ? if MLV

does not finish until then.

106

Claim 55. M? returns ? with probability less than 1/2.

Proof. Since expected runtime of MLV is µ, the probability that MLV will not finish
by 2*µ time is 5 1/2 by Markov’s inequality. �

End of solution.

107

Lecture 22

22.48 Summary

In this lecture, we mainly discuss AC0 circuits and several claims about it.

22.49 Exercises

Definition 56. AC0 circuits is defined as follows:

• unbounded FAN-IN,

• depth is a constant d (independent of n),

• gates ∨, ∧ alternate on each level,

• input is x, ¬x.

One example of AC0 circuit is illustrated as the following figure:

∨

∧

∨

x1 ¬x1 x2

∧

∨

∧

∨

x3 ¬x3 ¬x4

∧

¬x3 x4

Depth-2 AC0 ≡ CNF, DNF.
PH can be seen as AC0 on exponentially length inputs:

∃ y ∈ {0, 1}q ∨

2q

In the proof that BPP ⊆ PH. The exponentially length input is

M(x, ·) = i

M(x, i) ∈ {0, 1}

The circuit is solving:

Definition 57. Approximate-Majority(1
3
,2
3
), abbr., AMJ(1

3
,2
3
), means that given a string z,

108

• does it have ≥ 2
3
|z| ones, or

• does it have ≤ 1
3
|z| ones.

otherwise, do not care.

Claim 58. AMJ(1
3
,2
3
) has AC0 circuits

• size is polynomial (in input length = |z|),

• depth = 3.

Proof. We will use probabilistic method. We show a distribution on circuits,denoted as C:

• ∀ z, |z| = n with ≥ 2
3
|z| ones, PrC [C(z) = 0] < 2−n,

• ∀ z, |z| = n with ≤ 1
3
|z| ones, PrC [C(z) = 1] < 2−n.

This ⇒ PrC [∃ z : C(z) 6= AMJ(z)] < 2n · 2−n < 1.

Define:

• AMJY := {z :≥ 2
3
|z| ones},

• AMJN := {z :≤ 1
3
|z| ones}.

Pick AND of FAN-IN c lg2(n), each input uniformly and independently on z:

∀ z ∈ AMJY , P rC [C(z) = 1] ≥ (
2

3
)c lg2(n) = nc lg2

2
3 =

1

na
(a = −c lg2

2

3
) (6)

∀ z ∈ AMJN , P rC [C(z) = 1] ≤ (
1

3
)c lg2(n) = nc lg2

1
3 =

1

nb
(b = −c lg2

1

3
) (7)

let a < b by picking c large enough.
Negate AND,

∀ z ∈ AMJY , P rC [C(z) = 1] ≤ 1− 1

na
(8)

∀ z ∈ AMJN , P rC [C(z) = 1] ≥ 1− 1

nb
(9)

Take n
a+b

2 I.I.D copies of previous circuits, and then

For(3), P rC [C(z) = 1] ≤ (1− 1

na
)n

a+b
2

≤ e−n
a+b−2a

2

= e−n
b−a

2

Take a negate: PrC [C(z) = 1] ≥ 1− e−n
b−a

2

109

For(4), P rC [C(z) = 1] ≥ (1− 1

nb
)n

a−b
2

≈ e−n
a+b−2b

2

= e−n
a−b

2

≈ 1− 1

n
a−b

2

Take a negate: PrC [C(z) = 1] ≤ 1

n
a−b

2

Take n I.I.D copies, and then

For(3), P rC [C(z) = 1] ≥ (1− e−n
b−a

2)n

> 1− 2−n

For(4), P rC [C(z) = 1] ≤ (
1

n
a−b

2

)n

< 2−n

�

Comments of above proof: we just proved the existence, not an explicit construction. By
contrast, BPP ⊆ PH proof gives an explicit construction.

Exercise 109. Find out what circuits come out of BPP ⊆ PH. Proof:

• size,

• depth,

• AMJ(α,β) for what α, β is solved?

Solution: Since M(x,R)=1 ⇔ ∃s1, ..., sr : ∀y ∈ {0, 1}r,∨ri=1M(x, y + si) = 1, we can
construct a AC0 circuit that takes input z with length 2r (fix x, each bit is M(x,R) for a
coin toss R).
(1) The first layer (bottom layer) is a layer of ∨-gates, each corresponds to ∨ri=1M(x, y+si) =
1 for some y and some set {s1, s2, ..., sr}. Every ∨-gate takes r bits of the input (FAN-IN r),
and these r bits are M(x, y + si) where i = 1, 2, ..., r.
(2) The second layer has ∧-gates, each corresponds to some set {s1, s2, ..., sr}. Every ∧-gate
chooses 2r ∨-gates from the first layer, and these 2r ∨-gates are ∨ri=1M(x, y + si) for the
same set {s1, s2, ..., sr} but different values of y. So each ∧-gate has FAN-IN 2r, because
y ∈ {0, 1}r has 2r different values. The number of ∧-gates is O(2r

2
) because there’re O(2r

2
)

sets like {s1, s2, ..., sr}.
(3) The root is a ∨-gate that computes OR of the output from all the second layer’s ∧-gates.

110

So the size of this AC0 circuit is 1 + O(2r
2
) + O(2r

2
) · 2r = O(2r

2 · 2r) = O(n1+lgn), where
n = 2r.
The depth is 3.
AMJ(1/r2,1− 1/r2) is solved.
Name the AC0 circuit C. As stated in the BPP⊆PH proof and also according to the con-
struction of C, C(z) = 1 ⇔ x ∈ L ⇒ PrR[M(x,R)=1]≥ 1 − 1/r2 ⇔ z ∈ AMJY where
β = 1 − 1/r2. On the other hand, C(z) = 0 ⇔ x /∈ L ⇒ PrR[M(x,R)=1]≤ 1/r2 ⇔ z ∈
AMJN where α = 1/r2. So, when z ∈ AMJY , it must be C(z) = 1, otherwise if C(z) = 0
then z ∈AMJN which is a contradiction. Similarly, when z ∈ AMJN , it must be C(z) = 1.
Therefore, C solves AMJ(1/r2,1− 1/r2).

End of solution.

Claim 59. Depth-1 circuits cannot solve AMJ.

Proof. Say circuit is AND (if OR, similar). Suppose it touches x1, then set x1 = 0, rest to
1. Therefore, we have AND(x) = 0, x ∈AMJY �

Claim 60. Depth-2 circuits of size Poly(n) (even 2o(n)) cannot solve AMJ.

Proof. Say circuit is

DNF = ∨

∧ ∧

Say ∃ some ∧ with FAN-IN ≤ n
3
, set those to 1, rest to 0. DNF = 1, but input in AMJN .

Otherwise, all ∧ of FAN-IN ≥ n
3
.

Let each bit xi have Pr[xi = 1] = 0.9

Pr[x ∈ AMJY] ≥ 1

2
(See the below exercise, Chernoff Bound) (10)

Pr[DNF(x) = 1] ≤ Pr[∃∧ : ∧(x) = 1] ≤ |circuit| · (0.9)
n
3 (11)

combine (5) and (6), we have

|circuit| ≥ 2Ω(n)

�

Exercise 110. Prove Pr[x ∈ AMJY] ≥ 1
2

using Chernoff Bound.

111

Solution: Define r.v. Xi, and Xi = 1 when xi = 1, Xi = 0 when xi = 0. So as stated in
the above proof, Pr[Xi = 1]=0.9.
According to Chernoff Bound, Pr[

∑n
i=1 Xi ≤ (0.9− ε) · n]≤ 1/2ε

2·n.

Let ε = 0.9 − 2
3
, we get Pr[x /∈AMJY]≤ 1/2ε

2·n, this probability is close to 0 when n is
sufficiently large.
Therefore, Pr[x ∈ AMJY] ≥ 1

2
.

End of solution.

Exercise 111. define

parity (x1, x2, . . . , xn) =

{
1 if

∑
xi is odd

0 otherwise

Prove parity requires DNF of size 2Ω(n).

State-of-the-art: ∀d, parity requires depth-d circuit of size ≥ 2Ω(n
1
d−1), e.g.,

− DNF of size 2Ω(n),

− Depth-3 of size 2Ω(
√
n)

Solution:
We first show that any ∧-gate in the corresponding circuit must have fan-in of exactly n.

Suppose some ∧-gate has fan-in less then n, which means the circuit output doesn’t depend
on some xi. Fix an input that makes some ∧ = 1, then the circuit output is 1. If we flip
the xi on which this ∧-gate doesn’t depend, the circuit output will stay 1, but the parity
actually flips. So each ∧-gate has fan-in of exactly n.

Then for each ∧-gate, there is only one input that will make it output 1. Since there
are 2n−1 inputs that have parity of 1, we need no less than 2n−1 ∨-gates. Therefore, parity
requires DNF of size 2Ω(n).

End of solution.

Exercise 112. Let A ∈ L, show: ∃ d : A has an AC0 circuit of depth-d of size 2O(
√
n).

Hint: Savitch, but break up in ≈
√
n configurations.

Solution: We will show how to construct an AC0 circuit of depth-d of size 2O(
√
n) for A ∈ L.

Let cS be the start configuration of L machine, cA be accept configuration, we want to
know if REACH(cS, cA, t) = 1 where t = nc and L machine uses SPACE c lg n. We know
that

REACH(cS, cA, t) ⇔ ∃c1 = cS, c2, . . . , cn1/3 = cA,∀i < n
1
3 ,REACH(ci, ci+1, t/n

1
3).

Actually, in this proof we can break the path from cS to cA into m parts for all m <
√
n,

here we just pick m = n
1
3 .

Now, according to the above fact, we construct the top two layers of AC0 circuit as
follows:

112

(1) The root is a ∨-gate, whose fan-in is the number of sequences like c1, . . . , cn1/3 . The input
of this ∨-gate is a set of ∧-gates, each corresponds to a specific sequence of c1, . . . , cn1/3 .

(2) For each ∧-gate, each input bit is REACH(ci, ci+1, t/n
1/3) for some i ≤ n1/3.

Repeat the above procedure R times, until we get to REACH(ci, ci+1, t/(n
1/3)R ≤

√
n)

questions where t = nc, thus R ≥ 3c− 3/2. Since each time we can generate one layer of ∨-
gates and one layer of ∧-gates, the depth of the AC0 circuit d = 2R ≥ 2×(3c−3/2) = 6c−3,
which is a constant.

Note that each ∃ quantifier is over n
1
3 · O(log(n)) bits, and each ∀ quantifier is over

O(log(n)) bits. So each ∨-gate has fan-in 2n
1/3·O(log(n)), and each ∧-gate has fan-in nO(1). On

the other hand, as Reach(ci, ci+1,
√
n) depends on ≤

√
n bits of the input, it can be computed

by a DNF of size ≤ 2O(
√
n). Therefore, the total circuit size is ≤ 2

√
n ·(2n1/3·O(log(n)) ·nO(1))R =

2O(
√
n).

End of solution.

113

Lecture 23

23.50 Summary

We went through the slides “Lower bounds” and discussed the branching programs in class.
First, we showed that SAT can not be solved by an algorithm that runs in space O(lg n) and
uses time nc for a constant c > 1. This is equivalent to the following theorem.

Theorem 61. NTIME(n) NOT IN TIME(nc)∩L

which is based on the following two lemmas:

Lemma 62. L⊆ ∪a
∑

aTIME(n)

Lemma 63. NTIME(n) ⊆ TIME (nc)→
∑

aTIME(n) ⊆TIME(nd) for d = ca

23.51 Proof of Lemma 62

Proof. Let cs be the start configuration of L machine, ca be the accept configuration. We
check REACH(cs, ca, t) where t = nc and the L machine uses SPACE (c lg(n)). Note:

REACH(c, c′, t) ⇐⇒ ∃c1 = c, c2, c3, . . . , c√n = c′,∀i <
√
n,REACH(ci, ci+1, t/

√
n)

Since each time we check the existence of
√
n configurations, the quantifier ∃ is actually

over
√
nO(lg n) bits, which is � n. We repeat this R times by adding more quantifiers

to go through each configuration, like the recursion part in the proof of Savitch Theorem.
Finally, we have t/

√
n
R

REACH(ci, ci + 1, t/
√
n
R

) questions. By choosing R = O(1), we

make t/
√
n
R ≤
√
n which means each REACH question can be answered in time

√
n. �

23.52 Exercises

Exercise 113. Prove Lemma63

Solution: We prove based on induction.

Proof. For a = 1, we have
∑

1 TIME(n) = NTIME(n), and c = d, trivial.
Suppose case i is true, we prove case i+ 1. Let language L ∈

∑
i+1. Then by definition,

• x ∈ L ⇐⇒ ∃y1, ∀y2, . . . Qi+1yi+1M(x, y1, y2, . . . , yi+1) = 1

• We make y1 part of input, and define another language L′

(x, y1) ∈ L′ ⇐⇒ ∃y2,∀y3, . . . , QiM(x, y1, y2, . . . , yi+1) = 1

• Clearly, L′ ∈
∏

iTIME(n) ⇐⇒ L′ ∈ co
∑

iTIME(n)

• Based on induction, we have L′ ∈ TIME(nd) ⇐⇒ ∃ TM M ′ s.t. M ′ = 1 ⇐⇒
(x, y1) ∈ L′

114

• Now we have x ∈ L ⇐⇒ (x, y1) ∈ L′ ⇐⇒ ∃y1,M
′(x, y1) = 1 This is exactly the

definition of NP. Therefore, L ∈ NTIME(nd)

• Based on basic the rule NTIME(n) ⊆ TIME (nc), we have NTIME(nd) ⊆ TIME ((nd)c)
where d = ci and d× c = ci+1 →

∑
i+1TIME(n) ⊆ TIME(nc

i+1
)

�

End of solution.

Definition 64. A branching problem is a directed acyclic graph where all nodes are labeled
by variables, except for two output nodes labeled 0 or 1. The nodes that are labeled by
variables are called query nodes. Every query node has two outgoing edges, one labeled 0
and the other labeled 1. Both output nodes have no outgoing edges. One of the nodes in
a branching problem is designated the start node. A layered branching problem of width w
length t is a graph like this. Each layer has ≤ w nodes, has connections pointing only to the
next layer and is labeled by 1 variable. For width ≥ n, the best time bound are of the form
t ≥ n ∗ lgc(n) for some c . (i.e. there exists f ∈ NP that requires t ≥ n ∗ lgc(n))

Exercise 114. Prove that if f requires depth 3 circuits of size ≥ 2n
1/2+Ω(1)

then f would also
require width n branching problems of length t ≥ n1+Ω(1).

Solution: A branching program of width n and length t can be seen as a configuration
graph. We would like to know if REACH(cS, cA, t) = 1 where cS is the start node in branching
program, cA is the output node labeled 0 or 1. t is the length of branching program. We
know that

REACH(cS, cA, t) ⇔ ∃c1 = cS, c2, . . . , cn1/2 = cA,∀i < n
1
2 ,REACH(ci, ci+1, t/n

1
2).

We can construct a circuit based on the definition of REACH at the right hand.

1. The root is a ∨-gate, whose fan-in is the number of sequences like c1, . . . , cn1/2 . The
input of this ∨-gate is a set of ∧-gates, each corresponds to a specific sequence of
c1, . . . , cn1/2 .

2. For each ∧-gate, each input bit is REACH(ci, ci+1, t/n
1/2) for some i ≤ n1/2.

3. Reach(ci, ci+1, n
1/2) depends on ≤ n1/2 bits of the input, it can be computed by a DNF

of size ≤ 2O(n1/2)

This is a circuit of depth 3. In order to keep the size of the circuit ≥ 2n
1/2+Ω(1)

, the step of
t/n1/2 should be less than n1/2. So t should be ≥ n1+Ω(1). f would require width n branching
problems of length t ≥ n1+Ω(1).

End of solution.

For small width w (say w = O(i)), then you get bounds of t ≥ Ω(n2

log(n)
)

115

Definition 65. The element distinction function f : {0, 1}n → {0, 1} is defined as
new input x ∈ {0, 1}n as n

2log(n)
values and Yi ∈ [n2]

Claim 66. ∀w = O(1) f requires branching programs of length Ω(n2

log(n)
)

Proof. Consider a width w, length t branching program for f . Partition the layers according
to the n

2log(n)
blocks of the input. Some set of the partition contains ≤ t

n
∗2∗ log(n) elements.

Say this set corresponds to Yi∗ when we fix all Yj : j 6= i∗. Thus, we obtain a branching
program of length t

n
∗ 2log(n)

The number of such branching programs is ≤ 2O(wlog(w)∗ t
n
∗2∗log(n)).

Since we can consider wlog(w) a constant, the number of branching programs is ≤ 2O(t
n
log(n))

On the other hand, by fixing Yj for j = i∗, you obtain ≥ 2Ω(n) different functions starting

from f . And since 2
t
n
∗2∗log(n) ≥ 2Ω(n) then t ≥ Ω(n2

log(n)
).

Exercise 115. Show that you obtain ≥ 2Ω(n) different functions of Yi∗ by fixing j 6= i∗.

Solution: Since there are n
2log(n)

blocks of x and each block can have 2log(n) distinct values,

if we fix j 6= i∗ then there must be at least 22log(n)
n

2log(n)
or ≥ 2Ω(n) functions.

End of solution.

116

Lecture 24
In this class, we started by reviewing previous exercises, some recent major results in

complexity theory, and finished with the big picture of the relationships between different
complexity classes.

24.53 Writing Proofs

• If the proof remains invariant under changing the question’s parameters, it is flawed.

24.54 Achievements in Complexity Theory

• PCP Theorem (Probabilistically Checkable Proofs): It allows us to construct mathe-
matical proofs in a form that can be checked by looking at few probabilistically chosen
symbols (from the proof). One of the main applications of this theorem is in inapprox-
imability.

• Pseudorandomness: TIME(2O(n)) requires circuits of SIZE(2Ω(n)) =⇒ P = BPP .
This theorem implies that if some functions are hard, then randomness is useless. A
sufficiently hard function can give the illusion of randomness.

24.55 The Big Picture

The figure below summarizes the relationships between different complexity classes.

117

Figure 3: Relationships between different complexity classes

118

